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Abstract We present a method of calculating the scale height of non-edge-on spiral
galaxies, together with a formula for errors. The method is based on solving Poisson’s
equation for a logarithmic disturbance of matter density in spiral galaxies. We show
that the spiral arms can not extend to inside the “forbidden radius” r0, due to the
effect of the finite thickness of the disk. The method is tested by re-calculating the
scale heights of 71 northern spiral galaxies previously calculated by Ma, Peng & Gu.
Our results differ from theirs by less than 9%. We also present the scale heights of a
further 23 non-edge-on spiral galaxies.
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1 INTRODUCTION

Van der Kruit & Searle (1981) proposed a method of determining the scale heights of edge-on disk
galaxies, based on measuring an exponential distribution of the surface brightness with the radius.
A method for determining scale heights of spiral galaxies observed non-edge-on was proposed by
Peng (1988) on the basis of the asymptotic expression of the perturbed gravitational potential.
The thickness of 71 northern spiral galaxies were measured by Ma, Peng & Gu (1998). Zhao, Peng
& Wang (2004) reinvestigated the method based on the rigorous expression.

In this paper, we improve on the method by using the rigorous expression of numerical integral
and giving error expressions for the fundamental parameters. We re-calculate the scale heights of
the 71 northern spiral galaxies (Ma, Peng & Gu 1998). The model is described in Section 2. In
Section 3 we determine the parameters for obtaining the scale heights. The error expressions are
given in Section 4. In Section 5 we carry out a test on the scale heights of the 71 northern spiral
galaxies previously calculated by Ma, Peng & Gu (1998) and give the scale heights of a further 23
non-edge-on spiral galaxies. A discussion and conclusions are given in Section 6.
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2 MODEL

2.1 The Perturbed Gravitational Potential

An exponential density distribution along the z-direction for a finite thickness galactic disk was
proposed by Parenago,

ρ(r, φ, z) =
α

2
σ(r, φ) exp(−α | z |), (1)

where α(= 2/H) represents the thickness factor, which may be taken as a constant and is basically
independent of the radius (de Grijs & Van der Kruit 1996). H is the equivalent thickness of the
galactic disk, Hsc = 1/α = 0.5H is interpreted as the scale height of a galactic disk, and σ(r, φ) is
the surface density of the galaxy, which comprises a basis surface density σ0(r) and a disturbance
density σr(r, φ, t),

σ(r, φ) = σ0(r) + σr(r, φ, t), (2)

where σ0(r) = σ0 exp(−r/R), R is the scale of radius.
It is well known that the spiral arms in disk galaxies can be well fitted by logarithmic spirals

(Danver 1942; Kennicutt & Hodge 1982; Peng 1988). We therefore choose the following form of
the density disturbance of the galactic disk,

σr(r, φ, t) = σm(r) exp[i(ωt − mφ)] , (3)

σm(r) =
A

r
exp(iΛ ln r), (4)

where Λ is the winding parameter and m is the number of spiral arms. The pitch angle µ is related
to Λ by Λ = m/ tanµ. Here A/r for the amplitude ensures that the total mass of the disturbance
is finite. We have obtained the perturbed gravitational potential for such a logarithmic matter
density disturbance via Poisson’s equation for the galactic disk with finite thickness (Peng et al.
1978, 1979). Poisson’s equation is

∇2V (r, φ, z, t) = −2παGσr(r, φ, t) exp(−α | z |). (5)

The perturbed gravitational potential may be reduced into the form,

Vα(r, φ, z = 0, t) = −2πGA exp[i(ωt − mφ + Λ ln r)]Re[g(Λ, m; αr)], (6)

where

g(Λ, m; αr) = exp(iΛ ln 2)
Γ(1+m+iΛ

2 )

Γ(1+m−iΛ
2 )

∫ ∞

0

Jm(x)
exp(−iΛ lnx)

x(1 + x
αr )

dx, (7)

Γ(x) and Jm(x) are the usual Gamma and Bessel functions. For an infinitely thin disk, Equation
(6) has a simplified form given by Kalnajs (1971),

Vα→∞(r, φ, z = 0, t) = −2πGA exp[i(ωt − mφ + Λ ln r)]
1√

m2 + Λ2
. (8)

2.2 Calculation of the Rigorous Expression g(Λ, m; αr)

The rigorous mathematical expression g(Λ, m; αr) given by Equation (7) is computed numerically.
The results are given Figures 1 and 2, which we now discuss.

We first note that for an infinitely thin disk (Hsc → 0, α → ∞), the function g(Λ, m; αr) is
a constant independent of r and its phase is always zero. Thus, for an infinitely thin disk, our
theoretical prediction is in agreement with Kalnaj’s (1971): the amplitude of the self gravitational
potential perturbation generated in such case is independent of the position, i. e., the strength of
the perturbation is almost the same everywhere in the entire galactic disk.

We display in Figure 1 the radial dependence of gg=Vα/Vα→∞=Re[g(αr)/Re[g(αr)α→∞], the
amplitude ratio of the gravitational potential perturbations of the finite thickness disk to the
infinitely thin disk (cf. Equations (6) and (8)). We set m = 2 and Λ = 14.0. The curves in Figure 1
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from top down correspond to Hsc = 0.10 kpc (α = 10.00kpc−1), Hsc = 0.33 kpc (α = 3.00 kpc−1)
and Hsc = 1.00 kpc (α = 1.00 kpc−1), respectively (note that larger values of α correspond to
thinner disks).

The following interesting features shown by Figure 1, in particular, may be noted: (a) For the
same density perturbation, the amplitude of the induced gravitational perturbations is weaker for a
finite thickness disk than for an infinitely thin disk, and the thicker the galactic disk is, the greater
the difference. As the center of the disk is approached, the amplitude of the induced gravitational
perturbation drops sharply (see Fig. 1): it then becomes too weak to stir up self-consistent density
waves to form spiral arms. (b) For a finite thickness disk, the amplitude of the induced gravitational
potential perturbation decreases with decreasing radial distance and, moreover, the decrease gets
faster as the the galactic center is approached. For the thin disk of our Galaxy (with scale height
Hsc = 0.33kpc, α = 3.00 kpc−1), the amplitude of the gravitational potential perturbation is
approximately equal to 63% of that of the infinitely thin disk around radial distance 10.00 kpc,
decreasing to 50% around 4.00kpc.

In Figure 2, we display the variation of the phase function g(Λ, m; αr) express in radians with
the radius r in the galactic plane (z = 0) for the same three different scale heights as in Figure 1.
We have set m = 2 and Λ = 14.0. The phase of the function g(Λ, m; αr) for an infinitely thin
disk coincides with the horizontal axis. We note that the phase g(Λ, m; α, r) is retarded for a finite
thickness spiral galaxy. This phase delay is small in the outer part of the disk and increases rapidly
as the center is approached, but nowhere does it exceed 10◦. The phase given by Eq. (6) is basically
opposite to that of the density perturbation.

Fig. 1 Ratio gg=Re[g(αr)]/Re [g(αr)α→∞]
as a function of the radius for different scale
heights: from top down, Hsc=0.10 kpc (α =
10.00 kpc−1), Hsc=0.33 kpc (α = 3.00 kpc−1)
and Hsc=1.00 kpc (α = 1.00 kpc−1).

Fig. 2 Phase of g(Λ,m; αr) for different
scale heights (α = 1/Hsc): from top down,
Hsc = 0.10 kpc (α = 10.00 kpc−1), Hsc =
0.33 kpc (α = 3.00 kpc−1), and Hsc =
1.00 kpc (α = 1.00 kpc−1).

We note that the strength of the perturbed gravitational potential becomes noticeably weaker in
the central region of finite thickness disk galaxies and at a given radius, the greater is weakening the
thicker the disk is. Thus, the perturbed gravitational potential is quite different in finite thickness
and infinitely thin disk galaxies.

2.3 The Forbidden Radius

The self-consistent density wave theory of Lin & Shu requires that, for an infinitely thin disk, the
amplitude of induced gravitational potential perturbation obtained by solving Poisson’s equation
must be equal to the amplitude of the introduced perturbed gravitational potential. However, as
the numerical results displayed in Figure 1 and the subsequent analysis shown, the amplitude of
perturbed gravitational potential is lower for a finite thickness disk than for an infinitely thin disk.
In the vast outer region of the galactic disk with finite thickness (e.g., r > R/3), the reduction of
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the amplitude is not too severe, but in the central region around the galactic center, the reduction
can be very large. For instance, for the relatively thin disk of the Milky Way, α = 3.00 kpc−1, the
reduction in the central region (r < 4.00kpc) may exceed 50% (see Fig. 1). Since the strength of
the perturbed density waves is proportional to the square of the amplitude, the strength of the
density waves perturbation is reduced to only 25% that of an infinitely thin disk. The requirement
of self-consistency for the existence of density waves can no longer be satisfied for the central region.
In other words, the induced gravitational potential perturbation in the central region is too weak
to stir up matter density waves. Consequently, it is expected that the grand pattern of the spiral
arms in the central region will disappear, and there will be no spiral structure in the central region
when the spiral galaxy has a finite thickness. Thus, no spiral arms exist in this central region (of
radius r0): we call it the central “forbidden region”.

From the observed innermost point reached by the inward spiral arm r0 can be directly de-
termined. On the other hand, we can calculate the ratio of the amplitude for the perturbed grav-
itational potential for spiral galaxies with finite thickness to that of an infinitely thin disk at the
forbidden radius r0 by Eqs. (6) and (8):

η =
Vα(α, m, Λ, r0)

Vα→∞(m, Λ, r0)
= Re[g(αr0)]

√

m2 + Λ2. (9)

For the two spiral galaxies, namely, the Milky Way and the Andromeda Nebula (M31,
NGC 224), the scale heights (Hsc) of their galactic disks (or the thickness factor α ) have been
determined since early on. We may therefore use the well known relevant parameters of these two
galaxies to establish the criterion η that we need, which will involve specifically the number of spi-
ral arms m, the winding parameter for the logarithmic spiral Λ, and the location of the innermost
point r0.

For the past two decades, astronomers have nurtured considerable interest in the determination
of the parameters of the Milky Way. Zhang, Han & Peng (2002) obtained the pitch angle of the
Sagittarius-Carina spiral arm as approximately 12◦, in good agreement with the value given by
Valle (1995). We conclude that there are four spiral arms in the Milky Way, i.e., m = 4, and the
pitch angle µ is 12◦. The corresponding winding parameter is Λ = m/ tanµ = 18.8.

Results on the scale height of the thin disk of the Milky Way may be divided into two groups:
one ranging from 300 to 350 pc (Gilmore & Reid 1983; Pritchet 1983; Gould, Bahcall & Flynn 1997),
one around 250pc (Kuijken & Gilmore 1989; Haywood, Roubin & Greze 1997). The corresponding
thickness factor is α = 3.07 kpc−1 if we take the typical values, Hsc = 0.5H = 0.325kpc and
0.250kpc, for the respective groups.

The exact location of the innermost point reached by the spirals is not very clear, an estimate
is 4.5 kpc. We therefore set r0 = 4.5 kpc, then η may be calculated from Equation (9) with the
results:

η = 0.418 for the case Hsc = 0.5H = 0.250 kpc,

η = 0.483 for the case Hsc = 0.5H = 0.325 kpc.

Whether the scale height of the Milky Way is 325pc or 250pc is still an open problem. We therefore
take the average of the values given above, namely η ≈ 0.450.

There are two spiral arms in the M31. We have also determined the winding parameter Λ
for these arms to be Λ = 14.8, and the innermost point reached by the inward spiral arm is
r0 ≈ 7.50 kpc (Ma, Peng & Gu 1997). de Vaucouleurs (1958) has estimated the scale height for
M31 as Hsc = 0.5H = 0.4 kpc and the corresponding thickness factor is α = 2.5 kpc−1. By using
these data we calculate η from Equation (9) to be η = 0.556. We may take the average value of
the two factors (η) calculated for the Milky Way and M31, that is, η = 0.50. In this way, we may
define the point r0, where the factor η = 0.50, as the criterion of the forbidden region, where spiral
arms cease in the central region of the galactic disk.

We may note that the differences between the equivalent thickness (H = 2Hsc, as listed in
column 9 in Tables 1 in this paper) obtained by this criterion (η = 0.50) and that by Ma, Peng &
Gu (1998) (column 8 in tables 1 and 2) are less than 9%.
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Table 1 Scale Heights of 71 Northern Spiral Galaxies

PGC Names m γ(◦) Λ+dΛ/Λ µ(◦) d (Mpc) H±dH/H (kpc) Hre±dHre/Hre(kpc) Dratio

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PGC 1405 NGC 91 2 45.5 4.70 ± 18.1% 23.1 68.97 1.54 ± 20.1% 1.42 ± 36.8% 7.8%
PGC 2901 NGC 266 2 12.2 8.91 ± 23.0% 12.7 62.43 3.21 ± 22.6% 3.13 ± 23.6% 2.5%
PGC 5139 NGC 514 2 37.4 4.17 ± 7.7% 25.6 33.69 0.83 ± 10.0% 0.76 ± 26.7% 8.4%
PGC 5818 NGC 598 2 48.9 4.26 ± 4.3% 25.2 0.72 0.16 ± 2.8% 0.15 ± 29.5% 6.2%
PGC 6624 NGC 673 2 47.1 6.47 ± 13.1% 17.2 69.88 1.10 ± 16.8% 1.05 ± 47.6% 4.5%
PGC 6799 NGC 688 2 57.9 15.06 ± 25.7% 7.6 54.81 1.39 ± 23.8% 1.38 ± 39.4% 0.7%
PGC 7282 NGC 735 2 67.1 7.33 ± 18.8% 15.3 63.19 1.21 ± 15.7% 1.17 ± 43.2% 3.3%
PGC 10329 NGC 1073 2 24.2 32.05 ± 12.6% 3.6 16.12 0.24 ± 11.3% 0.24 ± 22.3% 0.0%
PGC 10932 IC 267 2 34.1 14.39 ± 13.3% 7.9 47.69 1.65 ± 13.4% 1.64 ± 29.1% 0.6%
PGC 13826 IC 342 2 12.2 9.37 ± 1.2% 12.0 3.30 0.21 ± 1.7% 0.21 ± 18.5% 0.0%
PGC 15212 A0423+70 2 64.2 4.54 ± 16.3% 23.8 39.29 0.72 ± 25.4% 0.66 ± 41.6% 8.3%
PGC 15867 NGC 1642 2 0.0 6.45 ± 16.6% 17.2
PGC 17625 NGC 1961 2 54.2 19.86 ± 17.3% 5.7 53.11 0.99 ± 16.0% 0.98 ± 29.9% 1.0%
PGC 20222 NGC 2339 2 37.7 18.47 ± 23.4% 6.2 31.48 0.45 ± 23.3% 0.44 ± 21.4% 2.2%
PGC 21832 A0743+59 2 65.7 7.46 ± 20.9% 15.0 86.77 2.25 ± 20.6% 2.16 ± 36.5% 4.0%
PGC 22031 NGC 2441 2 33.1 10.94 ± 7.2% 10.4 47.87 1.22 ± 6.5% 1.20 ± 30.5% 1.6%
PGC 22957 NGC 2535 2 30.7 4.92 ± 9.7% 22.1 54.39 0.98 ± 11.2% 0.91 ± 28.7% 7.1%
PGC 23630 NGC 2582 2 27.0 5.86 ± 14.3% 18.8 59.48 1.19 ± 13.5% 1.13 ± 29.6% 5.0%
PGC 24996 IC 2421 2 21.1 7.39 ± 8.7% 15.2 59.52 0.88 ± 10.1% 0.85 ± 27.4% 3.4%
PGC 25946 NGC 2776 2 32.0 8.04 ± 9.3% 14.0 34.91 0.59 ± 12.1% 0.57 ± 32.5% 3.4%
PGC 26666 NGC 2857 2 17.0 8.42 ± 6.9% 13.4 64.85 0.89 ± 8.7% 0.86 ± 16.4% 3.3%
PGC 27077 NGC 2903 2 53.4 9.05 ± 19.6% 12.5 7.53 0.78 ± 19.1% 0.76 ± 30.7% 2.6%
PGC 28196 NGC 2998 2 62.4 9.93 ± 10.7% 11.4 63.56 1.07 ± 9.3% 1.04 ± 41.0% 2.8%
PGC 28617 NGC 3055 2 46.9 11.71 ± 16.9% 9.7 25.07 0.56 ± 17.2% 0.55 ± 29.8% 1.8%
PGC 28630 NGC 3031 2 57.3 8.27 ± 7.9% 13.6 3.60 0.95 ± 8.5% 0.92 ± 27.5% 3.2%
PGC 30087 NGC 3184 2 21.1 5.54 ± 3.8% 19.8 5.39 0.26 ± 5.3% 0.25 ± 26.1% 3.8%
PGC 31883 NGC 3338 2 54.9 7.93 ± 6.1% 14.2 17.29 0.82 ± 5.7% 0.79 ± 33.6% 3.7%
PGC 31968 NGC 3344 2 0.0 9.06 ± 9.2% 12.4 7.67 0.31 ± 9.1% 0.31 ± 20.5% 0.0%
PGC 34695 NGC 3627 2 62.8 5.82 ± 7.3% 19.0 9.37 1.12 ± 7.3% 1.05 ± 35.5% 6.3%
PGC 34767 NGC 3631 2 22.3 6.50 ± 5.0% 17.1 15.24 0.66 ± 6.4% 0.63 ± 27.4% 4.5%
PGC 35105 A1122+64 2 10.0 6.41 ± 8.0% 17.3 49.65 0.66 ± 8.8% 0.63 ± 21.5% 4.5%
PGC 36243 NGC 3810 2 49.9 10.84 ± 9.6% 10.5 12.77 0.42 ± 7.8% 0.41 ± 36.9% 2.4%
PGC 36446 NGC 3832 2 30.7 6.88 ± 13.4% 16.2 92.08 1.87 ± 14.4% 1.86 ± 30.1% 0.5%
PGC 36604 NGC 3861 2 56.7 11.03 ± 12.6% 10.3 67.57 2.06 ± 10.8% 2.03 ± 32.6% 1.5%
PGC 36902 NGC 3897 2 27.0 6.91 ± 7.8% 16.1 85.79 1.15 ± 11.1% 1.10 ± 28.9% 4.3%
PGC 37229 NGC 3938 2 0.0 8.36 ± 4.1% 13.4 10.28 0.25 ± 4.0% 0.24 ± 22.2% 4.0%
PGC 37306 NGC 3953 2 59.9 7.74 ± 14.2% 14.5 13.16 0.76 ± 14.7% 0.73 ± 46.1% 3.9%
PGC 37386 NGC 3963 2 24.2 7.75 ± 16.6% 14.5 42.72 0.84 ± 18.7% 0.82 ± 29.9% 2.4%
PGC 37617 NGC 3992 2 58.5 15.69 ± 36.3% 7.3 14.12 0.67 ± 33.3% 0.66 ± 31.7% 1.5%
PGC 38024 A1200+41 2 54.4 6.26 ± 9.2% 17.3 81.83 1.33 ± 14.9% 1.32 ± 40.1% 0.8%
PGC 39028 NGC 4192 2 73.6 14.35 ± 24.5% 7.9
PGC 39483 IC 3115 2 35.6 5.86 ± 13.8% 18.8
PGC 39600 NGC 4258 2 70.6 5.91 ± 9.2% 18.7 6.40 1.17 ± 7.5% 1.10 ± 42.8% 6.0%
PGC 39964 A1219+41 2 31.7 12.33 ± 17.2% 9.2 92.36 2.04 ± 16.5% 2.01 ± 31.1% 1.5%
PGC 40001 NGC 4303 2 22.0 8.35 ± 8.2% 13.5 21.43 0.69 ± 8.3% 0.67 ± 27.9% 2.9%
PGC 40153 NGC 4321 2 30.4 7.90 ± 20.1% 14.2 21.05 1.21 ± 19.0% 1.17 ± 21.4% 3.3%
PGC 40695 NGC 4411A 2 29.3 9.57 ± 4.3% 11.8 16.96 0.55 ± 4.1% 0.54 ± 28.7% 1.8%
PGC 41812 NGC 4535 2 25.9 10.60 ± 9.6% 10.7 26.31 1.05 ± 10.0% 1.03 ± 21.6% 1.9%
PGC 42741 NGC 4639 2 52.5 8.53 ± 14.2% 13.2 11.97 0.69 ± 13.0% 0.67 ± 32.1% 2.9%
PGC 45658 NGC 5000 2 31.7 8.95 ± 22.2% 12.6 75.61 2.11 ± 21.4% 2.06 ± 30.9% 2.4%
PGC 45948 NGC 5033 2 70.1 18.32 ± 24.2% 6.2 11.48 0.72 ± 21.4% 0.71 ± 39.8% 1.4%
PGC 47067 A1324+20 2 37.4 9.99 ± 9.4% 11.3 95.25 1.00 ± 12.4% 0.97 ± 36.5% 3.0%
PGC 49514 NGC 5371 2 57.4 9.48 ± 27.7% 11.9 34.33 2.74 ± 26.4% 2.67 ± 38.7% 2.6%
PGC 49555 NGC 5364 2 49.8 13.48 ± 2.6% 8.4 16.89 0.69 ± 2.3% 0.68 ± 26.6% 1.4%
PGC 49952 NGC 5409 2 41.9 23.41 ± 21.1% 4.9
PGC 50063 NGC 5457 2 41.1 8.24 ± 4.7% 13.6 6.90 0.44 ± 7.0% 0.44 ± 24.9% 0.0%
PGC 52641 NGC 5740 2 59.1 11.61 ± 17.9% 9.8 20.89 0.42 ± 15.9% 0.41 ± 35.4% 2.4%
PGC 54001 NGC 5859 2 71.6 6.75 ± 16.0% 16.5 62.49 3.43 ± 17.4% 3.29 ± 41.1% 4.1%
PGC 54849 NGC 5921 2 45.6 6.05 ± 8.3% 18.3 19.43 1.43 ± 7.9% 1.36 ± 30.7% 4.9%
PGC 55725 NGC 5985 2 62.4 11.37 ± 2.7% 10.0 32.89 1.33 ± 3.2% 1.31 ± 37.9% 1.5%
PGC 60459 NGC 6384 2 53.6 9.23 ± 6.5% 12.2 22.53 0.96 ± 6.5% 0.95 ± 30.7% 1.0%
PGC 60635 IC 1267 2 57.5 6.64 ± 13.3% 16.8 124.15 3.32 ± 13.9% 3.18 ± 29.1% 4.2%
PGC 65001 NGC 6946 2 46.7 5.54 ± 6.2% 19.8 4.20 0.19 ± 8.8% 0.18 ± 27.7% 5.3%
PGC 65086 NGC 6951 2 46.7 4.20 ± 7.9% 25.4 17.75 1.49 ± 6.0% 1.36 ± 23.5% 8.7%
PGC 65375 NGC 6962 2 55.4 11.40 ± 2.9% 10.0 56.72 2.13 ± 2.9% 2.09 ± 32.8% 1.9%
PGC 68110 A2206+40 2 36.8 2.94 ± 11.9% 34.2 70.84 1.52 ± 16.1% 1.39 ± 26.7% 8.6%
PGC 69327 NGC 7331 2 72.6 9.60 ± 6.3% 11.8 11.13 0.76 ± 4.2% 0.74 ± 39.5% 2.6%
PGC 70144 NGC A2255+02 2 24.2 5.39 ± 5.4% 20.3 65.23 1.14 ± 5.9% 1.06 ± 21.6% 7.0%
PGC 70291 NGC 7463 2 76.4 30.24 ± 32.3% 3.8 30.96 0.24 ± 30.0% 0.23 ± 48.1% 4.2%
PGC 70419 NGC 7479 2 54.7 10.60 ± 7.8% 10.7 31.92 2.37 ± 7.3% 2.32 ± 27.1% 2.1%
PGC 71517 NGC 7677 2 61.9 5.74 ± 18.2% 19.2 48.15 1.97 ± 15.5% 1.86 ± 36.7% 5.6%

⋆ The scale heights (H) in rows 2, 3, 12 and 16 in Table 1 are not given in Ma, Peng & Gu (1998) , so we do not give
Hre here.
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3 PARAMETERS FOR DETERMINING THE SCALE HEIGHTS OF SPIRAL
GALAXIES

The scale height of the spiral galactic disk may be calculated by Equation (9) in terms of the
innermost point r0, the winding parameter Λ, the number of spiral arms m, for fixed η = 0.50. The
parameters r0, Λ, and m can be obtained through measurement of the images. We define γ as the
angle between the galactic disk and the observe plane (tangent-plane), and call it the inclination
of the galactic disk.

To represent the arms by equiangular spirals in the galactic disk, we have, in polar coordinates
(r, φ),

r = r0 exp
[m

Λ
(φ − φ0)

]

, (10)

with (r0,φ0) the innermost point of the arm. The pitch angle is

µ = arctan
m

Λ
. (11)

It can be proved that

r = ρ

√

1 + tan2 γ sin2 θ (12)

and

tanφ =
tan θ

cos γ
, (13)

where ρ and θ are the polar coordinates in the tangent-plane, so from Eqs. (10) and (12) the
projected arm is

ρ(θ, γ) = ρ0
f(θ0, γ)

f(θ, γ)
exp

[m

Λ
· B(θ, γ)

]

, (14)

where

f(θ, γ) =

√

sin2 θ + cos2 θ · cos2 γ (15)

and

B(θ, γ) = arctan
tan θ

cos γ
− arctan

tan θ0

cos γ
± kπ, (16)

with k an integer, and (ρ0, θ0) the innermost point of the spiral arm in the tangent plane.
Let (ρi, θi) be the coordinates of the points of the spiral arm in the image. Following the least

squares method, we form
n

∑

i=1

[ρi − ρ(θi, γ)]2 = min, (17)

then differentiate with respect to Λ to obtain

n
∑

i=1

B(θi, γ)ρ(θi, γ)[ρi − ρ(θi, γ)] = 0, (18)

and we then derive Λ by Equation (18).

4 ERRORS

Differentiating the expression Hsc = 1/α, we have

dHsc

Hsc
= −dα

α
. (19)

So, if we could get dα/α, then dHsc/Hsc can be obtained.
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Substituting Equation (7) in Equation (9), and differentiating, we obtain

d(αr0) =
Re[−∂[g(αr0)]

∂Λ

√
m2 + Λ2 − Re[g(αr0)]]

Λ2

√
m2+Λ2

dΛ
Λ + dη

Re[∂[g(αr0)]
∂(αr0)

]
√

m2 + Λ2
. (20)

As we know
d(αr0) = α · dr0 + r0 · dα, (21)

we then obtain
dα

α
=

[d(αr0)

α
− dr0

]

/r0, (22)

where

r0 = ρ0

√

1 + tan2 γ sin2 θ0. (23)

The measured coordinates of the points of the spiral arm in the image are Cartesian coordinates
(xi, yi), so we have

ρi =
√

(xi − xc)2 + (yi − yc)2, (24)

θi = arctan
yi − yc

xi − xc
− ϕ, (25)

(xc, yc) being the coordinates of the galactic center, and ϕ, the inclination of the major axis of the
galaxy to the x axis.

Differentiation of Equation (24) and Equation (25) gives

dρi =
1

ρi
[(xi − xc)(dxi − dxc) + (yi − yc)(dyi − dyc)], (26)

dθi =
1

ρ2
i

[(xi − xc)(dyi − dyc) − (yi − yc)(dxi − dxc)] − dϕ. (27)

According to Equations (19), (20), (22), (23), (26), and (27), we derive the expression for
dHsc/Hsc containing dΛ/Λ. Differentiating Equation (14) and Equation (18) with respect to each
of the independence parameters, we have

∣

∣

∣

dΛ

Λ

∣

∣

∣
≤ |Λϕ|dϕ + |Λγ |dγ + |Λxi

|dxi + |Λyi
|dyi +

|Λx0
|dx0 + |Λy0

|dy0 + |Λxc
|dxc + |Λyc

|dyc. (28)

Substituting Equation (28) in dHsc/Hsc = dα/α, we obtain

∣

∣

∣

dHsc

Hsc

∣

∣

∣
≤ |Hϕ|dϕ + |Hγ | dγ + |Hxi

|dxi + |Hyi
|dyi + |Hx0

|dx0 +

|Hy0
|dy0 + |Hxc

|dxc + |Hyc
|dyc + Hηdη . (29)

There are six sources of errors: error in the inclination in the measured image (dϕ), in the
inclination of galactic disk (dγ), in the measured coordinate of the galactic center (dxc, dyc), in r0

(dx0, dy0), in the measured coordinates of the points of the spiral arm (dxi, dyi), and in η, (dη).
In practice, we obtain the disk inclination γ and the winding parameter Λ by fitting a spiral

arm directly in the image. The IDL software is used to display the image and to measure the
parameters we need. The main steps are as follows:

(1) Adjust the display task ranges so as to have clear images.
(2) Measure the most inward point of the spiral arm (coordinates ρ0, θ0).
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(3) Obtain an approximate disk inclination γa with the expression

γ = arccos

√

1.042
( d25

D25

)2

− 0.042 + 0.052 , (30)

where, D25 and d25 are the apparent major and minor isophote diameters taken from RC3 (de
Vaucouleurs et al. 1991).

(4) Fit the imaged spiral arm with a logarithmic spiral starting from (ρ0, θ0), and obtain an
approximate winding parameter Λa.

(5) Adjust γ around γa and Λ around Λa, until a good fit to the imaged arm is obtained.
(6) We then obtain the thickness factor α from Equation (9), and hence the scale height Hsc = 1/α,

and the equivalent thickness of the galactic disk H = 2/α.

5 THE SCALE HEIGHTS OF 71 NORTHERN SPIRAL GALAXIES AND OF 23
FURTHER NON-EDGE-ON GALAXIES

We applied our method to a recalculation of the scale heights of the same set of 71 northern
spiral galaxies, previously calculated by Ma, Peng & Gu (1998). Their results, represented by
H = 2Hsc, are given in column 8 of Table 1; our results (calculated with the same parameters as
they did), represented by Hre = 2Hsc, are given in column 9. The percentage differences (Dratio =|
(H − Hre)/H |) are listed in column 10. The other columns list some other parameters, which are
self-explanatory, except that the distance d in column 7 is calculated from the RC3 radial velocity
with a Hubble constant of 75 (km s−1) Mpc−1. It may be noted that their results and ours differ
by less than 9%.

Table 2 lists the scale heights of a further 23 non-edge-on spiral galaxies. These were taken
from SDSS DR3, with the relevant parameters from RC3. The equivalent thickness (H) and the
scale height (Hsc) of the galaxies are listed in columns 7 and 8, respectively.

Table 2 Scale Heights of a Further 23 Spiral Galaxies

PGC m γ(◦) Λ+dΛ/Λ µ(◦) d (Mpc) H±dH/H (kpc) Hsc±dHsc/Hsc(kpc)
(1) (2) (3) (4) (5) (6) (7) (8)

PGC 00281 2 41.7 6.80 ± 26.9% 16.4 153.21 0.723 ± 30.5% 0.361 ± 30.5%
PGC 02391 2 46.1 5.21 ± 21.4% 21.0 66.35 0.456 ± 27.2% 0.228 ± 27.2%
PGC 04992 2 73.6 10.64 ± 27.5% 10.6 108.97 0.929 ± 31.4% 0.465 ± 31.4%
PGC 10857 2 74.5 6.35 ± 32.3% 17.5 117.03 0.757 ± 38.1% 0.379 ± 38.1%
PGC 21120 2 56.6 7.10 ± 22.7% 15.7 10.83 0.126 ± 25.8% 0.063 ± 25.8%
PGC 21336 2 77.8 8.06 ± 23.8% 13.9 61.96 1.435 ± 32.6% 0.717 ± 32.6%
PGC 23752 2 34.5 5.24 ± 18.6% 20.9 118.75 0.798 ± 23.1% 0.399 ± 23.1%
PGC 24641 2 52.4 10.80 ± 29.5% 10.5 121.37 0.715 ± 36.9% 0.358 ± 36.9%
PGC 29614 2 51.6 5.06 ± 19.8% 21.6 86.68 1.013 ± 26.1% 0.506 ± 26.1%
PGC 32484 2 70.1 10.02 ± 31.5% 11.3 169.95 1.779 ± 39.6% 0.890 ± 39.6%
PGC 34718 2 69.2 9.41 ± 31.4% 12.0 27.27 0.199 ± 36.7% 0.100 ± 36.7%
PGC 36580 2 61.2 5.26 ± 27.3% 20.8 113.32 2.515 ± 33.2% 1.258 ± 33.2%
PGC 37047 2 76.2 12.15 ± 29.1% 9.3 76.45 0.740 ± 34.9% 0.370 ± 34.9%
PGC 38834 2 50.0 12.02 ± 23.6% 9.4 67.09 0.527 ± 26.2% 0.264 ± 26.2%
PGC 40857 2 76.1 4.78 ± 17.2% 22.7 195.53 3.070 ± 26.4% 1.535 ± 26.4%
PGC 47432 2 68.8 9.85 ± 26.7% 11.5 56.52 0.684 ± 29.3% 0.342 ± 29.3%
PGC 48330 2 55.0 6.68 ± 18.9% 16.7 90.11 0.236 ± 23.7% 0.118 ± 23.7%
PGC 49533 2 57.3 5.19 ± 20.1% 21.1 98.83 0.714 ± 25.2% 0.357 ± 25.2%
PGC 52115 2 55.6 9.53 ± 28.6% 11.8 75.97 0.557 ± 31.8% 0.278 ± 31.8%
PGC 53217 2 53.5 4.67 ± 26.9% 23.2 32.91 0.273 ± 32.7% 0.137 ± 32.7%
PGC 57986 2 64.4 8.95 ± 25.3% 12.6 111.95 0.869 ± 26.4% 0.435 ± 26.4%
PGC 60321 2 51.6 7.12 ± 24.3% 15.7 46.09 0.415 ± 35.5% 0.208 ± 35.5%
PGC 71047 2 68.8 14.29 ± 36.2% 8.0 31.09 0.537 ± 40.6% 0.269 ± 40.6%
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6 DISCUSSION AND CONCLUSIONS

(1) It is noted that the differences between the scale heights (Hsc = 0.5H) obtained by the method
of this paper and by Ma, Peng & Gu (1998) are very small, less than 9%. Since the total
error for evaluating the scale heights due to all possible errors is probably larger than 10%, the
implication is that the factor η = 0.50 proposed in this paper is basically valid.

(2) We use the parameters given by Ma, Peng & Gu (1998) to calculate the factor η from
Equation (9) at the forbidden radius r0, and obtain the result η ≈ 0.486.

(3) As Tables 1 shows, it appears that H (column 8) is always larger than Hre (column 9). When
calculating Equation (9), we found that the larger the value of η is, the smaller Hre (column 9)
becomes. In general, when η ≤ 0.483, we have Hre ≥ H . Equation (9) implies that smaller
values of η mean smaller perturbed gravitational potentials and thicker galactic disks.
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