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Abstract Generation of the Sun’s magnetic fields by self-inductive processes in
the solar electrically conducting interior, the solar dynamo theory, is a fundamen-
tally important subject in astrophysics. The kinematic dynamo theory concerns
how the magnetic fields are produced by kinematically possible flows without being
constrained by the dynamic equation. We review a number of basic aspects of the
kinematic dynamo theory, including the magnetohydrodynamic approximation for
the dynamo equation, the impossibility of dynamo action with the solar differential
rotation, the Cowling’s anti-dynamo theorem in the solar context, the turbulent al-
pha effect and recently constructed three-dimensional interface dynamos controlled
by the solar tachocline at the base of the convection zone.

Key words: Solar magnetic fields — kinematic dynamos — magnetohydrody-
namics

1 INTRODUCTION

Sunspots represent exceptionally high concentration of magnetic flux typically of the order of
O(103) G. Mainly confined within heliographic latitudes ±35◦, the sunspots are highly variable,
both spatially and temporally. Observations show that sunspots usually appear in pairs of
opposite magnetic polarities commonly separated by O(105 km) and are nearly aligned with
the line of constant heliographic latitude with a slight tilt about 10◦. A remarkable feature
is that the average annual number of sunspot has a nearly 11 yr periodicity, which is usually
referred to as the sunspot cycle. The striking regularity of the solar magnetic variation is
reflected in the celebrated butterfly diagram (Maunder 1913). As a bipolar sunspot group
varies in the 11-yr cycle, its polarity obeys the laws of sunspot polarity: the leading spot in
the northern hemisphere reveres its sense from one 11-cycle to the next; the leading spot in
the southern hemisphere is opposite in polarity to that in the northern hemisphere. It thus
takes two sunspot cycles or 22 yr for the Sun to repeat its magnetic state: this is known as
the Hale cycle. This characteristic feature indicates that sunspots are associated with a strong,
deep-seated toroidal magnetic field that is coherent in the whole spherical system and that
has dipolar equatorial symmetry. Because of the strikingly high coherency and regularity, it
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has been generally accepted that the solar cycle represents magnetohydrodynamic processes
taking place in the deep solar interior (Parker 1955, 2001; Moffatt 1978; Weiss 1994). The solar
dynamo theory concerns the study of the generation and variation of the Sun’s magnetic field
by self-inductive processes in its electrically conducting interior.

Great strides have been made towards the understanding of the quantitative features of solar
global magnetic activities through observational and theoretical studies over recent years. In
particular, interest in the solar dynamo problem has been heightened by modern helioseismology
that probes the solar internal structure using the frequency splitting of acoustic modes (Schou
1991). Theoretical considerations of convection in rotating spherical shells suggest that the
differential rotation generated by convection rolls should be nearly independent of the coordinate
parallel to the rotation axis (Busse 1970; Zhang 1992; Zhang & Schubert 2002). However,
helioseismological observations paint a quite different and intriguing picture (Schou 1998): the
solar differential rotation observed on the Sun’s surface persists all the way into the base of
the convection zone. An important achievement in the solar dynamo theory over the past
decade is perhaps the general recognition that the transition layer between the convection
zone and the radiative core of the Sun, the solar tachocline, plays an essential role in the
solar magnetohydrodynamic processes (Spiegel & Zahn 1992; Parker 1993; Gough et al. 1996;
Dikpati & Charbonneau 1999).

It has been suggested that the solar tachocline is a strongly stably stratified layer with a
thickness up to about 10% of the solar radius (Kosovichev 1996). The tachocline offers an ideal
location for the generation and storage of the Sun’s strong azimuthal magnetic fields, Bφ. If the
strong azimuthal fields are stored in the convection zone, they would be expelled by magnetic
buoyancy on a timescale that is too short (O(1) month) compared to the solar cycle (O(10) yr).
Suppose that a strong toroidal field tube immerses at some depth in the convection zone. The
magnetohydrostatic equilibrium of the tube with its surroundings demands that

pi(ρi) +
B2

φ

µ
= po(ρo),

where pi, ρi and po, ρo denote the pressure and density inside and outside the magnetic tube,
respectively. In consequence, for a sufficiently strong magnetic field, we must have

pi(ρi) < po(ρo).

From the condition that the magnetic tube is also in the thermodynamic equilibrium with its
surroundings, we must conclude that

ρi < ρo,

which means magnetic buoyancy and radially upward flows (Parker 1979). In other words,
the large-scale magnetic activities observed in the Sun’s surface may be interpreted as a result
of the rising and emerging of the tachocline-seated, strong toroidal magnetic fields driven by
magnetic buoyancy (Weiss 1994).

The magnetic field rising from the tachocline has to be sufficiently strong, typically of the
order (104−105) G. If the strength of the toroidal magnetic field is weaker than the equipartition
value (Beq = O(104) G), the field would be distorted and twisted by turbulent convection.
Moreover, the rising tube of a weaker field would be deflected towards higher latitudes by the
solar Coriolis force (Choudhuri & Gilman 1987). If the toroidal field is too strong, Bφ > 105 G,
the buoyant tube would rise radially without a substantial tilt (D’Silva & Choudhuri 1993). It
has been widely believed, however, that the toroidal magnetic fields with (Bφ = O(104−105) G)
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are unlikely to be sustained by conventional convection-driven dynamos (Glatzmaier 1985;
Zhang & Busse 1989; Roberts & Soward 1992).

The requirement of a strong toroidal magnetic field in the deep Sun and the existence of the
solar tachocline lead naturally to the concept of the interface dynamo first proposed by Parker
(1993), in which the generation of a weak poloidal magnetic field and a strong toroidal magnetic
field takes place in separate fluid regions with discontinuous magnetic diffusivities across the
interface. Parker’s interface dynamo concept depicts an attractive picture of generating a strong
toroidal magnetic field in the vicinity of the tachocline while avoiding the dilemma relating to
the alpha quenching in the convection zone.

There have been a number of important extensions, with different emphases, of the Parker’s
interface dynamo model. One extension is to focus on the further understanding of the funda-
mental generation mechanism of interface dynamos. MacGregor & Charbonneau (1997) consid-
ered a different interface dynamo in which the shear flow and α−effects are spatially localized
in the form of a delta-function at a moderate distance on either side of the interface. Because
the shear flow and α-effects are spatially separated, the effect of magnetic diffusion plays a more
important role than that in the Parker model. By introducing the action of the Lorentz force
using the Malkus-Proctor mechanism, Tobias (1997) investigated the nonlinear modulation of
Parker’s interface dynamo (see also Brandenburg et al. 1989; Tobias et al. 1995; Ponty et
al. 2001). The Cartesian interface dynamo of Parker’s has been also extended to the case of
spherical geometry (for example, Charbonneau & MacGregor 1997; Markiel & Thomas 1999;
Dikpati & Charbonneau 1999). In a linear spherical interface dynamo model, Charbonneau &
MacGregor (1997) found a class of dynamo solutions that reply on the latitudinal shear and that
are distinct from the usual interface modes controlled by the radial shear. However, Markiel
& Thomas (1999) showed that this class of dynamo solutions is invalid and results from an
incorrect magnetic field boundary condition imposed at the interface between the core and the
tachocline. The result of Markiel & Thomas (1999) demonstrated that the magnetic boundary
condition can play a critical role in determining the key features of an interface dynamo and
that the radial shear in the tachocline dominates the process of the magnetic field generation
even though the latitudinal shear is present (see also Schubert & Zhang 2000, 2001).

This article attempts to give a review on the kinematic aspect of the solar dynamo theory.
Clearly, it is impossible to cover all the research activities concerning the problem in detail.
We shall concentrate on the fundamental aspects of the kinematic dynamo theory starting with
the MHD approximation and the dynamo equation. We shall also briefly discuss a recently
constructed three-dimensional solar dynamo model (Zhang et al. 2003).

2 THE KINEMATIC SOLAR DYNAMO PROBLEM

2.1 The MHD Approximation

The kinematic theory of the solar dynamo is described by the dynamo equation which
determines the effect of a moving electric conductor on the electromagnetic field (Moffatt 1978;
Parker 1979; Weiss 1994; Zhang & Schubert 2000). The dynamo equation is derived from
Maxwell’s equations under the MHD (magnetohydrodynamic) approximation. The complete
set of Maxwell’s equations consists of the four equations: Faraday’s law

∂

∂t
B = −∇×E, (1)
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where E is the electric field and B is the magnetic field; Ampère’s law

∇×B = µJ + (µε)
∂

∂t
E, (2)

where J is the electric current, µ is the magnetic permeability and ε is the permittivity of free
space; Gauss’ law

∇ ·E =
(ρ

ε

)
, (3)

where ρ is the electric charge density; and finally, the solenoidal condition of the magnetic field

∇ ·B = 0, (4)

which states that there exist no magnetic monopoles. The second term in the right-hand side
of Ampère’s law represents Maxwell’s displacement current. Note that the speed of light, Cl,
is given by

Cl =
1
√

µε
= 2.998× 108m s−1 .

It is significant to notice that the amplitudes of both the magnetic and electric fields in
Maxwell’s equations are associated with a frame of reference in which we measure them. Sup-
pose that B and E are the amplitudes measured in an inertial frame of reference. Suppose
also that a fluid in the Sun moves with velocity U = |u| relative to the frame. In the moving
frame with U , the amplitudes of the magnetic and electric field are denoted by B

′
and E

′
. The

relationship between (B
′
,E

′
) and (B,E) is described by the Lorentz transformation

B
′

=
(

1 +
1
2
δ2 + ...

)
(B − εµu×E)−

(
1
2
δ2 +

3
8
δ4 + ...

) [
(u ·B)u
U2

]
, (5)

E
′

=
(

1 +
1
2
δ2 + ...

)
(E + u×B)−

(
1
2
δ2 +

3
8
δ4 + ...

) [
(u ·E)u
U2

]
. (6)

In the Lorentz transformation,

δ =
U
Cl

is related to the relativistic factor. In a conducting fluid of electric conductivity σ(r), where r

is the position vector, moving with velocity u in the presence of an electric charge density ρ,
the relation between the electric current J and the electric field E

′
is given by Ohm’s law

J = σ(r)E
′
+ ρu. (7)

A non-relativistic approximation can be made to simplify the governing equations for the
solar dynamo problem. Let us denote a typical length scale of B by L and a typical amplitude
of B (or E) by B (or E). We assume that the typical timescale for variation of the magnetic
field is given by L/U . From Faraday’s law, we can obtain an estimate for the scaling relation
between E and B

E = O(UB).

The relative order of the terms in Ampère’s law is

|(µε)∂E/∂t|
|∇ ×B|

= O

(
µεEU
B

)
= O

(
U2

C2
l

)
= O

(
δ2

)
. (8)
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If we take typical velocity U as the velocity in the photosphere near a sunspot, which is about
U = 104 m s−1, then we have

|µε∂E/∂t|
|∇ ×B|

= O
(
10−11

)
� 1 . (9)

This implies that Maxwell’s displacement current can be safely neglected in the solar dynamo
problem, that is, the magnetohydrodynamic (MHD) approximation is valid when δ2 � 1.
Ampère’s law under the MHD approximation becomes

∇×B = µJ . (10)

Now consider the relative orders of magnitude in the Lorentz transformation,

|(εµ)u×E|
|B|

= O

(
|εµUE|
B

)
= O

(
U2

C2
l

)
= O

(
δ2

)
, (11)

|E|
|u×B|

= O

(
|UE|
B

)
= O(1) . (12)

It follows that, in the first approximation to order δ2, the Lorentz transformation (5)–(6) is
reduced to

B
′

= B , (13)

E
′

= E + u×B . (14)

It gives rise to Ohm’s law in the form

J = σ (E + u×B) + ρu . (15)

However, when δ2 � 1, the term ρu is much smaller than the current J because

|ρu|
|J |

= O

(
|µρu|
|∇ ×B|

)
= O

(
δ2

)
. (16)

Here we have used Gauss’ law in the scaling analysis. To order δ2, Ohm’s law becomes

J = σ (E + u×B) . (17)

Under the MHD approximation, all the terms of O(δ2) are neglected and the corresponding
equations are dramatically simplified. The resulting approximate equations are usually adopted
in the study of magnetic field generation in the solar interior. Evidently, they cannot be used
in describing other solar physical processes such as electromagnetic radiation.

2.2 The Dynamo Equation and Energy Equation

For the solar dynamo problem, it is convenient to eliminate the electric field E and the
electric current J , leading to the well-known dynamo equation or the induction equation,

∂

∂t
B = ∇× (u×B)− 1

µσ
(∇×∇×B) , (18)
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where the velocity u represents a kinematically possible flow satisfying

∇ · u = 0 . (19)

A set of boundary conditions for B and E must be satisfied at an interface between different
spherical layers in the Sun, for example, between the convection zone and the exterior

< B >= 0 , (20)

< r̂ ×E >= 0 , (21)

< r̂ · J >= 0 , (22)

where r̂ is the unit radial vector and < . > denotes the jump across the interface.
To understand the physical significance of each term in the dynamo equation, we multiply

(18) by the magnetic field

∂

∂t

(
1
2
|B|2

)
= ∇ · [(u×B)×B + λB × (∇×B)]− λ |∇ ×B|2 − (u×B) · (∇×B) , (23)

where magnetic diffusivity λ = 1/(µσ). Integrate (23) over the whole body of the Sun, we
obtain an energy equation

∂

∂t

∫
V

(
1
2µ
|B|2

)
dV =

∫
S

r̂ · PdS − λ

µ

∫
V

|∇ ×B|2 dV −
∫

V

F · u dV, (24)

where P = E × B/µ is the Poynting vector and F = J × B is the Lorentz force. The first
term on the right-hand side represents the electromagnetic flux out of the Sun, the second term
denotes the total Ohmic losses which irreversibly dissipate the electromagnetic energy, and the
work done by the solar internal flow against the Lorentz force is given by the third term.

Physically speaking, if a dynamo is capable of operating in the Sun, the total work done by
the conducting flow must be positive and greater than the Ohmic losses, i.e.,

|F · u|
λ|∇ ×B|2/µ

= O

(
UL
λ

)
= O(Rm) > O(1) , (25)

where Rm is the magnetic Reynolds number. In the solar interior, observations suggest that
Rm � 1 (Parker 1979).

2.3 The Kinematic Dynamo Problem

The theory of solar kinematic dynamo is one in that the observed flow velocity in the
Sun’s interior is assumed to be known and its effect in the form of a growing magnetic field is
investigated. Alternatively, the kinematic dynamo problem may be regarded as an instability
problem in which the system becomes unstable to infinitesimal magnetic disturbances.

Mathematically, the solar kinematic dynamo problem may be defined as follows. Let V

denote the Sun’s interior with S as its bounding spherical surface. Its internal magnetic diffu-
sivity is denoted by λ(r). Let Ve be the vacuum exterior extending to infinity. For the velocity
u within the Sun, the magnetic field B inside the Sun is described by

∂

∂t
B = ∇× (u×B)−∇× [λ(r)∇×B] , (26)
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∇ · u = 0 , (27)

∇ ·B = 0 . (28)

In the exterior Ve, there exist no flows or electric currents, the magnetic field Be is described
by

∇×Be = 0 , (29)

∇ ·Be = 0 . (30)

The kinematic solar dynamo seeks solutions of (26)–(30) under the following conditions

B = Be on S , (31)

r̂ · u = 0 on S . (32)

Solar dynamo action occurs if the magnetic energy of the system attains a non-zero value∫
V +Ve

1
2µ
|B|2dV 6= 0, as t →∞ (33)

for a given initial condition of the magnetic field.
In contrast to the kinematic dynamo theory in which the velocity u satisfies only (27), the

dynamic dynamo theory constrains the velocity u further by the equation of motion

∂u

∂t
+ u · ∇u + 2Ω× u = − 1

ρo
∇p +

1
ρoµ

(∇×B)×B + ν∇2u + f , (34)

where p is the pressure, ρo is the fluid density, ν is the kinematic viscosity, f represents external
forces such as buoyancy forces, and Ω denotes the angular velocity of the Sun. In compari-
son with a well advanced state of the kinematic theory, the dynamic problem is much more
complicated and is still poorly understood.

3 FLOWS IN THE SUN AND THE BASIC MHD PROCESSES

3.1 The Flow Structure within the Sun

There exist three major zones in the solar interior (see Figure 1). The convection zone
extends from the visible surface down about 20% of its radius (RS = 7×1010 cm). Helioseismic
inversion reveals a weak differential rotation in the convection envelope: the equatorial region
is rotating about 30% faster than the polar region. The Sun’s core is a radiative region which
rotates almost uniformly (for example, Schou et al. 1998; Gough & McIntyre 1998). The
tachocline lies between the convection zone and the solid-body rotating radiative core (Schou
1991; Spiegel & Zahn 1992; Gough et al. 1996) and is widely believed to be the seat where the
solar dynamo processes operate to generate its strong toroidal magnetic field with a strength
up to O(105)G, about 10 times the equipartition field strength in the convection zone (for
example, Parker 1993; Weiss 1994).

The helioseismic studies (for example, Schou 1998) allow the determination of the variation
of angular velocity Ω as a function of the radius r and co-latitude θ in the Sun’s interior. It
has been suggested that the velocity u in the Sun may be written as

u = Ωc × r, 0 ≤ r < ri = 0.66RS ;

u = [Ωc + (ΩS(θ)−Ωc)f(r)]× r = [f(r)∆(ΩS)]× r, ri ≤ r < rt = 0.71RS ;

u = ΩS(θ)× r + Up(r, θ) + û(r, θ, φ), rt ≤ r < ro = RS , (35)
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where û represents small-scale turbulent flow, which is critically important to the solar dynamo
action as we will discuss later, Up represents the axisymmetric meridional circulation and

|Ωc| = 430 nHz, |ΩS(θ)| =
(
455.8− 51.2 cos2 θ − 84.0 cos4 θ

)
nHz.

Here Ωc is the rotation rate of the radiative core and (r, θ, φ) are spherical polar coordinates
with θ = 0 at the axis of rotation. Moreover we have in Equation (35)

f(0.66Rs) = 0, f(0.71RS) = 1,

∣∣∣∣df(r)
dr

∣∣∣∣ � ∣∣∣∣ 1
Rs

d|ΩS(θ)|
dθ

∣∣∣∣ .

It should be noted that a differential rotation can be readily maintained even in a stably
stratified layer (Zhang & Schubert 1996, 2001). In the following, we shall discuss the role of
each component of the flow in the solar dynamo processes.

Fig. 1 Geometry of a three-dimensional, four-zone, interface dynamo model: 0 < r ≤ ri, the

uniformly rotating, electrically conducting core with magnetic diffusivity λi; ri ≤ r ≤ rt, the

differentially rotating tachocline with magnetic diffusivity λt; rt ≤ r ≤ r0, the convection zone

with magnetic diffusivity λo; and r > r0, the exterior with a large magnetic diffusivity λe.

3.2 The Effect of the Differential Rotation Ω(r, θ)

The differential rotation, an axisymmetric flow with circular streamlines around the axis of
the Sun’s rotation, distorts a poloidal magnetic field and generates a toroidal magnetic field.
In the solar context, it is perhaps the most important ingredient in producing an oscillatory
dynamo solution. To appreciate the effect of the differential rotation on the solar dynamo
action, we express an axisymmetric magnetic field in spherical geometry

B = BP + BT = ∇×
[
A(r, θ)φ̂

]
+ Bφ(r, θ)φ̂ , (36)

where φ̂ is a unit vector in the φ−direction and BP and BT denote the poloidal and toroidal
components of the axisymmetric magnetic field, respectively. By noting that

−φ̂ · (∇×∇×B) = D2Bφ =
(
∇2 − 1

r2 sin2 θ

)
Bφ , (37)
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the φ−component of the steady (∂Bφ/∂t = 0) dynamo equation may be written as

−(r sin θ)BP · ∇|ΩS(θ)| = λD2Bφ . (38)

Equation (38) describes an important physical mechanism: a non-zero gradient ∇|ΩS(θ)| (dif-
ferential rotation) on a poloidal field BP can generate a toroidal magnetic field Bφ. The process
that produces a toroidal field Bφ from a poloidal/meridional field BP by the differential rota-
tion Ω(r, θ) is known as the omega-effect. By this mechanism, the strong differential rotation in
the tachocline can generate, from a poloidal field produced in the convection zone, an extremely
strong toroidal magnetic field.

3.3 The Effect of Turbulent Flows û

While the differential rotation Ω(r, θ) and meridional circulation UP in the Sun may be
inferred from observations and are treated as known functions, the turbulent convection û in
the Sun’s convection zone, which produces the random disturbance of magnetic fields, is poorly
understood. Analytical or observational descriptions of the detailed feature of the turbulence are
notoriously difficult and remain an unsolved problem. A widely accepted picture of turbulent
flows is that strong nonlinear inertial effects tend to cascade the kinetic energy of the larger
scales to the smaller scales, where it is transferred by viscosity into thermal energy. To avoid the
intrinsic difficulties in the strong nonlinearity, the solar dynamo theory usually assumes that all
statistical properties of the turbulent convection are known. Both the flow u and the magnetic
field B in the convection zone are then divided into axisymmetric and non-axisymmetric parts

u = Up(r, θ) + ΩS(θ)× r + û(r, θ, φ) , (39)

B = B0(r, θ) + B̂(r, θ, φ) , (40)

where û and B̂ have the properties∫ 2π

0

B̂(r, θ, φ)dφ = 0,

∫ 2π

0

û(r, θ, φ)dφ = 0 . (41)

Substitution of (39)–(40) into the dynamo equation and taking an average over longitude φ

yield an equation for the mean magnetic field B0

∂

∂t
B0 = ∇× (Up + ΩS × r)×B0 +∇×

∫ 2π

0

(
û× B̂

)
dφ + λo∇2B0 . (42)

Its corresponding non-axisymmetric B̂ is governed by

∂

∂t
B̂ = ∇× (Up + ΩS × r)× B̂ +∇× (û×B0) + λo∇2B̂ + .... (43)

An essential question is whether the interaction of small-scale flow û and magnetic fluctuation
B̂ can maintain the large-scale B0. Equation (43) suggests that there exists a linear relationship
between B̂ and B0 so that we may make the following expansion∫ 2π

0

(
û× B̂

)
dφ = αijB0j + βijk

∂B0j

∂xk
+ ..., (44)

where αij and βijk are pseudo-tensors dependent upon the properties of turbulent convection.
The relationship (44), which is called the alpha-effect, represents a cornerstone of the modern
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kinematic dynamo theory, first discovered by Parker (1955) and later developed by Steenbeck
& Krause (1966). If we assume further that the turbulent flow in the solar convection zone is
isotropic, we can write

αij = α0δij , βijk = −βεijk , (45)

which gives ∫ 2π

0

(
û× B̂

)
dφ = α0B0 − β∇×B0 . (46)

The mean-field dynamo equation in the solar convection zone then becomes
∂

∂t
B0 = ∇× (Up + ΩS × r)×B0 +∇× α0B0 + (λo + β)∇2B0 , (47)

where β is the turbulent magnetic diffusivity. The value of β in the convection zone may be
estimated by ( for example, Moffatt 1978)

β = 0.1〈û〉L̂,

where 〈û〉 is the root-mean-square turbulent velocity in the convection zone and L̂ is the
correlation length of the turbulence. Doppler shift measurements indicate that 〈û〉 is of the
order of 1 km s−1 in the granulation on scales of O(103 km), which yields

β = 0.1× 103 km2 s−1 = 108m2 s−1 = 1012 cm2 s−1 .

This corresponds to the solar magnetic decay time τS ,

τS =
R2

S

β
=

(7× 108 m)2

108 m2 s−1
= O(10 yr) ,

which is consistent with the observed decade variation of the solar magnetic fields.
In contrast to hydrodynamic turbulence, the theory of magnetohydrodynamic turbulence

involves transferring the magnetic energy of small scale back to the top (large-scale) of the
energy spectrum via the alpha-effect. It is the alpha-effect that completes the solar dynamo
generation cycle by producing a poloidal field from a toroidal field.

4 NECESSARY CONDITIONS FOR THE SOLAR DYNAMO

4.1 Differential Rotation Ω(r, θ) cannot Maintain the Solar Dynamo

By completely ignoring the Lorentz force on the velocity u, the kinematic solar dynamo
represents the mathematically simplest problem. However, obtaining an exponentially growing
solution for a given u, i.e., a working solar dynamo, can be mathematically complicated. In
fact, most of the earlier research on the dynamo theory focused almost exclusively on proving
anti-dynamo theorems.

Denote the magnetic field in the radiative core, the tachocline, the convection zone and the
exterior Bi, Bt, Bo, Be, respectively. The simplest solar dynamo problem seems to neglect
both the meridional circulation UP and turbulent convection û in the convection zone. The
dynamo equation in each region within the Sun becomes,

∂

∂t
Bi = ∇× (Ωc × r)×Bi + λi∇2Bi, in Vi : 0 < r < ri; (48)

∂

∂t
Bt = ∇× [f(r)∆(Ωs)× r]×Bt + λt∇2Bt, in Vt : ri < r < rt; (49)

∂

∂t
Bo = ∇× (ΩS × r)×Bo + λo∇2Bo, in Vc : rt < r < ro; (50)
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0 = ∇2Be, in Ve : ro < r < ∞. (51)

Different regimes are coupled by the magnetic matching conditions (20)–(22). An interesting
question is whether a purely differential rotation can produce a self-exciting dynamo action in
the Sun. It was recognized by Bullard & Gellman (1954) (see also Backus 1958) that magnetic
fields cannot be maintained by a purely differential rotation in a sphere. In this review, we ex-
tend the previous proof for a sphere to the spherical system of multiple layers with discontinuous
magnetic diffusivities for the solar application.

It is mathematically convenient to expand a general three-dimensional magnetic field, for
example Bt in the tachocline, in terms of the vector potentials gt and ht

Bt = ∇× [rgt(r, θ, φ, t)] +∇×∇× [rht(r, θ, φ, t)] , (52)

where

r ·Bt = Lht = −
(

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂

∂φ2

)
ht . (53)

Note that the addition of any function Y (r) to the scalar functions gt and ht in (52) has no
effects on Bt. In consequence, we may assume that gt and ht satisfy∫ 2π

0

(∫ π

0

gt sin θdθ

)
dφ = 0,

∫ 2π

0

(∫ π

0

ht sin θdθ

)
dφ = 0 . (54)

The magnetic fields in the other regions of the Sun can be also expanded in a similar way

Bi = ∇× (rgi) +∇×∇× (rhi) ,

Bc = ∇× (rgo) +∇×∇× (rho) ,

Be = ∇×∇× (rhe) .

Here we have assumed that the exterior is vacuum and that ge = 0 in Ve.
The equations for the poloidal field component can be obtained by forming the scalar

product of Equations (48)–(51) for each zone

∂

∂t
Lhi + (Ωc × r) · ∇Lhi = (Bi · ∇) [r · (Ωc × r)] + λi∇2Lhi , (55)

∂

∂t
Lht + (f(r)∆(ΩS)× r) · ∇Lht = (Bt · ∇) {r · [f(r)∆(ΩS)]× r}+ λt∇2Lht , (56)

∂

∂t
Lho + (ΩS × r) · ∇Lho = (Bo · ∇) [r · (ΩS × r)] + λo∇2Lho , (57)

0 = ∇2Lhe . (58)

Evidently, the first term in the right-hand side of equations (55–57) vanishes. Multiplying
Equation (55) by Lhi gives

∂

∂t

1
2λi

(Lhi)
2 +

1
2λi

∇ ·
[
(Lhi)

2 (Ωc × r)
]

= ∇ · [(Lhi)∇ (Lhi)]− |∇Lhi|2 . (59)

Integrating it over the Sun’s radiative core Vi and making use of the condition r̂ · (Ωc× r) = 0,
we have

∂

∂t

∫
Vi

1
2λi

(Lhi)
2 = −

∫
Vi

∇2 |Lhi|2 dV +
∫
∂Vi

[
(Lhi)

Lhi

∂r

]
dS , (60)
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where ∂Vi denotes the interface between the core and the tachocline. By the same procedure,
we can derive similar equations for the other zones in the Sun. The summation of all the
equations obtained from different zones gives

∂

∂t

[∫
Vi

(Lhi)
2

2λi
dV +

∫
Vt

(Lht)
2

2λt
dV +

∫
Vo

(Lho)
2

2λo
dV

]

= −
[∫

Vi

|∇Lhi|2 dV +
∫

Vt

|∇Lht|2 dV +
∫

Vo

|∇Lho|2 dV +
∫

Ve

|∇Lhe|2 dV

]
. (61)

All the boundary integrals are cancelled out by using the following boundary or matching
conditions

Lhi = Lht,
∂Lhi

∂r
=

∂Lht

∂r
, at r = ri;

Lht = Lho,
∂Lht

∂r
=

∂Lho

∂r
, at r = rt;

Lho = Lhe,
∂Lho

∂r
=

∂Lhe

∂r
, at r = ro;

Lhe = O(r−2) → 0, as r →∞. (62)

It follows that the poloidal fields in all the zones starting with any initial condition must decay
ultimately to zero in time.

Consider now the toroidal component of the magnetic field. In the radiative core, we have

∂

∂t
∇× (rgi) = ∇× [(Ωc × r)× (∇× rgi)] + λi∇2 [∇× (rgi)] , (63)

which can be written as

r ×∇
[
∂gi

∂t
+ (Ωc × r) · ∇gi − λi∇2gi + F (r)

]
= 0 , (64)

where F (r) is an arbitrary function of r. In the following derivation, we need the identity

Q∇2Q = ∇ ·
[
Q

r
∇(rQ)

]
−

[
1
r
r̂ · ∇(rQ)

]2

− |∇HQ|2 ,

where ∇H is the gradient on a unit spherical surface

∇H =
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
.

We first uncurl (64) and then multiply the resulting equation with gi using the above identity

1
2

∂g2
i

∂t
+

1
2
∇ ·

[
g2

i (Ω× r)
]

= λi

{
∇ ·

[gi

r
∇(rgi)

]
−

[
1
r
r̂ · ∇(rgi)

]2

− |∇Hgi|2 + giF (r)

}
. (65)

Integrating it over the radiative core in Vi, we obtain

1
2

∂

∂t

∫
V

g2
i dV =

∫
∂Vi

λi

(gi

r
r̂ · ∇(rgi)

)
dS −

∫
Vi

{[
1
r
r̂ · ∇(rgi)

]2

+ |∇Hgi|2
}

dV , (66)
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where we have used the property (54). Summing all the similar equations in the different zones
gives

1
2

∂

∂t

(∫
Vi

g2
i dV +

∫
Vt

g2
t dV +

∫
Vo

g2
odV

)
= −

∫
Vi

{[
1
r
r̂ · ∇(rgi)

]2

+ |∇Hgi|2
}

dV.

−
∫

Vt

{[
1
r
r̂ · ∇(rgt)

]2

+ |∇Hgt|2
}

dV −
∫

Vo

{[
1
r
r̂ · ∇(rgo)

]2

+ |∇Hgo|2
}

dV . (67)

Here we have made use of the marching or boundary conditions

gi = gt, λir̂ · ∇(rgi) = λtr̂ · ∇(rgt) at r = ri ,

gt = go, λtr̂ · ∇(rgt) = λor̂ · ∇(rgo) at r = rt ,

go = 0, at r = ro . (68)

The last condition in (68) is related to the vacuum boundary condition. As a result, the integrals
of g2

i , g2
t and g2

o vanish as t →∞, so that

gi = gt = go = 0.

The conclusion is that any profile of a purely differential rotation in the Sun, whether spatially
continuous or discontinuous, cannot sustain the solar magnetic fields.

4.2 Ω(r, θ) with Up(r, θ) cannot Sustain an Axisymmetric Solar Dynamo

The next question is whether the combination of differential rotation Ω(r, θ) and meridional
circulation Up(r, θ) can produce a self-exciting axisymmetric dynamo in the Sun. After the
solar dynamo proposal first put forward by Larmor (1919), it was Cowling (1934) who proved
that steady axisymmetric poloidal field cannot be maintained by dynamo processes. Cowling’s
theorem was later extended to the more general form that any axisymmetric magnetic field in
a sphere cannot be self-sustained (Braginsky 1964). This paper extends the Cowling theorem
in a sphere to the situation of multiple spherical layers for the Sun.

If we neglect the alpha-effect in the convection zone, an axisymmetric magnetic field in the
different zones satisfies

∂

∂t
Bi(r, θ, t) = ∇× [(Ωc × r)×Bi] + λi∇2Bi, in Vi : 0 ≤ r < ri; (69)

∂

∂t
Bt(r, θ, t) = ∇× {[(f(r)∆(Ωs)× r)]×Bt}+ λt∇2Bt, in Vt : ri < r < rt; (70)

∂

∂t
Bo(r, θ, t) = ∇× {[(ΩS × r) + Up]×Bo}+ λo∇2Bo, in Vo : rt < r < ro; (71)

0 = ∇2Be, in Ve : ro < r < ∞. (72)

It is mathematically helpful to express the axisymmetric field in the form, for example,

Bo = ∇×
[(

Φo

r sin θ

)
φ̂

]
+ (r sin θΨo) φ̂,

which satisfies the solenoidal condition automatically, where Φo and Ψo are poloidal and toroidal
flux functions.
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First, we look at the poloidal component of the dynamo equation, for example, in the
convection zone

∇×
{

∂

∂t

[(
Φo

r sin θ

)
φ̂

]
+

[
1

r sin θ
UP · ∇Φo

]
φ̂− λoD2

(
Φo

r sin θ

)
φ̂ +∇F (r, θ)

}
= 0, (73)

where

D2

(
Φo

r sin θ

)
=

1
r sin θ

[
∇2Φo −

2
r sin θ

∇(r sin θ) · ∇Φo

]
.

We first uncurl (73) and then form the scalar product of φ-component of the equation. We
multiply the resulting equation by Φo

1
2λo

[
∂

∂t
Φ2

o +∇ ·
(
Φ2

oUP

)]
= ∇ · (Φo∇Φo)− |∇Φo|2 −∇ ·

{[
(sin θ)r̂ + (cos θ)θ̂

r sin θ

]
Φ2

o

}
. (74)

Integrating it over the convection zone Vo and making use of the velocity boundary condition
r̂ ·UP = 0, we obtain

∂

∂t

(∫
Vo

1
2λo

Φ2
odV

)
= −

∫
Vo

|∇Φo|2 dV +
(∫

∂Vo

−
∫
∂Vt

) [
Φo

∂Φo

∂r
− Φ2

o

r

]
dS , (75)

where ∂Vt and ∂Vo denote the spherical surfaces at r = rt and r = ro. By the same procedure
we can derive similar equations for the other zones. The summation of these gives

∂

∂t

[∫
Vo

Φ2
i

2λo
dV +

∫
Vt

Φ2
t

2λt
dV +

∫
Vo

Φ2
o

2λo
dV

]
= −

[∫
Vi

|∇Φi|2 dV +
∫

Vt

|∇Φt|2 dV +
∫

Vo

|∇Φo|2 dV +
∫

Ve

|∇Φe|2 dV

]
. (76)

All the boundary integrals at the various interfaces are either cancelled out or vanish by using
the matching or boundary conditions

Φi = Φt,
∂Φi

∂r
=

∂Φt

∂r
, at r = ri;

Φt = Φo,
∂Φt

∂r
=

∂Φo

∂r
, at r = rt;

Φo = Φe,
∂Φo

∂r
=

∂Φe

∂r
, at r = ro;

Φe = O(r−1) → 0, as r →∞. (77)

Equation (76) implies that the poloidal fields in all the zones starting with any initial condition
must decay ultimately to zero in time.

The equation for the toroidal component of magnetic fields can be obtained by the φ−component
of the dynamo equation, for example, in the convection zone,

∂Ψo

∂t
+ UP · ∇Ψo =

{
∇×

[(
Φo

r sin θ

)
φ̂

]}
· ∇|ΩS |+

λo

r sin θ
φ̂ · ∇2

(
r sin θΨoφ̂

)
. (78)

It is crucial to note that the poloidal magnetic field Φ0 → 0, as suggested by (76). In conse-
quence, there is no source term for the toroidal flux Ψo. We also note the identity

Q

r sin θ
φ̂ · ∇2

(
r sin θQφ̂

)
= ∇ ·

[
Q

r
∇(rQ)

]
− |∇Q|2 +∇ ·

[(
Q2 cot θ

r

)
θ̂

]
.
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Multiplying (78) with Ψo and making use of the above identity, we obtain

1
2

∂Ψ2
o

∂t
+

1
2
∇ ·

(
UP Ψ2

o

)
= λo

{
∇ ·

[
Ψo

r
∇(rΨo)

]
− |∇Ψo|2 +∇ ·

[(
Ψ2

o cot θ

r

)
θ̂

]}
. (79)

Integration of the equation over the convection zone in Vo gives

1
2

∂

∂t

∫
Vo

Ψ2
odV = −λo

∫
Vo

|∇Ψo|2 dV +
(∫

∂Vt

−
∫
∂Vo

)
1
r

[λoΨor̂ · ∇(rΨo)] dS . (80)

The summation of the integral equations obtained from different zones cancels all the surface
integrals, leading to

1
2

∂

∂t

(∫
Vi

Ψ2
i dV +

∫
Vt

Ψ2
t dV +

∫
Vo

Ψ2
odV

)
= −

[
λi

∫
Vi

|∇Ψi|2 dV + λt

∫
Vt

|∇Ψt|2 dV + λo

∫
Vo

|∇Ψo|2 dV

]
. (81)

In the derivation, we have used the following marching or boundary conditions

Ψi = Ψt, λir̂ · ∇(rΨi) = λtr̂ · ∇(rΨt) at r = ri;

Ψt = Ψo, λtr̂ · ∇(rΨt) = λor̂ · ∇(rΨo) at r = rt;

Ψo = 0, at r = ro . (82)

It follows that the integrals of Ψ2
i ,Ψ

2
t and Ψ2

o vanish as t →∞, so that

Ψi = Ψt = Ψo = 0.

In the Sun’s interior characterized by a radially discontinuous variation of the magnetic diffu-
sivity, any combination of differential rotation Ω(r, θ) and meridional circulation UP cannot
sustain an axisymmetric solar magnetic field. It is these anti-dynamo theories that make the
alpha-effect, which is neglected in (71), a critically important ingredient in the solar dynamo
theory.

5 PARKER’S CARTESIAN INTERFACE SOLAR DYNAMO

Parker (1993) proposed a two-dimensional, linear, Cartesian interface dynamo that operates
in the tachocline coupling with the alpha-effect in the convection zone. The interface concept
has since been at the heart of modern solar dynamo theory. In Parker’s model, the surface
z = 0 gives an interface between the solar tachocline (z < 0) and the solar convection (z > 0).
In the upper region with a large eddy magnetic diffusivity λ+, turbulent convective motions
produce an α-effect, generating a weak magnetic field B+ (Parker 1955; Moffatt 1978). In the
lower region with a reduced eddy magnetic diffusivity λ−, a uniform shear in the y−direction,
G = duy/dz, generates a strong magnetic field B− in the form of a dynamo wave confined
to propagate along the x−direction at the interface between the two regions. Similar to an
axisymmetric magnetic field in spherical geometry, Parker (1993) expressed two-dimensional
Cartesian magnetic fields in the form

B+ = B+ĵ +∇× ĵA+, B− = B−ĵ +∇× ĵA− , (83)
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where (î, ĵ, k̂) are unit vectors in the Cartesian coordinates. The dynamo Equation (26) in the
upper region z > 0 becomes [

∂

∂t
− λ+∇2

]
B+ = 0 , (84)[

∂

∂t
− λ+∇2

]
A+ = α0B

+ . (85)

In the lower region z < 0, we have[
∂

∂t
− λ−∇2

]
B− = G

∂A−

∂z
, (86)[

∂

∂t
− λ−∇2

]
A− = 0 . (87)

There are four boundary conditions at the interface z = 0: the continuity of the three compo-
nents of the magnetic field and the normal component of the electric current

B+ = B−, A+ = A−,
∂A+

∂z
=

∂A−

∂z
, λ+ ∂A+

∂z
= λ−

∂A−

∂z
. (88)

It is obvious that Equations (84)–(87) are linear and allow the plane wave solution, for example,

B+ = C+ exp (σt− S+z) cos(ωt + kx−Q+z) ,

B− = C− exp (σt + S−z) cos(ωt + kx + Q−z + Γ) ,

where S+ and S− are positive so that B+ or B− vanishes at |z| → ∞. Substitution of the
wave solution into equations (84)–(87) leads to the dispersion relation. Moreover, the boundary
conditions (88) at the interface give rise to a relationship between B+ and B−. A particularly
important case concerns the properties of the dynamo wave solution in the limit (λ−/λ+) → 0.
In this limit, Parker (1993) found that

|B−|max

|B+|max
= O

(
λ+

λ−

)1/2

. (89)

Though Parker’s model is not a realistic model for the Sun, it perhaps contains the most
fundamental ingredients of a real solar dynamo. The interface dynamo model describes a highly
attractive picture of how to generate a strong toroidal magnetic field in the solar tachocline
whose strength greatly exceeds the equipartition field obtained from conventional convection-
driven dynamo models.

6 A 3-D NONLINEAR INTERFACE SOLAR DYNAMO

We have shown that the alpha-effect represents an essential element in the action of the
solar dynamo. However, there is important physics missing from the linear relationship (46)
between the alpha-effect and the large-scale magnetic field Bo. The relationship (46) becomes
un-physical when the generated magnetic field is so strong as to have the Reynolds stresses of
the turbulent flow comparable to the magnetic stresses,

1
2
ρo|û|2 =

1
2µ
|Bo|2 . (90)
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In this case, the Lorentz forces, as suggested by Equation (34), must affect the convection
and modify the alpha-effect. One indeed expects that the strength of the α-effect would be
suppressed when the kinetic energy of the flow is comparable with the magnetic energy. A
modified alpha-effect expression in the convection zone may be in the form

α(r, θ, φ) ∼ αo

(1 + |Bo/Beq|2)
, rt < r ≤ ro , (91)

where Beq is the equipartition field. This nonlinear alpha effect has been widely used, for
example, by Choudhuri et al. (1995) and Küker et al. (2001) (see Brandenburg 1994, for
detailed discussion). A major advantage of this formulation is that it allows simulation of
many essential dynamo processes without reference to the difficult dynamics of strong nonlinear
interaction between the flow and the Lorentz forces. The formulation (91) is usually referred
to as α−quenching, which introduces nonlinearity into the kinematic solar dynamo model.

With the α−quenching nonlinearity, the interface solar dynamo problem must be treated
numerically. The following discusses briefly a new 3-D interface solar dynamo model based on
a finite element method (Zhang et al. 2003). If we take the reference of frame that rotates with
Ωc, then the magnetic field Bi in the radiative core is governed by the equations

∂Bi

∂t
+ λi∇×∇×Bi = 0 , (92)

∇ ·Bi = 0 . (93)

The magnetic field Bi cannot be generated in this uniformly rotating sphere. On the top of
the radiative core, a strong differential rotation, Ω0f(r)∆(ΩS(θ)), where Ω0 is the amplitude
of the differential rotation, is confined in the tachocline ri < r < rt. It shears the weak poloidal
magnetic field, which is generated in the convection zone and penetrates into the tachocline,
into a strong magnetic field (for example, Roberts 1972).

Global instabilities in rotating spherical systems in the presence of a toroidal magnetic field
or a differential rotation have been extensively studied. It was shown by Gilman & Fox (1997)
that even very simple differential rotation can become unstable to azimuthal wavenumber m = 1
disturbances in the presence of a moderate magnetic field (see also Zhang 1995; Zhang & Busse
1995; Cally 2001; Miesch 2001). In a fully three-dimensional stability analysis for a toroidal
magnetic field in rotating spherical systems, Zhang, Liao & Schubert (2003) demonstrate an-
alytically that the magnetohydrodynamic system is unstable to the m = 1 perturbation. It
is therefore likely that the strong shear flow in the tachocline, as a result of hydrodynamic or
magnetic instabilities, is non-axisymmetric.

To examine the effect of non-axisymmetric flow on the solar interface dynamo, consider a
three-dimensional flow in the tachocline

∂Bt

∂t
= ∇× [u(r, φ, θ)×Bt]− λt∇×∇×Bt , (94)

∇ ·Bt = 0 . (95)

In the fully turbulent convection zone in the region rt < r < ro, a weak magnetic field Bo is
generated by an α-effect with eddy magnetic diffusivity λo, where λt/λo � 1. A nonlinear α−
dynamo in the convection zone is described by

∂Bo

∂t
= αo∇×

{
sin2 θ cos θ sin

[
π

(r − rt)
(ro − rt)

]
1

(1 + |Bo/Beq|2)

}
+ λo∇2Bo , (96)
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∇ ·Bo = 0 , (97)

where αo is a positive parameter. The weak effect of the radial-independent differential rotation
in the convection zone is neglected in this model. The outer exterior to the convection zone is
assumed to be almost electrically insulating with magnetic diffusivity λe. Its magnetic field Be

is then governed by
∂Be

∂t
+ λe∇× (∇×Be) = 0 , (98)

∇ ·Be = 0 . (99)

By taking a sufficiently large magnetic diffusivity λe such that

λe

λo
� 1,

the magnetic field Be in the exterior represents an approximate potential field in the vacuum
which is also part of the numerical dynamo solution.

There are five non-dimensional quantities that numerically characterize the interface dy-
namo: the magnetic diffusivity ratios βi, βt, βm, the magnetic alpha Reynolds number Rα and
the magnetic omega Reynolds number Rm, respectively, defined by

βi =
λi

λ o
, βt =

λt

λ o
, βm =

λe

λ o
,

Rα =
(ro − ri)α0

λo
, Rm =

(ro − ri)2Ω0

λo
.

The governing equations are solved subject to a number of matching and boundary conditions
at the interfaces. That all components of the magnetic field and the tangential component of
the electrical field are continuous at the three interfaces of the four zones, r = ri, rt and r0,
yields

(Bi −Bt) = 0, at r = ri;

r × [βi∇×Bi + Rm (u×Bt)− βt∇×Bt] = 0, at r = ri;

(Bt −Bo) = 0, at r = rt;

r × [Rm (u×Bt)− βt∇×Bt −RααBo +∇×Bo] = 0, at r = rt;

(Be −Bo) = 0, at r = ro;

r × (βe∇×Be + RααBo −∇×Bo) = 0, at r = ro . (100)

For the boundary condition at the outer bounding surface of the dynamo solution domain,
r = rm, an appropriate approximation must be made. Since there are no sources at infinity,
i.e.,

Be = O(r−3), as r →∞, (101)

we may approximate the magnetic field boundary condition at r = rm by

Be = 0, at r = rm with (rm/ro)3 � 1 . (102)

Equations (92)–(99) together with the matching and boundary conditions (100) and (102) define
a nonlinear spherical interface dynamo problem. For given parameters of the model such as Rα
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and Rm, numerical solutions of the nonlinear dynamo are sought using a fully three-dimensional
finite element method.

Figure 2 (see Plate I) displays the butterfly diagram of a simulated interface dynamo solu-
tion, showing contours of the azimuthal magnetic field at the interface rt plotted against time,
for Rm = 200, Rα = 30 with βi = βt = 0.1. The results are very robust in the sense that we have
performed many more simulations in various parameter regimes, for example, smaller values
of βi, and we have always found qualitatively the same features. The effect of the tachocline
produces a nonlinear dynamo wave with a period of about 20 years. The interface dynamo
solution is non-axisymmetric, shows dipolar symmetry and propagates equatorward. Moreover,
the generated magnetic field mainly concentrates in the vicinity of the interface between the
tachocline and the convection zone. More significantly, the strength of the toroidal magnetic
field is dramatically amplified by the strong radial shear in the tachocline, reaching a maximum
strength about 105 G. Such strong toroidal magnetic fields in the tachocline would be suscepti-
ble to magnetic buoyancy instabilities leading to a quick eruption of the field into the surface
of the Sun in the form of sunspots.

7 CONCLUDING REMARKS

The spatial and temporal regularities shown in the variation of the Sun’s magnetic field
and evidence for the existence of the solar tachocline lead to a coherent picture of the solar
interface dynamo first proposed by Parker (1993). The central idea is that a weak poloidal field
generated in the turbulent convection zone can be dramatically amplified by the radial shear in
the tachocline via the omega-effect. Recent observations, such as the Michelson Doppler Imager
on the SOHO spacecraft and the Global Network Group project, provide further challenging
issues in the solar dynamo theory (Howe et al. 2000).

While the kinematic theory of the solar dynamo is now well developed, we are just beginning
to understand the dynamic problem. There are many important issues in the solar magnetic
behaviors which require a dynamical dynamo theory to explain. Tobias (1997) showed that a
simple αω Cartesian interface dynamo, which includes the dynamic feedback of the generated
magnetic field, is capable of producing the modulation of the basic magnetic cycle and recurrent
grand minima (see also Brandenburg et al. 1989). The existence of the solar torsional oscilla-
tions with about a period of 11 yr was suggested by the helioseismic data (Schou et al. 1998).
It remains unclear whether the oscillating motions penetrate all the way into the tachocline
and whether the fashion of the oscillation changes at different depth of the Sun (Howe et al.
2000). How the Lorentz forces affect flows in the convection zone would be a primary key in
the understanding of the solar torsional oscillation.

Modelling and predicting the solar magnetic activities are obviously enormously important
for all mankind. Further investigation of the solar dynamo problem would heavily reply on
the modern computational power of massively parallel computers. The fully dynamical solar
dynamo problem involving the solution of the Navier-Stokes Equation (34) together with the
dynamo Equation (26) and other equations is too complicated to be studied analytically. Many
fundamental questions about the Sun, such as why the Sun has a tachocline, why the Sun’s
radiative core rotates rigidly and why the differential rotation in the convection zone is nearly
independent of r, can be answered only by constructing realistic dynamical solar dynamos
together with modern observations aided by deep analytical understandings of the problem.
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Fig. 2 A non-axisymmetric interface dynamo with Rm = 200, Rα = 30, showing a butterfly

diagram for the dynamo solution at φ = 0 with Bφ evaluated at the interface between the

tachocline and convection zone.


