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Abstract We study several quintessence models which are exotic at @ = 0, and
use a simple constraint @ > H/2m to check when they enter the tracking regime,
disregarding the details of inflation. We find that it can also give strong constraints
for V.= VpQ~“, which has to enter the tracking regime after Inz ~ 10, while for
the supergravity model V' = V,Q~“exp(kQ?/2), the constraint is much weaker. For
the exponential form of inverse power-law potential V' = Vpexp(A/Q), it exhibits no
constraints.
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1 INTRODUCTION

Recent observations of type Ia supernova (SN) survey (Garnavich et al. 1998; Perlmutter et
al. 1998) and cosmic microwave background (CMB) anisotropies (de Bernardis et al. 2002; Lee
et al. 2001) strongly show evidence for a cosmological constant or quintessence. In the general
case, quintessence can have a time-dependent equation of state, wq(t) = pg/pgo (Wetterich
1988; Peebles & Ratra 1988), which is invoked to explain the coincidence problem. Some
researchers reanalyzed the cosmological data of CMB, SN, large scale structure and gravitational
lens statistics (Bean & Melchiorri 2002; Baccigalupi et al. 2002; Hannestad & Mortsell 2002;
Chae et al. 2002), and confirmed that quintessence is slightly preferred over the cosmological
constant.

An important class of quintessence models are known as tracking models. By coupling a
scalar field to matter one can obtain tracking solutions (Zlatev et al. 1998; Steinhardt et al.
1999) for the time dependence of the dark energy density so that it always follows the dominant
energy density component fairly independently of initial conditions. Recently, Malquarti &
Liddle (2002) used a stochastic inflation model to constrain the initial quintessence value after
inflation. They have shown that for an inverse power-law form V = V{,Q~¢ satisfying current
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observations, the initial @ was so large that it could not enter the tracking regime until the
matter-domination epoch. This has put the tracking behavior in considerable jeopardy for such
quintessence models.

In the present paper, we will study several quintessence models which are exotic at @ = 0
after inflation. Quintessence being almost massless, one has §QQ ~ H /27 (see Liddle et al. 1993
for details) after inflation. The simplest constraint is @ > §Q, i.e., Q > H/2w. We shall use
this constraint to find the time of entry into the tracking regime, disregarding the details of
the inflation. In the following section, we will mainly discuss the early tracking behavior of
three small-field quintessence models: inverse power-law potential, V' = VyQ ™%, supergravity,
V = VoQ “exp(kQ?/2), and exponential form of inverse power-law, V = Vyexp(\/Q).

2 MODELS AND TRACKING SOLUTIONS

We shall consider models of quintessence in a flat cosmological background. The ratio of
energy density to the critical density today is 2g for the Q-field and €2, for the matter density
where Q,, + Qg = 1. We also define a background equation-of-state wg, wp = 1/3 in the
radiation-dominated epoch and 0 in the matter-dominated epoch. We use dimensionless units
where the Planck mass is M, = 1.

The equation of motion for the Q-field is

Q+3HQ+V' =0, (1)
where V! = O i::g and
a\?2 87
H? = (2)" = (oo + p). (2)

a is the Robertson-Walker scale factor, pg = pm + pr, pm and p, are the matter and radiation
energy density, respectively. Early in the radiation-dominated epoch, we have H =~ 1/2t.
Assuming wq is a constant, we have

- 3(1 +wQ) -
g Mrelg g 3)

We can easily obtain the solution of this equation, Q = Ct—3(11we)/4 (' is a constant, so

I 2
Qo = (%) o 13 (1HwQ)+2 o [ —3(1+wo)+4 (4)

The above equation gives roughly the evolution of the @-field. We can obtain the @) energy
density by another method. According to the present cosmological density pg, we can write

aeq —3(1+w1) a —3(1—‘,—&12)
— _ s 5
PQ po(a()) (aeq) ( )
or
Inpg =Inpy + 3(w1 —w2)In(2eq +1) +3(1 +w2) In(z + 1), (6)

where z is the redshift, the subscript eq denotes the epoch of matter-radiation equality, and
wy and wy are the equation of state of the Q-field during matter- and radiation-dominated
epochs. In the analytical formulae Egs. (5) and (6), we assume w; is a constant and that today
is matter-dominated, which has led to considerable uncertainties when compared to the exact
numerical case.
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An important function is I' = V”V/(V')2, whose properties determine whether tracking
solutions exist. Taking the derivative of the equation-of-motion with respect to @) and combining
with the equation-of-motion itself, we can obtain the tracking equation

wp — WwQ 1+w372wQ T 2 T

I'=1+ — - N9
2(1 4+ wq) 21+ wg) 6+ (I14+wg) (6+%)2

(7)

where z = (14 wq)/(1 —wg),4 =dIlnz/dlnae and & = d?Inz/dIna?.

In the following sections, we will discuss the tracking behavior of different quintessence mod-
els in detail. Moreover, we take the cosmological parameters derived from recent observational
constraints throughout, ,, = 0.3,wg = —0.82 and the Hubble constant » = 0.65.

2.1 Pure Inverse Power-law Models

The quintessence models of pure inverse power-law potentials are originally introduced by
Ratra & Peebles (1988): V = V@~ “. For the tracking solution,

WB —WwWQ 1
r—1=>8"% _°
vove L ®)
then wg = (awp — 2)/(a+2). With w1 = —2/(a+2) (wp = 0) and ws = (o — 6)/(3a + 6)
(wp = 1/3), according to Eq. (6), we have

« da+ 12
Inpg =Inpy — a+21n(zeq+1)+ T In(z + 1). 9)
For wg = (pg — 2V)/pg, we then have VpQ™* =V = po(l —wg)/2, or nVy —aln@ =
In 172‘” 2po. When Qg ~ 0, taking the approximation Vi =~ py, we can obtain the final analytical
form )
—w
InQ = (Inpo — In—2pg) /o, (10)

We also have numerically computed the tracking behavior of the quintessence models ac-
cording to Egs. (1) and (2). In Fig.1, the dashed (« = 1.4) and dotted (o« = 0.67) lines
show the evolution of the @Q-field for the two values of . We have the approximation ) o
(z + Dexp[—(4da + 12) /a(a + 2)] and Q ~ 1 today. For a smaller a,  would be smaller in
the earlier tracking regime, as shown in Fig.1. Our fit with Q,, = 0.3,wg = —0.82 requires
a~ 0.67 and V;/* = 1.8 x 10731, In Malquarti & Liddle (2002), their fit gives 0 < @ < 1 (68%
confidence), our fit is in agreement with theirs.

However, one can see that a small o would also make tracking behavior lose significance
to some degree because it acts then like a cosmological constant. Theoretically the “best”
tracking behavior predicts an energy density pg significantly higher than that of the cosmo-
logical constant, and pg is relatively close to but smaller than the energy density of radiation
in its early stage when entering the tracking regime. For V = V(,Q~¢, a very small o would
definitely predict wg ~ —1 when entering the tracking regime, which is hardly distinguishable
from a cosmological constant. In any case, phenomenologically, there exists such a possibility
for quintessence allowed by current observations. In Malquarti & Liddle (2002), the parameter
is restricted to o < 1 at 68% confidence by current observations, our choice of o ~ 0.67 is
theoretically acceptable. In this sense we can see that the following two models show better
tracking behaviors than does the pure inverse power law case.
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Fig.1 Evolution of the Q-field with redshift. The solid line denotes the supergravity
model, and the dashed and dotted lines display inverse power-law models with o = 1.4
and o = 0.67 respectively.

2.2 Supergravity Models

In this section we consider the supergravity version of the model considered previously with
a superpotential of the form V oc Q=®. We take the form V = V5Q “exp(kQ?/2) (Brax &
Martin 2000), where k = 8, and study its tracking behavior.

For tracking solutions, we have

r 1— (k+aQ V2 + (kQ — aQ~1)2V? 1- kE+aQ? (11)
- (kQ —aQ~1)?V?2 - (kQ = aQ 1)
Because k < aQ~2(Q — 0), we have I' — 1 ~ 1/a. It is similar to the former inverse power-law

potentials. For wg = —0.82 and Q,,, = 0.3, a =11 and \/{)1/4 = 1.93 x 10732 are expected.

In Fig. 1, the solid line shows the evolution of the Q-field with the redshift, and in Fig. 2 we
also show the evolution of the equation-of-state wg for both the inverse power-law potential and
supergravity, taking the same parameter o = 11. In the early radiation-dominated epoch, they
have the same equations of state, while later when matter and quintessence (today) dominate,
Q grows larger and the factor exp(kQ?/2) takes effect today in the supergravity model, which
makes the main contribution to the different behavior of the two models today. The pure
inverse power law form V = Q™! is ruled out because it predicts wg > —0.3 and cannot give
an accelerating universe today, whereas V = Q™ “exp(kQ?/2) is still not excluded. In the
two models, we have given the analytical forms for the tracking behavior according to the Egs.
(9) and (10); we have also compared the analytical and numerical results of the supergravity
version in Fig. 3.
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Fig.2 Different tracking behaviors of the inverse power-law model (dashed) and the
supergravity model (solid) taking o = 11.
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Fig.3 Comparison between the analytical (solid) and numerical (dashed) tracking
solutions in the supergravity model.
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2.3 Exponential Form of Inverse Power-law Model

Here, we further check another inverse power-law potential with the form V = Vpe/?. In
our case, A =~ 0.3 and Vol/4 = 1.85x 103!, However, because the equation-of-state of the model
wgq varies with ¢, it is relatively difficult to obtain analytical solutions. In Fig.4, we have shown
the evolution of the @-field and equation-of-state wg by numerical calculations, and the tracking
behavior is different from the previous two models discussed above. The evolution curve of the
Q-field always rises with time. We are able to give some rough estimations because @ < 1 is
also satisfied for large z. The form e*/? can be expanded to a Q% series with & — o0, hence
wo = (@—6)/(3a+6) = 1/3. Its early behavior of Q and pg can also be explained as @ — o0,

where @ would be much larger than in the pure inverse power-law models from above analysis.
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Fig.4 Evolution of the equation-of-state wg and @Q-field with redshift
in the exponential form of inverse power-law model. We found that no
limit on the tracking time can be obtained here. See text for details.

For a comparison of the three models, we consider the very early behavior of the Q-field.
In the very early time, the three models take the same form V = V,Q~¢, with a = 0.67, 11
and oo, respectively.

In Fig.5, we show our constraints on the tracking behavior of the quintessence models
by taking the initial condition Q; > H /2w, where H ~ 1075, and Q; = 0 because the kinetic
energy of quintessence is diluted by inflation. We do not include the exponential form of inverse
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power-law model because we have no constraint on it, as can be seen from Fig.4.! The solid
line displays the evolution of the @-field in the supergravity model, while the dashed line refers
to the inverse power-law model. For V = V[,Q ™%, it can enter the tracking regime only after
Inz ~ 10. For the supergravity model V = V,Q~“exp(kQ?/2), it requires In(z + 1) < 43.
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Fig.5 Evolution of the @-field with redshift in both inverse power-law (dashed)
and supergravity (solid) models. We take the tracking condition Q; > H/2m, where
H ~ 1075, Ql =0, and find that the time of the supergravity case enters the tracking
regime is much earlier than in the pure inverse power-law model.

3 CONCLUSIONS AND DISCUSSION

We have analyzed the dynamical evolution and tracking solutions of three quintessence
models. We used a simple constraint ¢; > H/27 to study the tracking behavior, and found
that it can also give a strong constraint on the pure inverse power-law model which enters the
tracking regime at a late stage In z ~ 10. The key fact is that for such pure inverse power-law
model, a has to be very small in order to fit current observations. For the supergravity model
and the exponential form of inverse power-law model, the exponential form takes a positive
effect, making them have wg ~ —1 today and satisfy the CMB and SN constraints, while in
the early stage of evolution, they take the pure inverse-power law form with a much larger «,
and little constraint is exhibited with Q; > H/2x for entering the tracking regime.

It is notable that theoretically the three models above show significantly different behaviors
as () — oco. However, @, being slow rolling and of the order of unity today, cannot get very
large in the future for above models, which we have also made a numerical check. In this paper
we mainly deal with the early tracking behaviors which can also be analytically presented to
some degree, the future behaviors are not shown.

I In fact, the assumption that quintessence is massless and slow rolling requires Q > H /27 for this model,
but the constraint is not strong enough either when the Q-field enters the tracking regime. For the other two
models, the constraint is weaker than H /2.
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Tracking behavior typical of pure inverse power-law models begins only at quite a late
stage of evolution, as well as after nucleosynthesis and possibly after decoupling as presented
by Malquarti & Liddle (2002) and the present paper. Tracking is a promising key to solve
the coincidence problem, so tracking quintessence would lose significance if it has to enter the
tracking regime extremely late. Therefore, the supergravity and exponential form of inverse
power law models show better tracking behaviors in our analysis.
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