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Abstract Collinear libration points play an important role in deep space exploration be-
cause of their special positions and dynamical characteristics. Since motion around them is
unstable, we need to control the spacecraft if we wish to keep them around such a libration
point for a long time. Here we propose a continuous low-thrust control strategy, illustrated
with numerical simulations combined with the orbit design and control of the World Space
Observatory/UltraViolet (WSO/UV).
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1 INTRODUCTION

The Circular Restricted Three-Body Problem (CRTBP) describes the motion of a small body under the
gravitation of two large bodies which revolve each other in circular orbits. The small body does not influence
the two large bodies. This system has five libration points, as shown in Figure 1.

Fig. 1 The synodic frame and the five libration points.

The points L1, L2, L3 are collinear libration points, while the points L4 and L5 are equilateral libration
points. Libration points are the regions where gravitational forces of the two large bodies are balanced.
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Spacecraft would need little fuel to stay around them and the geometrical configuration is advantageous
for observation, control and communication. Different from the equilateral ones, motion around collinear
libration points is unstable (Szebehely 1967), so to keep a spacecraft around a collinear libration point for a
long time, control must be applied.

ISEE-3 which was sent to L1 of the Sun-Earth system is the first successful attempt. After ISEE-3, more
spacecrafts have been (such as WIND, SOHO) or will be sent to the collinear libration points. WSO/UV
is such a one; it will be sent to L2 of the Sun-Earth system. Up to now the necessary control is effected
by impulsive manoeuvers. In this paper we have studied the practicability of low-thrust control strategy.
Although some work has been done (Breakwell et al. 1974; Scheeres et al. 2000), our strategy is simpler
and the result is better, in actual practice.

2 NOMINAL ORBITS

The equation of motion of the CRTBP is{
r̈ + 2(−ẏ, ẋ, 0)T = (∂Ω/∂r)T ,
Ω(x, y, z) = [µ(1 − µ) + x2 + y2]/2 + (1 − µ)/r1 + µ/r2,

(1)

where µ = m2/(m1+m2), m1 and m2 being the masses of the two large bodies with m2 ≤ m1, and r1 and
r2, the distances of the small body from them. In order to study the motion around the collinear libration
point, we transfer the coordinate origin to the collinear libration point, rotate the x and y axes by 180 ◦ and
multiply the new coordinates by a factor γj (γj is the distance between the collinear libration point and the
primary nearest to it). Denote the position vector under the new coordinate as (ξ, η, ζ) T , we can write the
equation of motion in the new coordinates as⎧⎪⎨

⎪⎩
ξ̈ − 2η̇ − (1 + 2c2)ξ = ∂

∂ξ

∑∞
n≥3 cn(µ)ρnPn( ξ

ρ ),
η̈ + 2ξ̇ − (1 − c2)η = ∂

∂η

∑∞
n≥3 cn(µ)ρnPn( ξ

ρ),
ζ̈ + c2ζ = ∂

∂ζ

∑∞
n≥3 cn(µ)ρnPn( ξ

ρ ),
(2)

where ρ =
√

ξ2 + η2 + ζ2, and cn(n ≥ 2) are functions of µ.
The linearized model corresponds to the homogenous form of Equation (2), and the conditionally stable

solution can be written as ⎧⎨
⎩

ξ(t) = α cos(ω0t + φ1),
η(t) = κα sin(ω0t + φ1),
ζ(t) = β sin(ν0t + φ2),

(3)

where ω0 =
√

(
√

9c2
2 − 8c2 − c2 + 2)/2 , ν0 =

√
c2, κ = −(ω2

0 + 2c2 + 1)/2ω0, φ1, φ2 are the initial
phase angles and can be chosen at will, α, β are the planar and vertical amplitudes, respectively. For the
general case of incommensurability of ω0 and ν0, Equation (3) descries a quasi-periodic orbit in space,
which is called an order-one Lissajou orbit. Now, WSO/UV requires a large halo orbit in order to avoid the
influence of the eclipse of the Earth and the Moon. It can be proved that halo orbits exist only when the
high order terms on the right side of Equation (2) are considered. The corresponding analytical formulation
of order-three periodic orbit (i.e., Halo orbit) is⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x = −α cos τ + a21α
2 + a22β

2 + (a23α
2 − a24β

2) cos 2τ
+ (a31α

3 − a32αβ2) cos 3τ,
y = κα sin τ + (b21α

2 − b22β
2) sin 2τ

+ (b31α
3 − b32αβ2) sin 3τ + (b33α

3 − (b34 − b35)αβ2) sin τ,
z = β cos τ + d21αβ(cos 2τ − 3) + (d32βα2 − d31β

3) cos 3τ,

(4)

where the coefficients can be found in references (Richardson 1980), τ = ωt + φ is the phase angle, ω is
related to amplitudes α and β. Solutions of orders higher than three under CRTBP are useless in the Sun-
Earth system because of the existence of perturbations. In fact the solar system is much more complicated
than the CRTBP. Besides the gravitation of the two primaries, a spacecraft is perturbed by other large bodies.
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Moreover, the orbit of the two primaries is an ellipse rather than a circle. We can take the order-three halo
orbit under CRTBP as a starting point and use the method of iteration to construct conditionally quasi-
periodic orbit (quasi-halo orbits) under the actual gravitation model (i.e., the model that takes into account
the motion and gravitation of the two primaries as well as other large bodies of the solar system).

Either an order-three halo orbit or an orbit under the real gravitation model can be taken as nomi-
nal orbits of the spacecraft. Different nominal orbits require different energies of control. Obviously the
consumed energy is less if the model under which the nominal orbit is constructed is closer to the real
gravitation model. This point will be verified further in the following numerical simulations.

3 LOW-THRUST CONTROL STRATEGY

To control the spacecraft we use the linear feedback method shown in Figure 2. Here, AB indicates the
nominal orbit. A′B′ indicates the controlled orbit, A′B′′ indicates the uncontrolled orbit; δX0 is the initial
deviation from the nominal orbit and δX is the final one. The goal of orbit control is to keep δX small.
Different from impulsive manoeuvers, we apply constant low thrust u = (u x, uy, uz)T to the spacecraft
over the whole orbit segment A′B′ instead of applying an impulse at point A ′ . The time of each segment
in Figure 2 is ∆T . The nominal orbit AB can be any kind of orbit and the low thrust is obtained from the
deviation between B and B ′′. The equation of motion of the uncontrolled orbit can be written as

Ẋ = F (X, t) . (5)

Taking x(t) as the deviation between controlled and uncontrolled orbit, considering the low thrust, the
equation of motion can be written as

ẋ = A(t)x + Bu + O(x2) , (6)

where

A = ∂F/∂X , B =

[ 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

]T

.

Suppose the solution of Equation (5) is of the following form:

x = a0 + a1∆t + a2(∆t)2 + · · · · · · , (7)

Put Equation (7) back into Equation (6) and noting the initial conditions (t = t 0, x = 0), we have

a0 = 0, a1 = Bu, a2 = A0Bu/2, · · · · · · . (8)

The coefficients of orders higher than 2 are very difficult to obtain; here we stop at order 2. Then we have

x = Bu∆t +
1
2
A0Bu(∆t)2. (9)

If X = (r, ṙ), then generally matrix A has the form of

A =
[

(0)3×3 I3

A1 A2

]
. (10)

So Equation (9) can be rewritten as

x =
[

δr
δṙ

]
=

[
(0)3×3

u

]
∆t +

1
2

[
u

A2u

]
(∆t)2 . (11)

When the spacecraft is at point B, the deviation from the nominal orbit is

δX = x + (X ′′
B − XB) , (12)
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where (X ′′
B − XB) can be found from the state transition matrix (in this situation the nominal orbit should

be constructed under the real gravitation model) or by integration. Take the cost function as

Q =
1
2
δXT MδX , (13)

where M is symmetric positive matrix called weight matrix. Suppose that we have the same demands in the
three direction of position and velocity, then we take M as

M =
[

kI3 0
0 I3

]
, (14)

where k is the weight factor, indicating the different demands on the velocity and position. When k = ∞,
we control the spacecraft only by position; and when k = 0, we control the spacecraft only by velocity.

Our numerical simulations indicate that k has great effects on the results and should be chosen carefully
in order to obtain good control results. Our numerical simulations also indicate that we can omit the second
order term A2u(∆t)2/2 in Equation (13) in the presence of the first order term u∆t, so the results can be
expressed as

u = −2
(

kx1∆t + 2x4

s
,

kx2∆t + 2x5

s
,

kx3∆t + 2x6

s

)T

, (15)

where s = k(∆t)3 + 4∆t.
If we control the spacecraft only by position, the controlled orbit is indeed around the nominal orbit,

but the amplitude with respect to the nominal orbit is very large and the energy needed is very large; if we
control the spacecraft only by velocity, the controlled orbit is relatively smooth and the energy needed is
much less, but the controlled orbit has a drift from the nominal orbit. So we have to control the spacecraft by
both position and velocity. Here k is decided by ∆T and generally k increases with decreasing ∆T . Because
the velocity changes linearly with the low thrust, “∆v” and “u∆t” should not appear simultaneously in the
cost function Q.

As a result of the linear feedback method, the control result is better if ∆T is smaller. Considering the
practicability, ∆T should not be too small, nor should it be too large, or nonlinear effects will destroy the
linear feedback. As we have mentioned, higher order coefficients are very difficult to obtain and we have
stopped at order 2.

Fig. 2 Illustration of linear feedback. Fig. 3 Illustration of multi-point feedback.

Figure 2 shows the case of the feedback on one single point. In practice we can consider the feedback
on more than one point, as shown in Figure 3. Here, A 0Ak indicates the nominal orbit, BBk the controlled
orbit and BCk the uncontrolled orbit. Denoting by x = (r, ṙ) the deviation between the controlled orbit
and uncontrolled orbit, we have{

rl = A2t
2
l + A3t

3
l + · · · + AN t3l + · · · · · · ,

ṙl = 2A2tl + 3A3t
2
l + · · · + NAN tN−1

l + · · · · · · , (16)
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where Al = (alx, aly, alz)T is the coefficients of x, y, z, tl is the time between Bk and B. Comparing with
Equation (9), we have

A2 =
1
2
u =

1
2
(ux, uy, uz)T . (17)

Take the cost function as

J =
M∑
l=1

[
(rl + r̄l)T Rl(rl + r̄l) + (ṙl + ˙̄rl)T Sl(ṙl + ˙̄rl)

]
, (18)

where (rl, ṙl) is the deviation between the uncontrolled and nominal orbits, M is the number of points
considered, Rl, Sl are the half-positive symmetric matrices. If take R l = klI3, Sl = slI3, Equation (16)
can be rewritten as

J = Jx + Jy + Jz

=
∑M

l=1

{
[kl(xl + x̄l)2 + sl(ẋ + ˙̄xl)2]

}
+

∑M
l=1

{
[kl(yl + ȳl)2 + sl(ẏ + ˙̄yl)2]

}
+

∑M
l=1

{
[kl(zl + z̄l)2 + sl(ż + ˙̄zl)2]

}
.

(19)

Then the extreme of J in three directions can be separated. If we wish to obtain the coefficients of the x
direction, we have

HxX = Bx, (20)

where X = (a2x, a3x, · · · , aNx)T , N is the order of the polynomial in Equation (16), Hx is a (N − 1) ×
(N − 1) matrix and Bx, an (N − 1) vector. Their elements are{

hij =
∑M

l=1

[
klt

i+j+2
l + (i + 1)(j + 1)slt

i+j
l

]
,

bi = −∑M
l=1

[
klt

i+1
l ȳl + (i + 1)slt

i
l
˙̄yl

]
.

(21)

We can obtain X from Equation (21) and ux = 2a2x . In the same way we can acquire uy and uz. When
N = 2, M = 1, k1 = k and s1 = 1, the results of Equation (21) are the first component of Equation (15).

4 NUMERICAL SIMULATIONS

In order to verify the practicability of the linear feedback control, we carried out numerical simulations
with some possible nominal orbits for WSO/UV. All the simulations have included the perturbations of
the large bodies in the solar system. The ephemeris is analytical and this does not influence the order of
magnitude of the results. The initial epoch is 2008a 1m 1d 0h, the initial deviation is 10 −6 (here the unit is
the distance between the sun and the earth, 10−6 is of the order of 10 km) in position and 10−6 (of the order
of 0.1m s−1) in velocity. The mass of the spacecraft is 1t. In the numerical simulations we could add the
effects of error of observation and control, but as these effects will not influence the quality of the control,
these effects were not considered.

WSO/UV should stay around the L2 point of the Sun-Earth system for 5–10 years. Its nominal orbit
should be halo or quasi-halo around L2 and the size of the orbit should be large.

4.1 Order-Three Halo Orbit

The expression of the nominal orbit is Equation (4), α = 0.15 and β = 0.16 (the amplitude in three
directions is about 225 000km in x, 675 000km in y, and 240000km in z). Figure 4 displays the results of
orbit control over 10 years (k = 106). The low thrust is changed every 1.8 day, and the energy needed for
10 years is 1274.80701m s−1. The precision of orbit control is of order 1 km. Compared with the results
of the order-one Lissajou orbit of the same amplitude, the needed energy is much less and the precision is
better.

When higher order nominal orbits are used the energy consumed is less and the precision of orbit control
is better. This is quite understandable. The goal of low thrust is two-fold: first, to compensate the deviation
of force between the real model and the model under which the nominal orbit is constructed; second, to
compensate the deviation between the nominal and controlled orbit. The model for the order-three solution
is much closer to the real gravitation model than the model for the order-one solution, so the order-three
solution is closer to the orbit under the real gravitational forces.
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Fig. 4 Controlled orbit for 10 years (upper), distance between the controlled and nominal orbit at nodal
points (left), and low thrust (right) for order-three Halo orbits.

4.2 Quasi-Halo Orbit Under The Real Gravitation Model

Figure 5 gives the results of orbit control for 10 years (k = 15). The nominal orbit is about the same size as
the nominal orbit in Figure 4.

Every 18 days we change the low thrust, and the energy needed for 10 years is 0.67606 m s −1. The
thrust is large for the first few segments of the orbit and then decreases to zero. The distance between the
controlled and nominal orbit behaves in the same way. Because the model for the nominal orbit is the real
gravitation model, the goal of the low thrust is simply to pull the orbit back to the nominal orbit. The initial
thrust is large because the initial deviation is set to be large. When the controlled orbit is pulled back to the
nominal orbit, the thrust naturally vanishes.

The case that the low thrust is close to zero is not practicable. In fact there is a minimum for the low
thrust in practice: when the thrust is smaller than this value, it is impossible to control it. Here, we take it as
1mN. That is to say, in the orbit control, if the computed low thrust is smaller than 1mN, we take it as zero,
i.e., we do not control the spacecraft on this orbit segment. If we change the low thrust every 18 days, the
energy consumed is 203.68161 m s−1 and the control precision is 1000km.

The above numerical simulations show that spacecraft can be kept around the collinear libration point
using the low thrust control strategy. The energy needed and the precision of orbit control depend on the
nominal orbit and ∆T . Generally, the energy is less if ∆T is smaller or if a higher order orbit is taken as
the nominal orbit. The precision of orbit control behaves similarly.
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Fig. 5 Controlled orbit for 10 years (upper), distance between the controlled and nominal orbit at nodal
points (left), and low thrust (right) for Quasi-Halo Orbits.

5 CONCLUSIONS

We propose a low-thrust control strategy for the orbit control of spacecraft around collinear libration points
using the linear feedback method. We also carried out some numerical simulations to support our strategy.
In these simulations, we omit the effects of errors in the observation and control. Where there is strong
instability of the motion around the collinear libration points, the accumulation of these effects will increase
the cost of orbit control. So, in practice we must take all of these effects into account.
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