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Abstract The relationship between the k2/Q of the Galilean satellites and the
k2J/QJ of Jupiter is derived from energy and momentum considerations. Calcula-
tions suggest that the Galilean satellites can be divided into two classes according
to their Q values: Io and Ganymede have values between 10 and 50, while Europa
and Callisto have values ranging from 200 to 700. The tidal contributions of the
Galilean satellites to Jupiter’s rotation are estimated. The main deceleration of
Jupiter, which is about 99.04% of the total, comes from Io.

Key words: astrometry — celestial mechanics — planet and satellites: individ-
ual: (Io, Europa, Ganymede, Callisto)

1 INTRODUCTION

Departure of a tidally distorted body from perfect elasticity or fluidity can be neatly sum-
marized in terms of the tidal dissipation function, Q−1, defined by

1
Q

=
1

2πE0

∮ (
−dE

dt

)
. (1)

Here E0 is the maximum energy stored in the total distortion, and the integral over −dE/dt,
the rate of dissipation, represents the energy dissipated during one complete cycle. The dimen-
sionless parameter Q is simply related to the phase lag ε. The relation of Q to this phase lag ε

is (MacDonald 1964),
1
Q

= tan 2ε, (2)

or, since Q is generally large, Q−1 ≈ 2ε. The rates of change of the orbital elements are
determined by the phase lag in the elastic component of the tidal bulge (MacDonald 1964).

Goldreich & Soter (1966) summarized the relevant information about Q in the solar system
and suggested that the lower bound for Jupiter’s QJ is (1 ∼ 2) × 105. Yoder (1979) discussed
in more detail how the orbital resonance locks among the three inner Galilean satellites are
maintained and described the effects of the dissipative tides in both Jupiter and Io on their
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establishment and evolution. Arguments were given which limited QJ to the range, 2× 105 <

QJ � 2×106. Based on calculations for a tidal origin of the Laplace resonance, the observations
of the thermal output of Io (Maston et al. 1980; Sinton 1981) and the secular change in the
mean motion of Io (Lieske 1987), a possible range of QJ (4 × 104 < QJ < 5 × 105) was given
(cf. Greenberg 1981, 1987; Malhotra 1991). Ioannou & Lindzen (1993) formulated the theory
of excitation of tidal oscillations in a fluid planetary body and verified that QJ is of the order of
105. On the other hand, direct determinations of QJ based on estimates of turbulent viscosity
within Jupiter yielded much larger values of QJ—the most extreme being QJ ≈ 1013 (Goldreich
& Nicholson 1977). However, this figure implies that tidal interactions between Jupiter and
its satellites have played a negligible role in the evolution of the satellites’ orbits. Moreover,
such a value of QJ means there would be insufficient torque from Jupiter to assemble the
resonances and to maintain the current hypothesized equilibrium (Peale 1999). Based on these
considerations, the bound 2× 105 < QJ < 5× 105 is preferred.

It is well known that the tidal energy dissipation rate is related to the tidal dissipation
factor for the Galilean satellites (Peale & Cassen 1978). Now, experimental values of Q ranging
between 40 and several thousand have been determined for various rocks and metals, but we
do not know the outer composition and the state of other planets and satellites (Goldreich &
Soter 1966).

Now, many previous studies on the tidal evolution of the Galilean satellites depended on
some conjectured values of the tidal lags or Q (e.g. Ross & Schubert 1987; Malhotra 1991;
Showman & Malhotra 1997; Showman et al. 1997). As a result the time scales for these processes
remained uncertain. In this paper, the relationship between k2/Q of the Galilean satellites and
k2J/QJ of Jupiter will be derived from energy and momentum considerations. Using the range
of QJ values of Jupiter and the possible ranges of Q values of the Galilean satellites, the tidal
contributions by the Galilean satellites to the deceleration of Jupiter’s rotation are estimated.

Some parameters of the Galilean satellites are listed in Table 1 (Yoder 1995; Seidelmann
et al. 2002), (where M is the mass, R the mean radius, a the orbital semi-major axis, e the
orbital eccentricity, ω the angular velocity of rotation (ω is equal to the mean orbital motion n

because of the synchronous rotation).

Table 1 Parameters of the Galilean Satellites

Parameters Io Europa Ganymede Callisto

M (1022 kg) 8.9319 4.7910 14.817 10.762

R (km) 1821.3 1560.7 2634.1 2408.4

a (105 km) 4.216 6.709 10.70 18.83

e 0.0041 0.0101 0.0006 0.00736

ω (10−5 rad s−1) 4.1106 2.0479 1.0164 0.43575

Note: The mass of Jupiter is MJ = 1.89861× 1027kg; the gravitational con-

stant G is 6.67259× 10−11m3 kg−1 s−2

2 Q VALUES OF THE GALILEAN SATELLITES

Jupiter has many natural satellites, of which the four largest, Io, Europa, Ganymede and
Callisto, were discovered by Galileo in January 1610 and named Galilean satellites. The orbits
of the Galilean satellites are nearly in Jupiter’s equatorial plane (i ≈ 0), are nearly circular
(e ≈ 0) and are synchronous (orbital periods equal to the rotational periods).
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Jupiter and its Galilean satellites form a complex system. The most striking characteristic
of the Galilean satellites is the set of orbital resonances where the orbital mean motions satisfy
the relations (cf. Peale 1999)

nI − 3nE + 2nG = 0,

nI − 2nE + ˙̃ωI = 0,

nI − 2nE + ˙̃ωE = 0,

nE − 2nG + ˙̃ωE = 0,

(3)

which lead to the following constraints on the longitudes:

λI − 3λE + 2λG = 180◦,
λI − 2λE + ω̃I = 0◦,
λI − 2λE + ω̃E = 180◦,
λE − 2λG + ω̃E = 0◦.

(4)

The subscripts I, E, G refer to Io, Europa and Ganymede, respectively, and ω̃i are the longitudes
of periapse with the dot indicating the time differentiation. The Laplace relation refers to the
first equations of Eqs. (3) and (4). The possible origins of the Laplace relation have been
discussed by many authors (Yoder 1979; Peale et al. 1979; Yoder & Peale 1981; Malhotra 1991;
Showman & Malhotra 1997; Showman et al. 1997; Peale & Lee 2002). In these work, the Q

values of the Galilean satellites must be postulated. To qualitatively estimate the Q values,
we concentrate on the momentum and energy of the system. In such a complex system, it is
still not known how the decrease of the rotational angular momentum of Jupiter is allotted to
the four moons. In addition, the tidal energy dissipation rate was derived just for a system
consisting of two bodies (cf. Peale & Cassen 1978). In order to simplify the problem, an isolated
system formed by Jupiter and one of the Galilean satellites will be considered (cf. Peale et al.
1979; Burša 1991), and the satellite is treated as orbiting in Jupiter’s equatorial plane (i = 0).

The momentum of the isolated system is considered first. If the rotational angular momen-
tum of the satellite is ignored, the total momentum L of the system would include the rotational
angular momentum of Jupiter and the orbital momentum LJS of the system in the barycentric
coordinate system. The total momentum can be written as

L = LJS + CJωJ. (5)

Here CJ is the largest principal moment of inertia of Jupiter, ωJ the rotational angular velocity
of Jupiter and LJS = MMJ

M+MJ

√
G(M + MJ)a(1− e2) ≈ MMJ

M+MJ
na2. If all external influences on

the planet-satellite system are ignored, then the total angular momentum remains a constant:

dLJS

dt
= −CJ

dωJ

dt
. (6)

Using Kepler’s third law, we have

dLJS

dt
= −1

3
MMJ

M + MJ
a2 dn

dt
. (7)

Substituting Eq. (7) into Eq. (6), the variation in n can be derived:

dn

dt
=

3(M + MJ)
MMJ

1
a2

CJ
dωJ

dt
. (8)
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The tidal torque raised on Jupiter by the satellite can be expressed by (Jeffreys 1962)

Γ = CJ
dωJ

dt
= −3

2
GM2

a

(
RJ

a

)5
k2J

QJ
, (9)

where RJ = 69911 km (Seidelmann et al. 2002) is the mean radius of Jupiter and k2J = 0.474
the second Love number of Jupiter (Yoder 1995). So the following equation can be obtained:

dn

dt
= −9

2
M

MJ
n2

(
RJ

a

)5
k2J

QJ
. (10)

On the other hand, the total mechanical energy of the system decreases through tidal
dissipation. The mechanical energy of the system in the barycentric coordinate system is

E = −GMMJ

2a
. (11)

Since the rotational energy of a synchronously rotating satellite cannot be diminished, the
energy dissipated by the nonzero eccentricity must come from the orbit, which would lead to
an increase in the orbital motion (cf. Peale et al. 1979)

dn

dt
= − 3

nMa2

dEtide

dt
. (12)

Moreover, the total tidal dissipation in a synchronously rotating homogenous satellite in an
eccentric orbit is given by Peale & Cassen (1978)

dEtide

dt
=

21
2

k2

Q

(
R

a

)5
GM2

J

a
ne2. (13)

We obtain
dn

dt
= −63

2
GM2

J

M

e2

a3

(
R

a

)5
k2

Q
. (14)

If the rates given by Eqs. (10) and (14) exactly cancel, then the relationship between k2/Q

of the satellite and k2J/QJ of Jupiter can be deduced to be

k2

Q
=

1
7e2

(
M

MJ

)2 (
RJ

R

)5
k2J

QJ
. (15)

The possible ranges of k2/Q of the Galilean satellites can be estimated and are listed in Table 2.
For comparison, some values of k2/Q of the Galilean satellites adopted by other authors are
also included in Table 2.

For a homogeneous and incompressible satellite, the second Love number can be estimated
from the Kelvin equation (Munk & MacDonald 1960):

k2 =
3
2
· 1

1 +
19µ

2ρgR

, (16)

where µ is the mean coefficient of rigidity of the satellite, g the surface gravity and ρ the mean
density of the material in the tidal bulge (cf. Showman et al. 1997). Based on the internal
structure models, the bulk moduli K(s) of the Galilean satellites, as functions of s (s = r/R),
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can be calculated (cf. Zhang 2003). Then the distributions of the coefficients of rigidity, µ(s),
can be assessed by the following equation (Bullen 1975):

µ(s) =
3
2
K(s)

(
1− 2σ

1 + σ

)
. (17)

Here σ is the Poisson’s coefficient (σ = 0.44 for the core and σ = 0.40 for the mantle). So the
mean coefficients of rigidity of the Galilean satellites can be derived from the following equation:

µ = 3
∫ 1

0

µ(s)s2ds. (18)

Hence the possible ranges of Q values of the Galilean satellites can be estimated. These are
displayed in Table 3, which also includes the µ and k2 values.

Table 2 The Range of k2/Q of the Galilean Satellites

Satellite Estimated value Reference 1 Reference 2

Io (1.57 ∼ 3.92)× 10−3 10−4 4× 10−4 ∼ 1.27× 10−3

Europa (1.59 ∼ 3.97)× 10−4 10−3 ∼ 10−2 4.1× 10−3

Ganymede (0.51× 1.28)× 10−2 10−3 ∼ 10−1 0.127

Callisto (1.74 ∼ 4.35)× 10−4

Note: The value under Reference 1 is that adopted by Malhotra (1991); the value under

Reference 2, that adopted by Showman & Malhotra (1997).

Table 3 Q Values of the Galilean Satellites

Io Europa Ganymede Callisto

µ (kbar) 300 205 110 210

k2 0.067 0.084 0.147 0.119

Q 17 ∼ 43 212 ∼ 528 11 ∼ 29 274 ∼ 684

Goldreich & Soter (1966) reviewed the secular tidal changes in the solar system and found Q

values in the range from 10 to 500 for the satellites of major planets. Our calculations suggest
that the Q values of the Galilean satellites can be divided into two classes. The first class,
containing values from 10 up to 50, includes Io and Ganymede; the second class, containing
values larger than 200, consists of Europa and Callisto.

Our results depend on the QJ value of Jupiter and the second Love numbers k2 of the
Galilean satellites. However, the elastic characters of the Galilean satellites are still uncertain.
Here, the chosen values of the second Love numbers, which suggest that the Galilean satellites
behave mainly as rigid bodies, are derived from the internal structure models of the Galilean
satellites. Calculating k2 from either the J2 or C22 observations, Anderson et al. (1996, 1998,
2001a, 2001b) proposed the larger values of the second Love numbers (k2 > 1) for the Galilean
satellites, which indicate that the Galilean satellites mainly behave as elastic bodies. What
really reflects the elastic character of the Galilean satellites awaits future research.

In many cases (e.g. Ross & Schubert 1987; Malhotra 1991; Showman & Malhotra 1997;
Showman et al. 1997), different Q values of the Galilean satellites were used. Ross & Schubert
(1987) made use of Q value less than 100 to explain the existence of the subsurface ocean of
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Europa. It is obvious that larger Q values of Europa will lead to less tidal dissipation and will
make it difficult to explain the subsurface ocean. Some authors (Malhotra 1991; Showman &
Malhotra 1997; Showman et al. 1997) adopted the selected Q values to numerically simulate
the orbital evolution of the Galilean satellites (see Table 2). However, the Q values provided
in this paper are chosen, then different orbital evolution of the Galilean satellites may result.
These points should be considered further in the future.

3 TIDAL CONTRIBUTION OF THE GALILEAN SATELLITES TO JUPITER’S
ROTATION

Because of tidal friction, Jupiter’s rotation must decelerate. The Galilean satellites, orbiting
synchronously in the equatorial plane of Jupiter, are mainly responsible for this phenomenon,
if exists in practice.

3.1 The Secular Tidal Variations in a and n of the Galilean Satellites

Tidal variations in the orbital elements can be derived directly from the Lagrangian plan-
etary equations, to which tidal force function should be inserted as the perturbing function
(Kaula 1964). In particular, the variations of a and n are as follows:

da

dt
= 3na

k2J

QJ

M

MJ

(
RJ

a

)5

, (19)

dn

dt
= −9

2
n2 k2J

QJ

M

MJ

(
RJ

a

)5

. (20)

The current values of the variations in the semi-major axes and mean motions due to tidal
friction can be estimated; they are listed in Table 4, which includes also the corresponding
values for the Moon (Yoder 1995).

Table 4 Secular Tidal Variations of a and n

Satellite da/dt (cm cy−1) dn/dt (arcsec cy−2)

Io 96 ∼ 242 −92 ∼ −230

Europa 4 ∼ 10 −1.2 ∼ −3.0

Ganymede 0.96 ∼ 2.4 −0.089 ∼ −0.22

Callisto 0.031 ∼ 0.078 −0.0007 ∼ −0.0018

Moon 384 –26.0

Our results are one order of magnitude larger than those provided by Burša (1991) because
the QJ value adopted by Burša (1991) is 1.9 × 106. Our calculations also suggest that the
variation of n of the Moon is smaller than that of Io and much larger than those of the other
three Galilean satellites.

3.2 Tidal Deceleration in Jupiter’s Rotation

For a rough estimate, we keep only the dominating terms and calculate the contributions by
the individual satellites to the tidal variations in Jupiter’s angular velocity of rotation according
to the following equation derived from Kepler’s equation and Eq. (8):

dωJ

dt
= − 1

2CJ

MMJ

M + MJ

√
G(M + MJ)

a

da

dt
. (21)
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Here, the principal moment of inertia of Jupiter is CJ = 2.5× 1042kg m2.
To estimate the total deceleration in Jupiter’s rotation, we should know the time interval

∆T during which the tidal friction mechanism can be supposed to operate; here we put ∆T =
4.5×109 yr. After integrating Eq. (19), the total change of the semi-major axis ∆a = a(t = 0)−a

over ∆T can be figured out, where a is the current orbital semi-major axis. The orbital semi-
major axis 4.5× 109 years ago is

a(t = 0) =
{

a
13
2 − 39

2

√
G(M + MJ)

M

MJ
R5

J

k2J

QJ
∆T

} 2
13

. (22)

Then the deceleration in Jupiter’s rotation due to the individual satellite can be derived from
Eq. (21):

δωJ = − 1
CJ

MMJ

M + MJ

√
G(M + MJ)(

√
a−

√
a(t = 0)) . (23)

Here δωJ = ωJ−ωJ(t = 0), ωJ = 1.758533×10−4rad s−1 (= 9h55m29.7s) is the angular velocity
of rotation of Jupiter at present and ωJ(t = 0) is its angular velocity of rotation 4.5× 109 years
ago. For QJ = 3.5× 105, the estimated numerical values are listed in Table 5.

Table 5 Decelerations in Jupiter’s Rotation due to the Individual Galilean Satellites

Satellite a(t = 0) (106m) ∆a (104m) δωJ (rad s−1)

Io 257.51 –16409.3 −5.7× 10−8

Europa 668.28 –262.1 −3.5× 10−10

Ganymede 1069.38 –61.6 −2.0× 10−10

Callisto 1882.98 –2.0 −3.5× 10−12

The total deceleration in Jupiter’s rotation is

∆ωJ =
∑

δωJ = −5.75535× 10−8 rad s−1, (24)

its absolute value is larger than that estimated by Burša (1991). It means that 4.5× 109 years
ago the angular velocity of rotation of Jupiter is ωJ(t = 0) = 1.759109×10−4rad s−1. The main
contribution to the deceleration comes from Io, which accounts for about 99.04% of the total
deceleration.

4 CONCLUDING REMARKS

1) The Q values of the Galilean satellites can be divided into two classes. One, containing
values from 10 to 50, includes Io and Ganymede. The other, containing values larger than
200, consists of Europa and Callisto.

2) The second Love numbers of the Galilean satellites, which are derived from the internal
structure models, are 0.067 for Io, 0.084 for Europa, 0.147 for Ganymede and 0.119 for
Callisto. These values suggest that the Galilean satellites behave mainly as rigid bodies.

3) The tidal variation of n of Io is at least about two orders of magnitude higher than those
of the other three Galilean satellites. Incidentally, the variation of n of the Moon is less
than that of Io but much larger than those of Europa, Ganymede and Callisto.
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4) If QJ = 3.5× 105, the total deceleration in Jupiter’s rotation is −5.75535× 10−8 rad s−1.
This means that 4.5×109 years ago the period of rotation of Jupiter is about 9h55m18.0s.

5) The main contribution to the deceleration of Jupiter’s rotation comes from Io, which is
about 99.04% of the total deceleration.
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