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Abstract We perform numerical simulations to study the secular orbital evolution and
dynamical structure of the quintuplet planetary system 55 Cancri with the self-consistent
orbital solutions by Fischer and coworkers. In the simulations, we show that this sys-
tem can be stable for at least 10% yr. In addition, we extensively investigate the planetary
configuration of four outer companions with one terrestrial planet in the wide region of
0.790 AU < a < 5.900 AU to examine the existence of potential asteroid structure and
Habitable Zones (HZs). We show that there are unstable regions for orbits about 4:1, 3:1
and 5:2 mean motion resonances (MMRs) of the outermost planet in the system, and sev-
eral stable orbits can remain at 3:2 and 1:1 MMRs, which resembles the asteroid belt in
the solar system. From a dynamical viewpoint, proper HZ candidates for the existence of
more potential terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU with
relatively low eccentricities.
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1 INTRODUCTION

The nearby star 55 Cancri (55 Cnc) is of spectral type KO/G8V with a mass of 0.92 + 0.05M ¢, (Valenti
& Fischer 2005). Marcy et al. (2002) reported a second giant planet with a long period of ~ 14 yr after
the first planet was discovered in 1997. The 55 Cnc system could be very attractive, firstly because
it hosts a distant giant Jupiter-like planet about 5.5 AU resembling Jupiter in our solar system. The
second interesting thing is that this system may be the only known planetary system in which two giant
planets are close to the 3:1 orbital resonance, and researchers have extensively studied the dynamics and
formation of the 3:1 MMR in this system (see Beaugé et al. 2003; Ji et al. 2003; Zhou et al. 2004; Kley,
Peitz & Bryden 2004; Voyatzis & Hadjidemetriou 2006; Voyatzis 2008). The additional collection of
follow-up observations and the increasing precision of measurements (at present ~ 1ms —! to 3ms —1)
have indeed identified more planets. McArthur et al. (2004) reported the fourth planet with a small
minimum mass ~ 14 Mg, that orbits the host star with a short period of 2.8d, by analyzing three sets
of radial velocities. The improvement of the observations will actually induce an additional discovery.
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Hence, it is not difficult to understand that more multiple planetary systems or additional planets in
multiple systems can be dug out of supplemental data.

More recently, Fischer et al. (2008) (hereafter Paper 1) reported a fifth planet in the 55 Cnc system
with Doppler shift observations over 18 yr, and showed that all five planets are in nearly circular orbits
and four have eccentricities under 0.10. It is really one of the most extreme goals for astronomers devoted
to searching for extrasolar planets to discover a true solar system analog, which may hold one or two gas
giants orbiting beyond 4 AU that can be compared to Jupiter and Saturn in our own solar system (Butler
2007, private communication; see also Gaudi et al. 2008). This indicates that several terrestrial planets
may move in the so-called Habitable Zones (HZs) (Kasting et al. 1993; Jones et al. 2005), and potential
asteroid structure could exist. Considering the probability of the coplanarity and nearly circular orbits
for the five planets (Paper 1), the 55 Cnc system is suggested to be a comparable twin of the solar system.
Hence, firstly, from a dynamical viewpoint, one may be concerned about the stability of the system over
a secular timescale. On the other hand, small bodies, such as terrestrial objects may exist in this system
and are able to be detected with forthcoming space-based missions (Kepler, SM). In this paper, we focus
on understanding the dynamical structure and finding suitable HZs for life-bearing terrestrial planets in
this system.

2 DYNAMICAL ANALYSIS

In this paper, we adopt the orbital parameters of the 55 Cnc system provided by Paper | (see their
table 4). For convenience of narration, we relabel the planets according to the ascendant semi-major
axes in the order from the innermost to the outermost planet (e.g., B, C, D, E, F), while the original
names discovered in chronological order are also provided, but in braces (see Table 1). Furthermore,
McArthur et al. (2004) derived the orbital inclination ¢ = 53° + 6.8° with respect to the line of sight
for the outermost planet from HST astrometric data by measuring the apparent astrometric motion of
the host star. In the simulations, we adopt this estimated orbital inclination of 53 ° and further assume
all the orbits to be coplanar. With the planetary masses M sin reported in Table 1, we then obtain
their true masses. Specifically, the masses of five planets are respectively, 0.03 M jyp, 1.05 M5, 0.21
Mjyp, 0.18 My, and 4.91 My, Where sini = sinb3° = 0.7986. Thus, we take the stellar mass
M. of 0.94 M, (Paper 1), and the planetary masses mentioned above in the numerical study, except
where noted. We utilize N-body codes (Ji, Li & Liu 2002) to perform numerical simulations by using
RKF7(8) and symplectic integrators (Wisdom & Holman 1991) for this system. In the numerical runs,
the adopted time stepsize is usually ~ 2% — 5% of the orbital period of the innermost planet. In addition,
the numerical errors are effectively controlled over the integration timescale, and the total energy is
generally conserved to be 106 for the integrations. The typical timescale of simulations of the 55 Cnc
system is from 100 Myr to 1 Gyr.

2.1 The Stability of the 55 Cancri Planetary System
2.1.1 Casel: 5-pfor 108yr

To explore the secular stability of this system, firstly, we numerically integrated the five-planet system
on a timescale of 10% yr, using the initials listed in Table 1. In Figure 1, a snapshot of the secular orbital
evolution of all planets is illustrated, where Q; = a;(1 + e;), ¢ = a;(1 — e;) (with the subscripts
1 = 1 — 5, individually, denoting Planet B, C, D, E, and F) are, respectively, the apoapsis and periapsis
distances. In the secular dynamics, the semi-major axis a1 and as remain unchanged to be 0.0386
and 0.115 AU, respectively, for 108 yr, while a3, a4 and a5 slightly librate about 0.241, 0.786, and
6.0 AU with quite small amplitudes over the same timescale. The variations of eccentricities during
long-term evolution are followed, where 0.23 < e; < 0.28, 0.0 < ez < 0.03, 0.034 < e3 < 0.069,
0.0 < e4 < 0.013,and 0.056 < e; < 0.095, implying that all the eccentricities undergo quasi-periodic
modulations.



Table 1 Orbital Parameters of 55 Cancri Planetary System*

The Dynamical Structure in the 55 Cancri System

Planet M sini (My.p)  P(d) a(AU) e w(deg) Ty

Planet B (e) 0.0241 2.796744 0.038 0.2637  156.500  2447578.2159
Planet C (b) 0.8358 14.651262 0.115 0.0159  164.001  2447572.0307
Planet D (c) 0.1691 44.378710 0.241 0.0530 57.405 2447547.5250
Planet E (f) 0.1444 260.6694 0.785  0.0002 205566  2447488.0149
Planet F (d) 3.9231 5371.8207 5.901 0.0633 162.658 2446862.3081

a: The parameters are taken from table 4 of Fischer et al. (2008). The mass of the star is 0.94 M.
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In Figure 1, we note that the time behaviors of @ ; and ¢; show regular motions of bounded orbits
for all five planets and indicate that their orbits are well separated during the secular evolution due
to small mutual interactions, which again reflect the regular dynamics of the eccentricities over the
secular timescale. In the numerical study, we find the system could be dynamically stable and last at
least 108 yr. Thus, our numerical outcomes strengthen and verify those of Paper | for the integration
of 108 yr, which also showed that the system could remain stable over 1 Myr and the variations of all
planetary eccentricities are modest.
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Fig.1 A snapshot of the secular orbital evolution of all planets is illustrated, where Q; = a;(1 + ¢;),
¢ = a;(1 — e;) (the subscripts ¢ = 1 — 5, stand for Planets B, C, D, E and F) are, respectively, the
apoapsis and periapsis distances. a; and a2 remain unchanged at 0.0386 and 0.115 AU, respectively,
while as, a4 and as slightly librate about 0.241, 0.786, and 6.0 AU with smaller amplitudes for 10° yr.
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Fig.2 Numerical simulations of four outer planets for 10° yr. The apoapsis and periapsis distances:
Qi = ai(1+ei), gi = a;(1 — e;) (the subscripts ¢ = 2 — 5 stand for Planets C, D, E and F). Long-term
simulation shows that the system could remain stable over 1 Gyr.

Secondly, we further performed an extended integration for the planetary configuration simply con-
sisting of four outer planets over a timescale up to 1 Gyr (see Fig. 2). The longer integration again reveals
that the orbital evolutions of the four planets are quite similar to those exhibited in Figure 1, and this
strongly supports the secular stability of this system. In a recent study, Gayon et al. (2008) show that
the 55 Cnc system may remain in a stable chaotic state as the planetary eccentricities do not grow over
a longer timescale. Therefore, it is safe to conclude that the 55 Cnc system remains dynamically stable
during the lifetime of the star.

In order to assess the stability of 55 Cnc with respect to the variations of the planetary masses, we
first adjust sin 7 in increments of 0.1 from 0.3 to 0.9. In the additional numerical experiments, we simply
vary the masses but keep all orbital parameters (Table 1), and again restart new runs of integration for the
five-planet system for 100-1000 Myr with the rescaled masses. As a result, we find that the system could
remain definitely stable for the above investigated timescale with slight vibrations in the semi-major axes
and eccentricities for all planets, indicating the present configuration is not so sensitive to the planetary
masses. Subsequently, we again examine the stabilities of different orbital configurations within the error
range of the Keplerian orbital fit given by Paper I. Herein, 100 simulations are carried out for 10 Myr,
and the numerical results show that all the runs are stable over the simulation timescale, indicating that
this five-planet system is fairly robust with respect to the variational planetary configurations.
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2.1.2 Case2: 7-pfor 108 yr

However, Paper | argued that 6 or more planets could exist and maintain dynamical stability in the
large gap between Planets E and F in this system. Next, we integrate the 55 Cnc system with additional
planets (2 massive terrestrial planets, Earth at 1 AU and Mars at 1.52 AU) to mimic the situation of
the inner solar system. In this run, we examine a configuration consisting of 5 planets and 2 terrestrial
bodies to study the coexistence of multiple objects. This means that we directly place Earth and Mars
into the 55 Cnc system to simulate “the inner solar system,” where the orbital elements for the above
terrestrial planets are calculated from JPL’s planetary ephemerides DE405 at Epoch JD 2446862.3081
corresponding to the outermost companion (see Table 2), e.g., the semi-major axes are respectively,
1.00 and 1.524 AU. The five planets are always assumed to be coplanar in the simulations, thus the
inclinations for 2 terrestrial planets refer to the fundamental plane of their orbits. In this numerical
experiment, we find that the 7-p system can remain dynamically stable and last for at least 108 yr.

Table2 Orbital Elements for 2 Terrestrial Planets at JD 2446862.3081 (from DE405)

Planet a (AU) e 1(deg) (deg) w(deg) M(deg)
Earth 1.000 0.0164 0.002 348.33 115.231 61.647
Mars 1.524 0.0935 1.850 49.60 286.352 85.614

In Figure 3 are shown the time behaviors of @ (yellow lines) and ¢ (black lines) for Mars, Earth
and Planet E. The numerical results show regular bounded motions where their semi-major axes and
eccentricities do not dramatically change in their secular orbital evolution, and this is also true for the
other four planets in 55 Cnc. It is not so surprising for one to realize that two additional terrestrial planets
could exist for a long time because gravitational perturbations arising from other planets are much
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Fig.3 Simulation for the 7-p case. The system could be dynamically stable and last at least 10 yr.
The time behaviors of @ (yellow lines) and ¢ (black lines) are shown for Mars, Earth and Planet E. The
results show that their semi-major axes and eccentricities do not dramatically change in secular orbital
evolution, and this is also true for the other four planets in 55 Cnc.
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smaller. In the following section, we will extensively explore this issue for the dynamical architecture
of Earth-like planets in the system.

3 DYNAMICAL ARCHITECTURE AND POTENTIAL HZS

To investigate the dynamical structure and potential HZs in this system, we extensively performed addi-
tional simulations with a planetary configuration of coplanar orbits of four outer companions with one
terrestrial planet. In this series of runs, the mass of the assumed terrestrial planet was selected randomly
in the range 0.1 Mg, to 1.0 M. The initial orbital parameters are as follows: numerical investigations
were carried out in [a, e] parameter space by direct integration, and for a uniform grid of 0.01 AU in the
semi-major axis (0.790 AU < a < 5.900 AU) and 0.01 in eccentricity (0.0 < e < 0.2), the inclinations
are 0° < I < 5°. The angles of the nodal longitude, the argument of periastron, and the mean anomaly
are randomly distributed between 0° and 360° for each orbit. Then each terrestrial mass body was nu-
merically integrated with four outer planets in the 55 Cnc system. In total, about 10750 simulations
were exhaustively run for typical integration time spans from 10° to 106 yr (about 105107 times the
orbital period of Planet C). Our main results now follow.

Figure 4 shows the contours of the survival time for the Earth-like planets (Upper) and the status
of their final eccentricities (Lower) for the integration over 10° yr, and the horizontal and vertical axes
represent initial a and e of the orbits. Figure 4 (Upper) shows that there are stable zones for the Earth-
like planets in the region between 1.0 and 2.3 AU with final low eccentricities of e < 0.10. The extended
simulations (10° yr) for the objects in the above region also exhibit the same results. This zone may be
strongly recommended to be one of the potential candidate HZs in 55 Cnc, and our results coincide with
those of Jones et al. (2005), who showed possible HZs of 1.04 AU < a < 2.07 AU. Also, the outcomes
presented here have confirmed those in Section 2.1.2, where we show the stable configuration of Earth
at 1.00 AU and Mars at 1.523 AU in this five-planet system. The sixth planet or additional habitable
bodies may be expected to be revealed in this region by future observations *.

In general, planetary embryos or planetesimals may be possibly captured into the mean motion
resonance regions or thrown into HZs by a giant planet under migration due to planet-disk interaction
and could survive during final planetary evolution over the secular timescale after complex scenarios
of secular resonance sweeping, gravitational scattering, and late heavy bombardments (Nagasawa et al.
2005; Thommes et al. 2008). We note that there are strongly unstable orbits? for the low-mass planets
initially distributed in the region 3.9 AU < a < 5.9 AU, where the planetary embryos have a very short
dynamical survival time. In the meantime, the eccentricities can be quickly pumped up to a high value
~ 0.9 (see Fig. 4, Lower). We note that the orbital evolution is not so sensitive to the initial masses.
In fact, these planetary embryos are involved in many MMRs with the outermost giant in the 55 Cnc
system, e.g., 7:4 (4.063 AU) and 3:2 MMRs (4.503 AU). The overlapping resonance mechanism (Murray
& Dermott 1999) can reveal their chaotic behaviors of being ejected from the system in short dynamical
lifetime ~ 102 — 103 yr; furthermore, the majority of the orbits are within the sphere of 3 times the Hill
radius (Ry = (Ms/(3M,))"%as, 3Ry = 2.10 AU) of the 14-yr planet. Using resonance overlapping

criterion (MD99; Duncan et al. 1989), the separation in the semi-major axis Aa ~ 1.5(M 5 /M,)* "5 =
1.95 AU, the inner boundary Ro = as — Aa for Planet F is at ~ 3.95 AU. Also, the orbits in this zone
become chaotic during the evolution because the planets are both within 3 R i1 and in the vicinity of Ro.
Similarly, there exist unstable zones for the nearby orbits around Planet E (0.78 AU < a < 0.90 AU),
which may not be habitable from a dynamical viewpoint.

1 The semi-amplitude of wobble velocity K o M, sini/+/a(l — e2) (with M, < M.); herein M., My, a, e and i are,
respectively, the stellar mass, the planetary mass, the orbital semi-major axis, the eccentricity and the inclination of the orbit
relative to the sky plane. This means that planets with larger masses and (or) smaller orbits could have larger K. For example,
a planet of 1.0 Mg, at 1 AU in a nearly circular orbit may cause stellar wobble of about 0.10 m s~. In this sense, much higher
Doppler precision is required to discover such Earth-like planets in the future.

2 \We define an unstable orbit as when an Earth-like planet is ejected far away or moves too close to the parent star or the giant
planets, meeting the following criteria: (1) the eccentricity approaches unity, (2) the semi-major axis exceeds a maximum value,
e.g., 1000 AU, (3) the assumed planet collides with the star or enters the mutual Hill sphere of the known giant planets.
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Fig.4 Upper: Contour of the survival time for Earth-like planets for an integration of 10° yr. Lower:
Status of their final eccentricities. Horizontal and vertical axes are the initial ¢ and e. Stable zones
for Earth-like planets in the region between 1.0 and 2.3 AU with final low eccentricities of e < 0.10.
Unstable islands, e.g., 3:1 and 5:2 MMRs, have separated the region of 2.4 AU < a < 3.8 AU. Strong
chaos happens for the low-mass bodies initially distributed in 3.9 AU < a < 5.9 AU, and their eccen-
tricities can be quickly pumped up to a high value ~ 0.9.
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It is suggested that MMRs could play an important role in determining the orbital dynamics of
terrestrial bodies which are either stabilized or destabilized in the vicinities of the MMRs. The outermost
giant, like Jupiter, may shape and create the characteristics of the dynamical structure of the small
bodies. Most of the initial orbits for the planetary embryos located about 3:1 (2.837 AU), 5:2 (3.204 AU),
and 4:1 MMRs (2.342 AU), are quickly cleared off by perturbations from Planet F. In the region of
2.4AU < a < 3.8 AU, stable zones are separated by the mean motion resonance barriers, e.g., 3:1 and
5:2 MMRs. Note that the initial orbits for a relatively low eccentricity (under 0.06) for 4:1 MMR can
remain stable over the simulation timescale. However, the terrestrial bodies about 7:3 MMR (3.354 AU)
and 2:1 MMR (3.717 AU) are both on the edge of stability, and the former are close to 5:2 MMR, while
the latter just travel around the inner border of 3Ry at ~ 3.80 AU. The extended longer integrations
show that their eccentricities can be further excited to a high value and a large fraction of them lose
stabilities in the final evolution. The above gaps apparently resemble those of the asteroid belt in the
solar system. In the simulations, several stable orbits can be found about 3:2 MMR at 4.503 AU, which
is analogous to the Hilda group for asteroids in the solar system, surviving at least for 10 6 yr. In addition,
the other several stable cases are the so-called Trojan planets (1:1 MMR), residing at ~ 5.9 AU. Studies
show that stable Trojan configurations may possibly be common in extrasolar planetary systems (Dvorak
et al. 2004; Ji et al. 2005; Gozdziewski & Konacki 2006). Indeed, terrestrial Trojan planets with circular
orbits ~ 1 AU could potentially be habitable, and are worthy of further investigation in the future.

4 SUMMARY AND DISCUSSION

In this work, we have studied the secular stability and dynamical structure and HZs of the 55 Cnc
planetary system. We now summarize the main results as follows:

(1) In the simulations, we show that the quintuplet planetary system could remain dynamically sta-
ble at least 10® yr and that the stability would not be greatly influenced by shifting the planetary masses.
Accounting for the nature of near-circular well-spaced orbits, the 55 Cnc system may be a close analog
of the solar system. In addition, we extensively investigated the planetary configuration of four outer
companions with one terrestrial planet in the region 0.790AU < a < 5.900 AU to examine the exis-
tence of potential Earth-like planets and further study the asteroid structure and HZs in this system. We
show that unstable zones are about 4:1, 3:1 and 5:2 MMRs in the system, and several stable orbits can
remain at 3:2 and 1:1 MMRs. The simulations not only present a clear picture that resembles the aster-
oid belt in the solar system, but also may possibly provide helpful information to identify the objects
when modeling multi-planet orbital solutions (Paper I) by analyzing RV data. Dynamical examinations
are helpful in searching for best-fit stable orbital solutions to consider the actual role of the resonances,
where some of the best-fit solutions close to unstable islands of MMRs can be dynamically ruled out
in the fitting process. As is well-known, the extensive investigations of planetary systems (Menou &
Tabachnik 2003; Erdi et al. 2004; Ji et al. 2005, 2007; Pilat-Lohinger et al. 2008; Raymond et al. 2008)
show that dynamical structure is correlated with mean motion and secular resonances. The eccentricities
of the planetesimals (or terrestrial planets) can be excited by sweeping secular resonance (Nagasawa &
Ida 2000) as well as mean motion resonances, thus the orbits of the small bodies can undergo mutual
crossings and then they are directly cleared up in the post-formation stage. In conclusion, the mentioned
dynamical factors and perturbations from the giant planets will influence and determine the characteris-
tic distribution of the terrestrial planets in the late stage formation of the planetary systems, to make the
remaining residents in the final system settle down.

(2) As the stellar luminosity of 55 Cnc is lower than that of the Sun, the HZs should shift inwards
compared to our solar system. It seems that the newly-discovered planet at ~ 0.783 AU could reside in
an HZ (Rivera & Haghighipour 2007), and this planet may be habitable provided that it bears a surface
atmosphere to sustain the necessary liquid water and other suitable life-developing conditions (Kasting
et al. 1993). In the dynamical consideration, proper HZ candidates for the existence of more potential
terrestrial planets reside in the wide area between 1.0 AU and 2.3 AU for relatively low eccentricities,
and the maintenance of low eccentricity can play a vital role in avoiding large seasonal climate vari-
ations (Menou & Tabachnik 2003) for the dynamical habitability of the terrestrial planets. Moreover,
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our numerical simulations also suggest that additional Earth-like planets (Sect. 2.1.2) could also coexist
with the other five known planets in this system over the secular timescale. This should be carefully
examined by abundant measurements and space missions (e.g. Kepler and TPF) for this system in the
future.
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