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Abstract The 21 centimeter (21 cm) line emission from neutral hydrogen in the inter-
galactic medium (IGM) at high redshifts is strongly contaminated by foreground sources
such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy,
as well as emission from extragalactic radio sources, thus making its observation very
complicated. However, the 21 cm signal can be recovered through its structure in fre-
quency space, as the power spectrum of the foreground contamination is expected to be
smooth over a wide band in frequency space while the 21 cm fluctuations vary signifi-
cantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four
frequencies 50, 100, 150 and 200 MHz with an especially small channel width of 20 kHz.
Our calculations show that this multifrequency fitting approach can effectively recover the
21 cm signal in the frequency range 100 ∼ 200 MHz. However, this method doesn’t work
well around 50 MHz because of the low intensity of the 21 cm signal at this frequency.
We also show that the fluctuation of detector noise can be suppressed to a very low level
by taking long integration times, which means that we can reach a sensitivity of ≈ 10 mK
at 150 MHz with 40 antennas in 120 hours of observations.
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1 INTRODUCTION

Observations of the redshifted 21 cm line of neutral hydrogen are perceived as one of the most promising
future probes of the Universe at high redshifts (Ali et al. 2008; Furlanetto et al. 2006; Morales et al. 2004;
Santos et al. 2003; Holder et al. 2003). Fluctuations in the 21 cm line emission are induced both by inho-
mogeneities in the intergalactic neutral gas and in the ionized hydrogen fraction (Di Matteo et al. 2004;
Madau et al. 1997; Tozzi et al. 2000; Ciardi et al. 2003; Furlanetto et al. 2004a) and by ‘minihalos’
with virial temperatures below 104 K (Iliev et al. 2002, 2003). Observations of fluctuations in redshifted
21 cm emission from neutral hydrogen will provide unprecedented information about the structure for-
mation, the nature of the first luminous objects and the physical state of the intergalactic medium at
high redshifts (Morales et al. 2006; Di Matteo et al. 2002; Cen 2003; Kumar et al. 1995; Gnedin &
Ostriker 1997). Upcoming low-frequency radio facilities such as the 21 Centimeter Array (21 CMA) 1

(Pen et al. 2004), the Low Frequency Array (LOFAR) 2, the Mileura Wide-Field Array (MWA)3 and the

1 http://21cma.bao.ac.cn
2 http://www.lofar.org
3 http://www.haystack.mit.edu/arrays/MWA
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Square Kilometer Array (SKA)4 are currently under construction to explore 21 cm fluctuations associ-
ated with neutral hydrogen prior to and during reionization spanning the redshift range 5 ≤ z ≤ 20.
These will provide a powerful tool for probing the epoch, nature, and sources of reionization in the
universe and their implications for cosmology (Di Matteo et al. 2002).

Unfortunately, the 21 cm signal is contaminated by strong foregrounds, which are five orders of
magnitude above the 21 cm fluctuations, making its detection from the foreground a major challenge
(Furlanetto et al. 2006; Santos et al. 2005). It is therefore crucial to study the property of the foregrounds
in order to detect the 21 cm signal in future observations. Foregrounds are expected to be smooth as
a function of frequency and the contribution at different frequencies are highly correlated, while the
21 cm signal varies rapidly in frequency space and is expected to be uncorrelated. This character may
allow us to separate the 21 cm signal from foregrounds (Ali et al. 2008; Zaldarriaga et al. 2004). Di
Matteo et al. (2002), Zaldarriaga et al. (2004) and Santos et al. (2005) suggested that the spectrum of
the foregrounds can be well approximated by a power law in one pixel and the spectra can be fitted
to individual spatial-frequency pixels in visibility space. The basic approach in Wang et al. (2006) is
to subtract foregrounds separately in each angular direction in the sky by fitting their total intensity
dependence on frequency by a log-log polynomial. They discussed their analysis with one-dimensional
(1-D) simulated data over a small redshift range around z ≈ 8.09.

It is worthwhile expanding this analysis over the full relevant redshift range. Our approach is similar,
but it emphasizes the removal of the foreground in two-dimensional (2-D) data. This paper complements
the analysis in Wang et al. (2006), and discusses how well the multifrequency fitting can perform on 2-
D data in the frequency range 50 ∼ 200 MHz. In Section 2, we present various models for simulation,
such as the reionization model, foreground models and detector noise model. In Section 3, we describe
the foreground removal method used in our calculation. We summarize our results in Section 4 and our
conclusions in Section 5.

2 SIMULATION OF MODELS

2.1 Reionization Model

Observed 21 cm brightness temperature in the direction n is given by (Zaldarriaga et al. 2004; Furlanetto
et al. 2006)

T (n, ν) = T0

∫
drWr0 (r)ψ(n, r); (1)

T0 = 23
(

Ωbh
2

0.02

)(
0.15

Ωmh2

1 + z

10

) 1
2

mK; (2)

ψ(n, r) = (1 + δ)xH

(
Ts − TCMB

Ts

)
, (3)

where T0 is a normalization constant at r0. The comoving radial distance corresponds to the observed
frequency ν, and ψ(n, r) is the dimensionless brightness temperature.W r0(r) is the projection function
which is peaked at r0. δ, xH, and Ts, respectively, correspond to the matter density contrast, neutral
hydrogen fraction and the spin temperature of the IGM. TCMB = 2.73(1+z)K is the CMB temperature
at redshift z.

The spin temperature Ts depends on the kinetic temperature Tk of the IGM (Zaldarriaga et al. 2004;
Furlanetto et al. 2004a). The IGM is likely to be heated shortly after the first sources appear through
X-ray, photoionization and shock heating (Chen et al. 2003; Furlanetto et al. 2004a; Zaldarriaga et
al. 2004). Once heating has occurred, these processes will rapidly heat the IGM to T k > TCMB

(Zaldarriaga et al. 2004; Venkatesan et al. 2001; Chen et al. 2003). The situation most relevant to ob-
servations has Ts ∼ Tk � TCMB, which should be reasonable even relatively early in reionization

4 http://www.skatelescope.org
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(Zaldarriaga et al. 2004; Furlanetto et al. 2004a,b). In this limit, the temperature ψ can be written by
ψ(n, r) = (1 + δ)xH. The correlation of the 21 cm temperature fluctuation Δψ(n, r) = ψ(n, r) − ψ
can be represented by

μ(x12) = 〈ψ(x1)ψ(x2)〉 − 〈ψ〉2 , (4)

which depends on the parameters δ and xH. x12 is the distance between points x1 and x2. We can model
the correlations of the neutral hydrogen fraction field as 〈xH(x1)xH(x2)〉 = x2

H − (xH − x2
H)f(x12/R)

under the simplifying assumption that the fluctuations in xH were produced by a set of uncorrelated
“bubbles” of typical size R, where xH is the average value of xH and f(x) is a function with the follow-
ing limits: f(x) ≈ 1 for x� 1 and f(x) ≈ 0 for x� 1 (Zaldarriaga et al. 2004).

We can obtain the expression for the power spectrum of ψ by Fourier transforming Equation (4)
(Zaldarriaga et al. 2004),

Δ2
ψ(k) = x2

HΔ2
ρ(k) + (xH − x2

H)Δ2
xρ(k) + (xH − x2

H)Δ2
x(k), (5)

where

Δ2
x(k) =

k3f̂(k)
2π2

, (6)

Δ2
xρ(k) =

k3

2π2

∫
dk′

(2π3)
Pρ(k − k′)f̂(k′). (7)

f̂(k) is the Fourier transform of f(x) and Pρ(k) is the power spectrum of the density fluctuations.
The corresponding three-dimensional power spectrum of the 21 cm temperature fluctuation is given

by

Pψ(k) =
2π2

k3
Δ2
ψ(k). (8)

We assume a ΛCDM concordance cosmology with Ωm = 0.27,ΩΛ = 0.73,Ωb = 0.04, h =
0.71, σ8 = 0.84 throughout our calculations.

The average properties of the universe evolve on a timescale of Δz ∼ 1, while the local properties
of the universe change on a much smaller scale of Δz < 1. Across such a small redshift range, we can
approximate parameters by their values at z0 (Wang et al. 2006).

The importance of the redshift space distortions is determined by the ratio R = (Δν/ν)/(v/c),
where v is the typical random bulk velocity of the gas. Redshift space distortions will be unimportant if
R > 1 (Zaldarriaga et al. 2004).

If we make the above-mentioned approximation and neglect the redshift distortions, the 21 cm signal
near a given z0 has an isotropic 3-D power spectrum P3D which can be projected onto a 2-D power
spectrum P2D(k, z0) (Wang et al. 2006; Peacock 1999):

P2D(k, z ≈ z0) =
1
2π

∫ ∞

k

P3D(k′, z ≈ z0)
k′√

k′2 − k2
dk′. (9)

The above approximation would require us to observe the 21 cm signal in a sufficiently narrow
redshift range Δz < 1, corresponding to a bandwidth <∼10 MHz. In this paper, we simulated the 21 cm
fluctuation at four frequencies 50, 100, 150 and 200 MHz with a total bandwidth of 2 MHz with each
frequency split into 100 channels.

The brightness temperature of the cosmological signal used in our simulation is produced from fast
Fourier transforms (FFTs). The simulated signal in real space in the region 0 < x < L, 0 < y < L is

f(x, y) =
1
N

N−1∑
i=0

N−1∑
j=0

[
A(i, j) cos

(2π
√
x2 + y2

L

√
i2 + j2

)
+B(i, j) sin

(2π
√
x2 + y2

L

√
i2 + j2

)]
, (10)
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whereA(i, j) andB(i, j) are Gaussian random variables with zero mean and standard deviations ΔA =
ΔB = [P2D(k, z0)/2]1/2 = [P2D(2π

√
i2 + j2/L, z0)/2]1/2 (Wang et al. 2006). L is a box size which

should be small enough to satisfy Δz � 1, andN is an integer which should be large enough to include
all the information from the P2D(k).

Although we simulate the 21 cm signal as a Gaussian random field, in reality, the 21 cm signal is
non-Gaussian in nature, because the intensity of the 21 cm signal is a function of the spin temperature of
the gas and the local ionization fraction, which may have a very complex distribution, in addition to the
density fluctuations (Morales et al. 2004). However, the key quantity in which we are interested depends
on the power spectra of the signal, foregrounds and detector noise, instead of whether the statistics are
Gaussian or not. Therefore, we can assume the 21 cm signal to be a Gaussian random field and the
signals between the different frequency channels are completely uncorrelated.

2.2 Foreground Model

The main foreground components which dominate the sky in frequency range 50 ∼ 200 MHz are:
Galactic synchrotron emission, Galactic free-free emission and emission from extragalactic sources.

Galactic synchrotron emission originates from the interaction between the free electrons in the
interstellar medium and the Galactic magnetic field. It is the dominant contamination, and comprises a
fraction of about 70% at 150 MHz (Shaver et al. 1999). Its intensity can be given by a running power
law in frequency (Wang et al. 2006):

Isyn = Asyn

( v
v∗

)−αsyn−Δαsyn log( ν
ν∗ )

. (11)

Amplitude Asyn and the spectral index αsyn gradually vary with position and frequency (Shaver et
al. 1999; Lawson et al. 1987). Shaver et al. (1999) and Jelić et al. (2008) suggested that the difference of
the amplitude Asyn and spectral index αsyn between different frequency directions and lines of sight is
very slight. The intensity Isyn is still a very smooth function of frequency. Furthermore, the main purpose
of this paper is to test the accuracy of foreground removal over every line of sight. Therefore, the slight
variation of Asyn and αsyn can be neglected, and the same Asyn and αsyn can be used throughout our
field of view. Tegmark et al. (2000) suggested α syn = 2.8 based on the data from Platania et al. (1998).
The spectral index varies across the sky with Δαsyn = 0.15. Here, we can take a conservative estimate
of 0.1 (Santos et al. 2005; Wang et al. 2006). ν∗ = 150 MHz is the reference frequency at which the
normalization is done. The amplitude Asyn can be extrapolated from Tegmark et al. (2000), so we get
Asyn = 335.4 K (Wang et al. 2006).

The free-free emission is due to the very diffuse ionized gas. It contributes only ∼ 1% of the total
foreground within the frequency range we considered (Shaver et al. 1999). It follows a similar spatial
power spectrum as that of the synchrotron emission, but with a lower amplitude. Its emission intensity
can also be written as:

Iff = Aff

( v
v∗

)−αff−Δαff log( ν
ν∗ )

, (12)

where αff = 2.15, Δαff = 0.01 (Tegmark et al. 2000; Shaver et al. 1999) and Aff = 33.5 K (Wang et
al. 2006).

The extragalactic radio sources also provide a serious contamination of the brightness temperature
fluctuations of 21 cm emission, with the contribution of the order 27% at 150 MHz (Shaver et al. 1999).
Power law spectra of the extragalactic sources are much more complicated than that of the Galactic
synchrotron radiation and free-free emission. They are overlapped spectra with different spectral indices.

We adopt a more complicated extragalactic source model in our simulation, with a huge number of
sources randomly positioned in the sky. The intensity in every pixel of each source is (Wang et al. 2006)

Ips(x, y) =
(
dB

dT

)−1

Ω−1
skyS

∗
i

(
ν

ν∗

)−αi

exp

(
− (x− xi)

2

2σ2
x

− (y − yi)
2

2σ2
y

)
, (13)
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where (xi, yi) is the central position of the source, and σx, σy represent the shape of the source.
The conversion factor dB/dT can be deduced from the Rayleigh-Jeans law B = 2kT/λ 2, and we
attain dB/dT = 6.9 × 105 mJy K−1 at frequency 150 MHz. Ωsky is the solid angle per pixel,
Ωsky = 10.8 arcmin2 at 150 MHz when the assumed longest baseline is 3 km. S ∗

i is the flux of the ith
source, randomly generated from the source count distribution dN/dS = 4(S/1 Jy)−1.75 (Di Matteo et
al. 2004; Wang et al. 2006; Santos et al. 2005; Pierpaoli 2003; Ali et al. 2008). Di Matteo et al. (2004)
suggested that sources brighter than Sc = 0.1 mJy can be detected by potential low-frequency inter-
ferometers and directly removed from the images. Di Matteo et al. (2002) said that the appearance
of the radio sky below Smin = 1 μJy is not well known. Hence, here we take the maximum flux
Smax = 0.1 mJy, and the minimum flux Smin = 0.001 mJy. αi is the spectral index of the ith source,
randomly generated from the Gaussian distribution

f(α) =
1√

(2π)σα
exp

[
− (α− α0)2

2σ2
α

]
. (14)

Wang et al. (2006) showed that the residuals of the subtraction are insensitive to spectral indices as long
as σα ≤ 60. Here, we allow σα = 2 throughout our calculations.

2.3 Detector Noise Model

The sensitivity of a receiving system is determined by the system noise. For an array of n antennas,
there are N = n(n− 1)/2 independent baselines. If the signals are integrated over time interval τ , the
theoretical rms noise level in terms of temperature is

ΔT =
Kλ2Tsys

AeΩb

√
2NΔvτ

, (15)

where K is a loss factor depending on the receiver system. For total power at the receiver, K is close
to unity, and we will set K = 1 (Rohlfs 1986; Furlanetto et al. 2006). A e is the effective area of the
antenna, like 21 CMA, Ae = 216 m2. Tsys is the system temperature. It has two major contributions.
The first comes from the sky and is frequency and elevation dependent, and the second comes from the
receivers and is frequency independent. For a Gaussian beam, Ω b = ΩMA = 1.133θ2b, where θb is the
full width to half power. Δν is the channel width. Here, we take Δν = 2 MHz/100 = 20 kHz.

In this paper, we plan to measure the brightness fluctuations in the frequency range 50 ∼ 200 MHz.
The angular extent we use is 20◦ × 20◦ at 50 MHz, 10◦ × 10◦ at 100 MHz, 7◦ × 7◦ at 150 MHz, and
5◦ × 5◦ at 200 MHz. The corresponding angular resolutions are 8.4 ′ × 8.4′, 4.2′ × 4.2′, 2.8′ × 2.8′,
2.0′ × 2.0′. The number of pixels in each map is Npixel = 1282. The lowest noise level we can reach is
ΔTN = ΔT/

√
Npixel, which is at the level of mK.

We can reach such low noise levels by taking sufficiently long integration times using the synthesis
array with forty antennas. We only selected the 21 cm signal when its fluctuation exceeded 3σ of rms
noise. Table 1 shows the results of the total integration time at every frequency.

Table 1 Integration Time at Different Frequencies, with 40 Antennas, 20 kHz Channel Width

ν [MHz] ΔT21cm [mK] Time [d] ν [MHz] ΔT21cm [mK] Time [d]

100 3.32 3189 160 23.67 11
110 23.87 39 170 12.83 32
120 63.44 4 180 6.8 102
130 79.18 2 190 3.56 342
140 61.38 3 200 1.95 1066
150 39.59 5
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3 FOREGROUND-REMOVAL METHOD

Consider a pixelized sky map consisting of M numbers y 1
f , y

2
f , · · · , yM

f , where yif is the temperature
of the ith pixel at frequency νf (f = 1, 2, · · · , F ). F is the frequency channel number. In this paper,
we take F = 100. The maps are simulated on 1282 grids, so we have M = 1282. If we remove the
foreground pixel-by-pixel, this means we need to do 128 2 fittings and removals. Taking one pixel for
example, yf = log(If21cm +Iffg+Ifn ) is the total intensity on the pixel, including the 21 cm signal I f21 cm,

foreground contamination I ffg, and detector noise I fn .
The log-frequenciesxf = log(νf ) have some linear combination with the sky temperature y f . Their

relationship can be represented by

yf =
∑
j=0

xifai = x0
fa0 + x1

fa1 + x2
fa2 + · · · (16)

= a0 + a1 log(νf ) + a2[log(νf )]2 + · · ·

Grouping xf , yf into an F ×m matrix X and F -dimensional vector y, respectively, we can gener-
ally write

y = Xa + n, (17)

where m is the number of fitting parameters and a is the m-dimensional parameter vector, n is the
vector that cannot be represented by parameter a, including the contributions from the 21 cm signal,
detector noise and residual foregrounds.

In our computation, we fit the log intensity of the foreground as log(I) = a 1 + a2 log(ν) +
a3 log(ν)3 + a4 log(ν)5. The number of fitting parameters is m = 4. Now we can rewrite Equation (17)
as ⎡⎢⎢⎣

y1
y2
...
yF

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
x0

1 x1
1 x3

1 x5
1

x0
2 x1

2 x3
2 x5

2
...

...
...

...
x0
F x1

F x3
F x5

F

⎤⎥⎥⎥⎦
⎡⎢⎣ a1

a2

a3

a4

⎤⎥⎦+

⎡⎢⎢⎣
n1

n2

...
nF

⎤⎥⎥⎦ .
We estimate ã of the sky map a by minimizing χ2

χ2 =
F∑
f=1

(
yf −

m∑
j=1

xiiai

)2

σ2
i

.

Tegmark et al. (1997, 2000) showed that the minimum-variance choice is

ã = (XtN−1X)−1XtN−1y,

where N is the covariance matrix of the contributions from the 21 cm signal and the detector noise. We
assume that both the 21 cm signal and detector noise are uncorrelated between different frequencies, so
N becomes

N = 〈nnt〉 =

⎡⎢⎢⎣
n1

n2

...
nn

⎤⎥⎥⎦ [ n1 n2 . . . nn

]
=

⎡⎢⎢⎢⎢⎣
n2

1 0 . . . 0
0 n2

2 . . . 0
...

... . . .
...

0
... . . . n2

n

⎤⎥⎥⎥⎥⎦ .
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Fig. 1 Simulated maps of total intensity emission of synchrotron radiation, free-free emission fore-
ground, extragalactic point sources, detector noise and the 21 cm signal, at 50 MHz (top-left), 100 MHz
(top-right), 150 MHz (bottom-left) and 200 MHz (bottom-right).

4 RESULTS

In this section, we present the results of the detection of the 21 cm signal from the total intensity maps.
We simulated the foregrounds and 21 cm signal around the four frequencies mentioned in Section 2 in
a 2 MHz frequency width. The variation, σ, over the map in the frequency range 100 ∼ 200 MHz is
∼ mK for the detector noise which is the fiducial value for a future-generation experiment. Note that
the mean values of the 21 cm signal and noise are set to zero.

The detection of the 21 cm signal is done in intensity maps by analysis along the frequency direction.
Figure 1 shows the maps of the total intensity including the Galactic synchrotron emission, Galactic free-
free emission, emission from unresolved extragalactic sources, the 21 cm signal and the detector noise.
The maps are simulated around 50, 100, 150 and 200MHz in steps of 20 kHz. The fields of view at these
frequencies are 20◦ × 20◦, 10◦ × 10◦, 7◦ × 7◦, and 5◦ × 5◦, with each divided into 1282 pixels.

The simulation results in a randomly chosen line of sight are shown in Figure 2. The top panel
shows the total foreground contamination in a pixel, the middle panel includes the foregrounds and the
21 cm signal. We can see the small fluctuation in the middle panel, which is caused by the fluctuation
of the 21 cm signal. The bottom panel shows the comparison between the simulated 21 cm signal (solid
line) and the recovered 21 cm signal (dashed line). The residual (dotted curve) represents the error in
the foreground fitting. The recovered 21 cm signals are in good agreement with the simulated ones at
100, 150, and 200 MHz. The disagreement at 50 MHz is due to the low intensity of the 21 cm signal
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Fig. 2 Signal at one pixel. The top panel shows the smooth component of the foreground, the middle
panel has the 21 cm signal added. The bottom is the comparison between the simulated 21 cm signal
(solid line) and the recovered 21 cm signal (dashed line). The dots in the bottom panel represents the
residual.

level, which is about 10−20 mK. The fitting precision is at the level of 0.1mK. Therefore, the recovered
signals are dominated by the fitting error, and much higher than the simulated signals.

We remove the smooth foreground components from the total intensity along the line of sight for
each individual pixel by polynomial fitting in a logarithmic scale. The solid line in Figure 3 represents
the simulated total intensity of foregrounds along one line of sight, and the dashed line is the fitted inten-
sity. As we can see, there is good agreement between the simulated and fitted foregrounds. However, due
to the presence of many sources per pixel, which can lead to a complex cumulative spectrum, the spec-
trum cannot be exactly fitted by a simple power-law model. The fitting error is presented in the bottom
panel of the map. The errors are very small which means that the foreground can be well approximated
by our fitting function.

Figure 4 shows the comparison between the simulated and recovered 21 cm signal in terms of stan-
dard deviation. The top panel of the map at 50 MHz is the standard deviation σ of the simulated 21 cm
signal over all lines of sight, and the bottom panel is the σ of the recovered 21 cm signal. Because the fit-
ting error is 19 orders of magnitude above the 21 cm signal intensity at 50 MHz, the σ of the recovered
21 cm signal shown in the bottom panel is dominated and corrupted by the fitting error. The curve shape
actually represents the trace of the fitting error. The solid line in the top panel of other maps represents
σ of the simulated 21 cm signal, and the dashed line the σ of the recovered 21 cm signal. The difference
between them is explained by the relative error in the bottom panel. All of them are very small, which
show that this polynomial fitting in logarithmic scale can effectively reconstruct the 21 cm signal in
the frequency range 100 ∼ 200 MHz. After removing the fitted foregrounds from the simulated total
signals, the residuals include the 21 cm signal, detector noise and foreground fitting residuals. Figure 5
shows the intensity maps of the residuals after foreground removal. As we can see in Figure 2, the
foreground residual is much lower than the 21 cm signal, which is about one order of magnitude below
the 21 cm signal, and as mentioned in Section 2.3, the 21 cm fluctuation exceeds 3σ of the variation of
detector noise, so the residual intensity is dominated by the 21 cm signal. From these maps, we can see
that the results are really good except at 50 MHz.
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Fig. 3 Simulated total intensity and fit total intensity in a single pixel. The solid line is the simulated
signal and the dashed line is the fit signal. The bottom represents the relative fitting error.
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Fig. 4 Detection of 21 cm signal from maps with 1282 grids around 50, 100, 150 and 200 MHz. The top
panel at 50MHz shows the standard deviation σ of the simulated 21 cm signal over all lines of sight,
and the bottom panel shows σ of the recovered 21 cm signal. For the other frequencies, the σ derived
from the simulated and recovered 21 cm signals are represented by the solid line and the dashed line of
the top panel, respectively. The relative errors are shown in the bottom panel.
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Fig. 5 Recovered maps of residual intensity including the 21 cm signal, detector noise and foreground
residual at 50, 100, 150 and 200 MHz, respectively.

We have tested the analysis by changing parameters of the foreground models, such as the fore-
ground amplitudes, parameters σα and α0 in Equation (14). The results showed that the residuals are
weakly independent of the selected parameters, which are consistent with what was found by Wang et
al. (2006). They found that the effectiveness of this cleaning method is almost independent of the shape
and amplitude of the relatively smooth foregrounds. However, we found that the pixel size has a subtle
influence on the results. We repeated the analysis with 2562 grids. The solid line in the top panel of
Figure 6 represents the standard deviation σ of the simulated 21 cm signal, and the dashed line repre-
sents σ of the recovered 21 cm signal. We can find that the relative error in the bottom panel in maps
with 2562 grids are several times higher than those in maps with 1282 grids.

We also test how the order of the polynomial fitting influences the 21 cm signal extraction. We
change the order of the polynomial from 4 th order to 6th order. The result shows that there is no essential
difference between the 4th order fitting and 6th order fitting. We use a fourth order polynomial fitting in
our analysis.

As mentioned in Section 2.2, the flux range of the extragalactic radio sources is 10−6 ∼ 10−4 Jy.
Now, we increase the maximum flux and test how the cut-off flux of the radio sources influences the
result of the 21 cm signal extraction. The same analysis was done in the flux range 10−6 ∼ 102 Jy. The
results of mapping on 1282 grids and 2562 grids show that an increase in the maximum of the flux has
little influence on the result of foreground removal. This test indicates that our method can effectively
remove the foregrounds as long as the total foreground signal can be well approximated by a log-log
polynomial.
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Fig. 6 Detection of 21 cm signal from maps with 2562 grids around 100, 150 and 200 MHz. The solid
line in the top panel represents the σ of simulated 21 cm signal, and the dashed line is the σ of recovered
21 cm signal. The bottom panel shows the relative error.

5 CONCLUSIONS

The measurement of highly redshifted 21 cm neutral hydrogen emission will provide unprecedented
information about the epoch of reionization (Santos et al. 2005; Morales et al. 2006). Unfortunately,
this experiment will suffer from a high degree of foreground contamination which is more than 5 orders
of magnitude above the 21 cm fluctuation (Wang et al. 2006; Santos et al. 2005; Jelić et al. 2008).
Several foreground-subtraction techniques have been suggested in the literature (Morales et al. 2006).
Zaldarriaga et al. (2004) proposed that the smooth spectra models be fit to individual spatial-frequency
pixels in the visibility space, which should be better at removing emission on larger angular scales.
Wang et al. (2006) introduced a subtraction technique which removes the foreground contamination by
fitting the many faint continuum sources in each line of sight. In this paper, we expand the pixel-based
fitting algorithm to a 2-D image over the full relevant redshift range 5 ≤ z ≤ 20.

We have examined how well the log-log polynomial fitting can influence removal of foreground
contamination at the frequencies relevant for observations of the redshifted 21 cm signal. We have car-
ried out a set of foreground simulations to model the observation of the 21 cm signal. The foreground
simulations cover Galactic synchrotron and free-free emission, and extragalactic emission from radio
sources. Maps with 1282 grids are generated at frequencies 50 MHz (20◦×20◦), 100 MHz (10◦×10◦),
150 MHz (7◦ × 7◦) and 200 MHz (5◦ × 5◦).

Foregrounds are subtracted by fitting their intensity dependence on frequency with a quadratic poly-
nomial in log-log space for each pixel in the sky, with σ scalings to determine the effects of foreground
subtraction. Based on that, the foregrounds have much smoother frequency spectra than the 21 cm signal,
so a high level of foreground removal is achieved which is really encouraging.

We did the same analysis on maps with 2562 pixels to test the influence of the pixel size. The errors
increase with the pixel number. We found that improving the number of fitting parameters from 4 to 6
gave no further improvement and increasing the maximum flux had little influence on the result. All our
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tests show that the foreground removal method can work well with the angular resolution we assumed
with the 4th order polynomial. The effectiveness of this method is weakly dependent on the flux of the
extragalactic sources.

In conclusion, polynomial fitting can effectively remove the foreground in the frequency range
100 ∼ 200 MHz where the foreground can be well approximated by the fitting function. However, in
real observation, the foreground is more complex, thus more details need to be considered, such as
the instrument response, polarization response, and other non-astrophysical factors. Furthermore, the
process of spectral fitting will also introduce errors due to uncertainty in model parameter estimates.
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