Equivalent Widths of 15 Extrasolar-Planet Host Stars

Gang Zhao^{*}, Yu-Qin Chen and Hong-Mei Qiu

National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012

Received 2002 April 18; accepted 2002 May 15

Abstract We present the equivalent widths of 15 extrasolar-planet host stars. These data were based on the high-resolution, high signal-to-noise ratio spectra obtained with the 2.16 m telescope at Xinglong station. The error in the Xinglong equivalent width is estimated by a comparison of these data with those given in previous studies of common stars.

Key words: stars: planetary systems – stars: late-type

1 INTRODUCTION

The discovery of planets around main sequence stars provides us a most important opportunity to understand the theories of the planetary system and stars. Much has been done in the way of detailed analysis of the chemical abundance of the extrasolar-planet host stars, that will lead to useful information on how systems with large planets have formed.

In Zhao et al. (2002), we presented accurate metallicities and abundance ratios of many elements for 15 extrasolar-planet host stars with the aim of finding out whether all our sample stars follow the same planet-high metallicity relation and how this process acts on different elements by examining the ratios between elements with the same nucleosynthesis history. In this work, the equivalent widths for these stars are given, and these data are compared with other studies for the stars in common.

2 OBSERVATIONS

The observations were carried out with the Coudé Echelle Spectrograph attached to the 2.16 m telescope at the National Astronomical Observatories (Xinglong, China). The detector was a Tek CCD (1024×1024 pixels each $24 \times 24 \ \mu m^2$ in size). The spectra have a resolution around 40 000, and a signal-to-noise ratio around 200. A detailed description of the technical aspects of the spectrograph can be found in Zhao & Li (2001). Table 1 lists our observation journal, along with the star name, visual magnitude, spectral type, observation date, exposure time, spectral range, and estimated signal-to-noise ratio. The data reduction follows standard MIDAS routines for order identification, background subtraction, order extraction, wavelength

 $[\]star$ E-mail: gzhao@bao.ac.cn

calibration, radial velocity shift correction, and spectrum extraction. The spectrum is then normalized by a continuum function determined by fitting a spline curve to a set of pre-selected continuum windows from the solar atlas.

Star	V_{mag}	Sp.	Date	Exp.	Range	S/N
				(s)	(nm)	
HD 12661	7.44	K0V	11/01/01	3600	570-890	185
$\mathrm{HD}19994$	5.06	F8V	11/01/01	600	570 - 890	232
$\mathrm{HD}22049$	3.73	K2V	17/10/00	900	580 - 890	340
$\mathrm{HD}29587$	7.29	G2V	18/02/97	2700	550 - 820	170
$\mathrm{HD}38529$	5.94	G4V	10/01/01	2700	570 - 890	350
$\mathrm{HD}75732$	5.94	G8V	18/02/97	900	550 - 820	185
$\mathrm{HD}92788$	7.31	G5V	11/01/01	3600	570 - 890	196
$\mathrm{HD}95128$	5.10	G0V	18/02/97	360	550 - 820	170
HD98230	4.87	F8.5V	18/02/97	300	550 - 820	175
$\mathrm{HD}117176$	4.97	G5V	18/02/97	300	550 - 820	170
$\mathrm{HD}120136$	4.49	F7V	18/02/97	300	550 - 820	207
$\mathrm{HD}145675$	6.67	K0V	10/02/01	3000	570 - 890	209
$\mathrm{HD}187123$	7.86	G5V	29/08/99	1800	580 - 870	191
$\mathrm{HD}190228$	7.31	G5IV	08/12/00	3600	550 - 820	260
$\mathrm{HD}217014$	5.49	G5V	21/09/98	900	550 - 820	227

 Table 1
 Observational Journal

3 EQUIVALENT WIDTHS

The equivalent widths are measured using two different methods: direct integration of the line profile and Gaussian function fitting. Usually, the latter is preferable in the case of weak lines but is unsuitable for strong lines in which the damping wings contribute significantly to the equivalent width. The direct integration method gives a better result for strong unblended lines. The final equivalent widths are weighted averages of these two measurements, depending on the line intensity (see Zhao et al. 2000 for details). These data are shown in Table 2. The successive columns give the wavelength, the lower excitation potential, our adopted oscillator strength, the damping enhancement factor and the measured equivalent width.

4 COMPARISON OF EQUIVALENT WIDTHS WITH OTHER WORKS

Some of the sample stars have been analyzed in recent spectroscopic studies. In order to estimate the errors in our EW measurements, we compared the EWs taken from Gonzalez (1998) and this work (see Fig. 1) for four common stars, 55 Cnc, 47 Uma, 70 Vir, and 51 Peg. The comparison shows a very good agreement between the two sources of data, with a tendency for Gonzalez values to be slightly smaller. A linear least squares fitting to 90 common lines gives

$$EW(ZCQ) = 1.009(\pm 0.020)EW(Gonz) + 2.556(\pm 1.616).$$

The difference between these two sets of data is small: the standard deviation about the above relation is $6.7 \text{ m}\text{\AA}$.

Fig. 1 Comparison of our equivalent widths, EW(ZCQ) and Gonzalez's, EW(Gonz), for four common stars, 55 Cnc (pluses), 47 Uma (filled circles), 70 Vir (open triangles), and 51 Peg (open circles). The dashed line is EW(ZCQ)=EW(Gonz), and the thick line is the linear least squares fitting to the data.

Fig. 2 Comparison of our equivalent widths, EW(ZCQ), with those of Smith, Cunha & Lazzaro (2001), EW(SCL), for HD 19994. The dashed line is EW(ZCQ)=EW(SCL), and the thick line is the linear least squares fitting to the data.

λ	χ_l	$\log gf$	f_6	HD 12661	19994	22049	29587	38529	75732	92788	95128
(nm)	(eV)					Equiv	valent Wi	dths (mÅ	(À		
CI	$\log \epsilon_{\odot}$	= 8.45									
658.7610	8.53	-1.08	1.5	23.2	33.5	3.9	-	29.0	-	-	-
OI	$\log \epsilon_{\odot}$	= 8.75	~ ~		1010			100.0			
777.1954	9.14	0.333	2.5	111.8	124.0	28.6	75.0	106.3	50.0	-	98.0
777.4177	9.14	0.188	2.5	104.1	106.0	22.6	66.1	98.5	50.9	81.5	87.7
777.5395	9.14	-0.034	2.5	87.7	91.0	17.9	47.3	78.1	36.6	-	67.8
Nal	$\log \epsilon_{\odot}$	= 6.27									
568.2650	2.10	-0.652	2.0	-	_	_	-	_	-	_	-
568.8217	2.10	-0.341	2.0	-	-	-	92.1	-	286.8	-	144.8
615.4230	2.10	-1.570	2.0	80.4	45.7	59.0	21.1	82.7	119.5	45.1	39.7
010.0753 MmI	2.10	-1.228	2.0	109.0	74.8	94.0	31.5	100.9	-	((.1	04.2
Mg I	$\log \epsilon_{\odot}$	= 7.00	9 F	00.0				97 C		96 9	
631.8700	0.11 5 11	-1.97	2.5	92.8	-	-	-	81.0	-	80.2	-
031.9200	0.11 5 75	-2.20	2.0	141 5	_	_	_	13.2	_	_	_
755.7606	5.75	-0.970	2.0	141.0	_	197.0	_	_	_	_	_
203.7000 271.9701	5.11	-1.100	2.0 9.5	130.2	_	121.9 70.6	_	_	—	—	_
0/1.2/01 971 7999	5.95	-1.200	2.0	161.0	102 9	10.0	_	120.0	_	_	_
802 2600	5.95	-0.970	2.0	101.9	105.8	102.5	_	152.2	_	_	_
A11	loge -	-6.37	2.0	80.7	_	_	_	02.9	_	_	_
660 6020	10geo	1 330	15	71.4		54.0				50.0	
660 8670	3.14	-1.550 1.873	1.5	11.4 47.7		36.4	_	- 52.7	_	34.4	_
783 5317	4.02	-1.075 -0.580	1.5	78.3	21.4 51.8	60.4 60.6	25.0	32.7 80.2	191.9	60 5	51.2
783 6130	4.02	-0.000	1.5	112.3	62.9	74.0	$\frac{20.0}{37.3}$	100.9	121.2 162.1	86.6	72.1
877 2870	4.02	-0.400 -0.250	1.5	135.0	02.3	08.0	51.5	132.6	102.1	07.8	12.1
877 3900	4.02	-0.250 -0.070	1.5	158.3	107.0	126.1	_	132.0 134.9	_	119.2	_
Si I	1.02	-7.64	1.0	100.0	101.0	120.1		104.9		113.2	
566 5563	4 92	-2.040	1.3	_	_	_	_	_	_	_	_
569 0433	4 93	-1.870	1.3	_	_	_	35.2	_	66.8	_	51.6
570.1108	4.93	-2.050	1.3	_	_	_		_		_	
570.8405	4.95	-1.399	1.5	_	_	_	62.8	_	_	_	_
577.2149	5.08	-1.665	1.5	81.6	67.7	_	37.8	_	84.4	99.5	66.3
579.3079	4.93	-1.946	1.3	79.2	58.2	_	_	75.9	_	-	_
579.7865	4.95	-2.050	1.5	84.5		_	_	-	_	_	_
594.8548	5.08	-1.190	1.5	116.0	94.6	89.9	62.8	119.7	143.9	99.6	91.4
612.5026	5.61	-1.540	1.3	61.1	44.1	27.1	_	62.4	_	_	-
614.2494	5.62	-1.480	1.3	63.7	50.7	29.2	_	67.2	_	55.3	-
614.5020	5.62	-1.430	1.3	63.8	47.3	26.9	_	65.2	-	56.6	_
703.4910	5.87	-0.810	1.3	100.1	80.1	50.4	_	103.5	-	84.8	_
722.6208	5.61	-1.296	1.5	68.7	85.8	46.6	28.3	-	-	78.1	53.6
740.5790	5.61	-0.681	1.5	124.9	107.6	78.9	71.9	124.5	150.3	111.0	101.0
741.5958	5.61	-0.710	1.3	137.7	125.7	81.9	-	144.8	-	115.0	-
780.0000	6.18	-0.782	1.3	105.7	83.6	53.8	-	101.4	-	101.2	-
791.8383	5.95	-0.536	1.5	155.1	94.0	79.0	65.7	140.2	-	117.9	91.4
793.2351	5.96	-0.352	1.5	137.5	130.6	93.6	89.6	138.9	-	-	128.2
872.8024	6.18	-0.360	1.3	133.9	103.4	74.4	-	123.7	-	-	-
SI	$\log \epsilon_{\odot}$	= 7.18									
604.6030	7.87	-0.230	2.5	34.7	-	-	-	44.6	-	20.7	-
605.2670	7.87	-0.440	2.5	_	-	4.5	-	34.5	-	-	-
869.3958	7.87	-0.740	2.5	28.2	38.0	-	-	20.1	-	-	-
869.4641	7.87	-0.210	2.5	43.6	78.1	11.1	_	54.3	_	31.2	_
ΚI	$\log \epsilon_{\odot}$	= 5.30									
769.8977	0.00	-0.160	1.5	186.8	172.7	269.8	172.0	199.7	246.4	161.4	173.7
CaI	$\log \epsilon_{\odot}$	= 6.35									
551.2989	2.93	-0.530	1.8	—	-	-	68.8	—	—	-	100.5
558.1979	2.52	-0.671	1.8	—	-	-	-	-	151.5	-	95.2
558.8764	2.52	0.061	1.8	—	-	-	149.3	-	266.4	-	172.0
559.0126	2.52	-0.702	1.8	-	-	-	75.6	-	154.5	-	103.7

 Table 2
 Line Data and Measured Equivalent Widths

Table	2	Continued

λ	χ_l	$\log gf$	f_6	HD 12661	19994	22049 Equir	29587	38529	75732	92788	95128
$\frac{(\text{mm})}{\text{Co I}}$	(ev)	- 6.25				Equiv	alent wi	atns (mz	4)		
Ca 1	loge⊙	- 0.55	10				87.0				194.9
585 7450	2.02	-0.323	1.0	210.0	199.0	941 7	01.9	_	—	_	124.0
586 7579	2.95	1.610	1.0	210.9	100.9	50.2	_	42.0	—	- 971	100.5
000.7072 610.9797	2.95	-1.010	1.0	40.2	20.0	00.2 061.6	145.0	43.2 175.6		37.1	127.0
010.2727	1.00	-0.790	2.3	101.7	145.8	201.0	140.9	175.0	238.0	157.5	137.9
616.1295	2.52	-1.192	1.8	94.7	76.6	_	49.3	_	_	95.7	71.9
616.3754	2.52	-1.069	2.0	-	-	100 5	-	100.0	-	-	-
616.6440	2.52	-1.189	1.8	90.9	73.9	109.5	53.9	100.9	119.4	72.2	100.1
616.9044	2.52	-0.797	1.8	120.4	102.8	157.6	78.1	125.1	163.0	108.1	102.1
616.9564	2.52	-0.511	1.8	147.5	124.2	199.8	96.3	145.1	194.3	134.9	129.6
643.9083	2.52	0.164	1.5	204.6	170.0	100.0	153.0	212.9	104 5	204.9	176.3
644.9820	2.52	-0.502	1.5	133.2	120.8	166.9	84.3	- -	194.7	127.9	118.5
645.5605	2.52	-1.290	1.5	80.3	53.5	90.3	-	78.6	-	72.1	-
647.1668	2.52	-0.694	0.8	119.7	102.6	137.6	80.3	126.7	166.8	108.7	96.1
649.3788	2.52	-0.092	0.8	148.7	135.3	203.3	120.2	165.4	-	149.1	144.8
649.9654	2.52	-0.811	0.8	102.2	90.4	127.2	72.0	115.6	129.3	100.1	90.2
671.7687	2.71	-0.524	1.5	172.5	134.1	189.7	-	177.5	_	138.1	_
714.8150	2.71	-0.137	1.5	178.7	149.5	232.5	-	179.5	-	159.9	-
ScII	$\log \epsilon_{\odot}$	= 3.29									
552.6821	1.77	-0.256	2.5	-	-	-	65.2	_	_	-	90.0
565.7880	1.51	-0.603	2.5	-	-	-	48.1	_	82.9	-	79.1
624.5620	1.51	-1.134	2.5	-	57.6	30.0	-	71.5	-	-	-
660.4600	1.36	-1.309	2.5	56.6	47.8	35.5	30.0	66.3	59.4	52.5	46.7
${ m Ti}{ m I}$	$\log \epsilon_{\odot}$	= 5.01									
586.6461	1.07	-0.840	1.5	81.2	43.1	96.0	46.3	81.9	112.9	-	51.2
595.3170	1.89	-0.205	1.5	68.9	-	71.9	28.4	-	99.5	_	38.3
612.6224	1.07	-1.320	1.5	42.7	14.7	60.0	18.2	48.6	72.6	_	26.6
625.8110	1.44	-0.431	1.5	78.8	47.4	93.8	43.0	81.2	103.8	60.8	52.6
626.1106	1.43	-0.479	1.5	78.9	46.5	99.3	36.9	85.2	112.1	62.0	52.7
842.6514	0.83	-1.179	1.5	80.1	48.3	116.8	-	97.0	-	-	45.5
843.5655	0.84	-0.871	1.5	95.6	49.9	129.3	55.7	110.4	142.2	-	61.8
VI	$\log \epsilon_{\odot}$	= 4.09									
572.7057	1.08	-0.012	1.5	-	-	-	29.1	-	-	-	36.0
609.0216	1.08	-0.139	1.5	61.5	30.1	77.3	22.5	—	87.5	50.8	33.8
621.6358	0.28	-0.747	1.5	68.3	36.6	86.8	17.9	78.8	112.6	55.3	38.5
$\operatorname{Cr} I$	$\log \epsilon_{\odot}$	= 5.77									
578.3866	3.32	-0.195	1.5	64.7	41.2	-	27.3	-	96.0	79.0	48.0
578.7926	3.32	-0.181	1.5	55.7	46.0	_	30.6	—	89.8	64.9	50.1
697.8383	3.46	0.142	1.5	105.7	-	104.6	-	111.8	-	-	-
697.9806	3.46	-0.410	1.5	63.0	41.8	63.6	21.2	71.1	85.8	-	39.6
735.5891	2.89	-0.285	1.5	103.8	69.9	_	45.1	108.8	—	90.6	82.1
740.0188	2.90	-0.166	1.5	107.9	70.0	136.2	56.1	113.9	148.2	96.2	82.6
MnI	$\log \epsilon_{\odot}$	= 5.38									
601.3497	3.07°	-0.251	2.5	136.8	95.6	128.0	-	140.8	_	117.2	-
601.6647	3.07	-0.100	2.5	133.7	95.3	140.2	-	_	_	108.9	-
602.1803	3.07	0.034	2.5	134.4	93.5	150.0	-	147.7	_	-	93.7
FeI	$\log \epsilon_{\odot}$	= 7.57									
550.6791	0.99	-2.710	1.0	_	_	_	122.1	_	_	_	_
552.2454	4.21	-1.550	1.4	_	_	_	_	_	77.5	_	45.6
552.5552	4.23	-1.084	1.4	_	_	_	39.6	_	103.3	_	56.1
554.3944	4.22	-1.140	1.4	_	_	_	40.8	_	95.8	_	67.0
554.6514	4.37	-1.310	1.4	_	_	_	36.3	_	93.6	_	57.7
556.0220	4.43	-1.190	1.4	_	_	_		_	79.6	_	54.4
556,9631	3.42	-0.571	1.4	_	_	_	131.1	_		_	178.9
557,6099	3.43	-1.000	14	_	_	_	98.7	_	245.4	_	138.3
558.6771	3.37	-0.120	1.4	_	_	_		_	_ 10.1	_	246.6
561.8642	4.21	-1.275	14	_	_	_	30.0	_	92.8	_	55 7
562.4030	4.39	-1.480	14	_	_	_	32.2	_		_	55.2
563.3953	4.99	-0.270	14	_	_	_	49.4	_	129.6	_	78.2
562 9971	4.22	-0.870	1.4	_	_	_	55.5	_	112.7	_	82.1

		lomof	£	UD 19661	10004	22040	20597	20500	75720	00700	05199
(nm)	χ_l	$\log g_J$	J6	HD 12001	19994	22049 Equiv	29007 alont Wi	- 30029 dthe (må	10102	92100	90128
 Fe I		- 7 57				Equiv			1)		
564 1448	4.26	-1.180	14	_	_	_	40.3	_	105 5	_	65.7
567 9032	4.65	-0.920	1.4	_	_	_	38.0	_	95.2	_	66.9
570 1557	2.56	-2.132	1.4	_	_	_		_	133.1	_	87.8
570 5473	4.30	-1.355	1.4	_	_	_	19.8	_	73.9	_	45.1
571 7841	4.28	-1.130	14	_	_	_	41.0	_	114.5	_	70.6
573 1772	4.26	-1.100 -1.300	1.4	_	_	_	44.6	_	100.3	_	60.9
575 3132	4.26	-0.760	1.4	_	_	_	58.5	_	131.0	_	92.0
577 5088	4.20	-1.165	1.4	75.3	56.6	_	- 00.0	_	- 101.5	84.8	52.0
580 6732	4.61	-1.050	1.4	75.2	59.4	63.0	32.5	76 7	84.6	76.5	52.7
580.0752	2 88	-1.050	1.4	75.2	18 3	05.9	52.0	78.6	09.1	58.1	52.7
585 2224	4 55	-1.340 -1.330	1.4	64.0	30.7	54.2	_	66.5	71.6	57.1	47.7
585 6006	4.00	-1.300 -1.327	1.4	04.0	37.8	04.2	18.8	56.5	65.5	01.1	30.1
585.0506	4.25	0.660	1.4	104.2	82.0	071	54.1	100.0	120.5	70.6	89.5
586 2368	4.55	-0.000	1.4	110 5	07.5	1176	65.8	100.0	165.2	108 7	06.5
590.5680	4.00	-0.430 -0.730	1.4	80.0	50.0	72.8	373	81.8	88.7	74.0	63 A
591.6257	2.05	-0.750 -2.004	1.4	88.0	56 5	85.8	11 8	01.0 05.0	96 5	74.0	50 1
502 7707	2.40	-2.994 1.000	1.5	61.8	46.3	53.1	41.0	95.0 65.5	$\frac{30.5}{75.7}$	62.0	50 7
502.0682	4.05	-1.090	1.4	65.0	40.5	00.1	24.9	60.0	75.7	52.9	16 G
502.9082	4.00	-1.410	1.4	116.0	40.0	110 7	24.0 67.1	120.2	199 /	105.5	40.0
502 4665	2.00	-0.230	1.4	110.9	90.1 79.1	119.7	54.4	107.0	147.0	105.5	94.4 95.4
595.4005	2.95	-1.170	1.4	90.9	75.0	112.0 00.6	24.4	107.9	147.9	92.0	00.4
595.2720	3.98	-1.440	1.4	91.8 72.1	(0.9 40.6	90.0	38.2 24.6	- -	133.7	80.9	83.9
595.0700 COO 2000	0.80	-4.498	1.1	100.0	42.0	83.3	54.0	83.9	89.3	59.1 06.6	50.9
600.3022	3.88	-1.120	1.4	106.9	84.3	123.0	58.4 96.6	112.3	139.2	90.0	95.2 100.0
602.4068	4.55	-0.120	1.4	144.5	71.0	101.0	80.0	139.2	197.0	131.2	122.0
602.7059	4.07	-1.089	1.4	82.9	71.6	78.1	45.8	93.2	92.0	72.8	70.0
605.6013	4.73	-0.460	1.4	100.9	76.8	95.0	48.9	99.4	124.1	91.8	88.0
606.5494	2.61	-1.572	1.4	147.6	121.7	190.7	96.4	159.5	210.3	132.0	110.3
607.9016	4.65	-1.120	1.4	68.6	52.3	65.3	24.9	66.6	75.5	65.7	48.3
609.3649	4.61	-1.500	1.4	50.5	33.1	36.1	16.4	48.9	54.5	39.4	34.6
609.6671	3.98	-1.930	1.4	57.7	38.9	51.7	17.9	63.5	72.1	01.0	38.1
613.6624	2.45	-1.405	1.3	176.6	105 5	-	110.0	105.9	-	168.3	-
613.7702	2.59	-1.370	1.4	190.2	135.7	223.3	117.0	195.3	-	-	144.9
615.1623	2.18	-3.282	1.2	71.5	45.1	70.2	31.5	76.2	82.6	59.0	52.4
615.7733	4.07	-1.260	1.4	82.0	72.9	77.1	41.7	101.8	105.3	93.3	88.7
616.5363	4.14	-1.473	1.4	67.0	47.0	58.3	28.9	71.8	1047	59.2	54.6
617.3341	2.22	-2.880	1.2	88.0	(3.)	90.3	48.9	105.2	104.7	84.4	78.4 70.6
618.0209	2.73	-2.586	1.4	98.3	60.9	84.5	34.2	105.1	131.3	82.6	70.6
618.7995	3.94	-1.720	1.4	75.3	53.4	67.8	27.7	76.6	86.1	00.0	52.7
619.1571	2.43	-1.410	1.3	100 C	70.0	100.1	F9.4	1/0.8	1151	100.1	70.0
620.0321	2.01	-2.442	1.4	100.6	10.0	102.1	03.4 C4.0	100.3	110.1	88.3	(0.2
021.3437	2.22	-2.579	1.2	104.9	85.0	118.8	04.9	115.9	122.1	98.8	84.1
621.0149	4.19	-1.134	1.4	110.0		100.1	48.5	120.2	150 0	-	88.0
021.9287	2.20	-2.430	1.4	110.0	94.U 25 0	100.0	12.4	100.0	102.0	61.0	92.9 41 4
022.9232	2.64	-2.800	1.4	02.1	55.9 SE 0	196.0	_	116 7	04.0	105 7	41.4
023.2048	0.00	-1.225	1.4	70.0	60.9 50.7	120.8	00.7	110.7	-	105.7	- -
624.0653	2.22	-3.209	1.2	150.2	23.7	13.0	28.7	1 4 7 4	90.8	01.9 120.0	23.3
024.0527	3.00	-0.877	1.4	150.0	110.2	200.2	92.7 105.6	147.4	234.0 200 C	132.0	119.1
020.2000	2.40	-1.727	1.0	105.0	127.0	100.1	105.0	109.0	209.0	138.3	124.9
020.0141	2.10	-2.500	1.4	115.7	01.1	70.9	20.1	123.3	149.9	94.0 70.7	00.0
620.7700	2.00	-2.009	1.4	79.0	57.5	106.0	30.2	01.9	09.7	10.1	04.7
029.1199 630 1500	4.44 3.65	-2.133	1.Z 1 4		-	100.9	-	170 /	140.5	04.3 190 C	(1.1
030.1308	3.00 2.60	-0./18	1.4	141.0 117 4	-	155.0	-	110.1	-	115.0	-
000.2499 620.0004	0.09	-0.910	1.4	111.4	01.0	100.2	- 	110.1	115 0	110.2	-
632.2694	2.59	-2.440	1.4	98.2	81.U 20.1	101.7	07.7 14.0	110.1	115.0	90.3	45.0
033.0852	4.73	-1.740	1.4	04.4	32.1 102.0	41.4	14.0	00.7 190-1	—	01.7 100.7	45.0
000.000/ 699 6090	2.20	-2.1//	1.4	118.8	102.0	101.0	03.1 97.0	149 5	1777	102.7	- 110.1
033.0830	3.09 0.49	-0.800	1.4	148.3	111.0	075	01.9	142.0	104.0	110.9	110.1
034.4133	2.43	-2.891	1.5	100 1	09.4 74 7	01.0	41.0 50 1	09.1	104.9	99.1 112.0	08.4
033.808/	0.80	-4.100	1.1 1 4	109.1	14.1	61.0	08.1 22 0	110.2 Q4 E	130.2	113.2	01.ð 54.0
038.0750	4.19	-1.290	1.4	(1.2	59.2	01.9	<i>აა.</i> 8	84.5	81.2	-	54.9

Table 2	Continued

λ	χ_l	$\log gf$	f_6	HD 12661	19994	22049	29587	38529	75732	92788	95128
(nm)	(eV)					Equiv	valent Wi	dths (mA	A)		
FeI	$\log \epsilon_{\odot}$	= 7.57									
639.3612	2.43	-1.561	1.3	169.4	132.9	236.0	107.8	180.1	267.7	153.1	143.0
640.8026	3.69	-1.011	1.4	138.0	108.2	156.9	-	155.8	-	127.5	-
641.1658	3.65	-0.646	1.4	163.5	127.8	224.6	107.3	165.5	264.8	157.6	141.3
641.9956	4.73	-0.240	1.4	123.4	102.3	118.0	60.7	128.9	145.9	115.7	96.1
643.0856	2.18	-1.976	1.2	148.2	115.3	181.3	94.7	158.5	208.3	130.3	115.4
648.1878	2.28	-2.972	1.2	94.0	73.4	89.4	43.3	102.7	105.1	83.4	71.7
649.4994	2.40	-1.304	1.3	207.2	163.4	266.1	138.1	218.8	-	194.6	177.5
649.6472	4.79	-0.570	1.4	97.3	-	90.5	38.7	102.2	99.7	96.4	66.3
649.8945	0.96	-4.699	1.1	71.4	42.9	80.4	31.0	87.7	88.2	58.8	48.4
651.8373	2.83	-2.455	1.4	87.3	65.0	83.7	39.8	104.7	95.0	82.8	60.6
009.3884	2.43	-2.422	1.3	115.9	83.0	120.0	00.1	124.2	154.5	119.3	91.9
660.9118	2.50	-2.001	1.4	97.0	105.5	95.4	49.9	100.0	117.8	93.4	141.2
667.7997	2.09	-1.418	1.4	170.0	120.0	224.3	115.8	1/3.1	204.4	151.4	141.3
670.5570	2.70	-5.100	1.4	31.0 70.0	30.2 49.4	59.5	24.9	67.0	10.8	02.0 E9.6	44.0
072.0075 675.0164	4.01	-1.000	1.4	10.9	40.4 70.5	102.0	58.0	104.0	112.0	00.0 70.5	77.9
675.0104	2.42 1.61	-2.004	1.5	97.0 67.0	10.0	50.2	10.0	104.0 66 0	02.2	19.0	47.2
620 6256	4.04	-1.204	1.4	67.0 57.8	33.7 20.7	02.2 55.7	19.0	62 4	92.2 78.0	45.0 47.6	41.5
681 0267	4.75	-3.210	1.4	57.8 74.0	29.1 52.2	66.3	20.0	05.4 75.6	10.0	47.0 71.1	54.8
682 8506	4.01	-0.980	1.4	74.3	63.8	74.7	29.9 37.0	02.3	1171	72.2	64.1
683 0835	2.56	-0.920 3.450	1.4	11.1	30.7	54.7	17.6	92.3 66 5	85.8	12.5	24.1
684 1341	2.50	-3.450	1.4	11/ 8	59.1	03.0	12.0	125.2	00.0	01.6	65 O
684 2680	4.01	-0.750 -1.320	1.4	68.3		90.9 52.5	42.0	71.0		91.0	41.3
684 3655	4.04	-0.930	1.4	82.6	74.0	70.3	38/1	00.7	112.6	79.9	64.6
685 5166	4.55	-0.350 -0.614	1.4	106.5	84.6	95.3	50.4	107.9	112.0	87.7	04.0
685 8155	4.50	-0.014	1.4	72.5	51.5	63 D	25.0	78.7	00 /	62.1	51.0
694 5210	2 42	-2.452	13	109.3	83.7	114.2	64.7	122.2	140.3	85.7	85.0
697 8862	2.42 2.48	-2.492	1.3	110.1		114.2 125.0		122.2	- 140.0		
699.9885	4.10	-1.560	1.4	80.7	56.1	77.1	34.9	86.1	100.5	80.5	64.9
702 2957	4.10	-1.250	1.4	91.4	62.8	95.0	45.3	88.6	100.0 127.1	75.7	
702.4065	4.07	-2.208	1.4	-		40.5				-	30.6
703.8220	4.22	-1.300	1.4	91.3	68.7	88.2	39.2	105.4	_	_	63.0
707.1866	4.61	-1.700	1.4	49.2	33.2	37.4	_	50.7	56.1	_	35.2
709.0390	4.23	-1.210	1.4	96.3	71.9	90.8	50.1	101.8	109.4	80.2	69.9
711.2170	2.99	-2.994	1.4	61.2	27.1	50.4	10.7	64.3	73.6	51.5	32.8
713.0925	4.22	-0.790	1.4	129.3	90.5	136.7	64.4	127.0	_	103.2	117.7
713.2985	4.07	-1.628	1.4	66.4	45.1	52.7	_	74.4	_	60.0	_
721.9680	4.07	-1.353	1.4	_	47.6	58.7	33.9	-	_	64.9	52.5
728.4842	4.14	-1.750	1.4	64.8	44.5	49.9	_	69.7	_	_	_
730.6570	4.18	-1.740	1.4	67.8	46.0	59.5	_	66.4	71.6	_	44.5
740.1691	4.19	-1.599	1.4	63.9	48.0	50.4	25.8	76.2	80.4	64.5	44.6
741.8672	4.14	-1.376	1.4	75.5	53.2	59.8	28.2	81.7	95.2	69.8	49.5
744.3026	4.19	-1.820	1.4	71.5	44.9	50.5	17.9	81.9	-	-	41.5
751.1031	4.18	0.099	1.4	244.2	166.8	-	_	225.1	-	206.1	_
758.3796	3.02	-1.885	1.4	113.1	91.7	112.3	—	121.0	_	105.0	—
758.6027	4.31	-0.137	1.4	174.8	124.9	199.5	_	150.4	-	161.0	_
771.0367	4.22	-1.112	1.4	104.3	66.4	95.6	_	103.5	-	91.7	_
772.3210	2.28	-3.617	1.2	_	-	71.1	-	85.4	120.0	69.7	42.3
774.8284	2.95	-1.751	1.4	158.6	125.6	151.7	91.1	153.5	169.1	-	106.9
775.1116	4.99	-0.720	1.4	78.8	-	59.6	-	79.2	-	-	-
778.0568	4.47	-0.085	1.4	159.2	117.3	196.5	-	159.3	-	157.5	-
791.2870	0.86	-4.848	1.1	95.4	40.2	91.1	31.4	108.6	-	-	60.5
794.1096	3.27	-2.580	1.4	59.6	47.6	62.6	24.1	76.3	78.6	58.4	46.2
822.0388	4.32	0.275	1.4	-	198.0	270.7	-	-	-	-	-
832.7061	2.20	-1.535	1.2	224.4	-	-	-	213.1	-	-	187.2
836.5640	3.25	-2.042	1.4	96.2	65.0	101.3	-	102.7	-	-	-
838.7782	2.18	-1.503	1.2	233.6	172.9	-	159.1	231.5	-	-	176.6
851.4082	2.20	-2.215	1.2	-	110.5	180.2	89.7	166.7	210.5	131.6	113.1
851.5122	3.02	-2.073	1.4	107.1	89.9	111.9	-	128.5	-	97.7	-

<u> </u>	2/-	log af	f	HD 19661	1000/	22040	20587	38520	75739	02788	05128
(nm)	χ_l	$\log g_J$	J6	11D 12001	13334	Equis	29001 valent Wi	- 38529 dths (mÅ	10102 Å)	92100	90120
Fe I		= 7.57				Lquiv	alciit wi		1)		
852 6676	4 91	-0.760	14	90.9	71.8	79.0	_	101.4	_	87.8	_
858 2271	2.99	-2.133	14	112.8	79.0	107.9	_	114.8	_	97.7	_
859.8836	4.39	-1.088	1.4	-	69.5		_	91.6	_	69.8	_
861.1812	2.84	-1.900	1.4	_		144.7	_		_		_
862 1618	2.95	-2.320	14	103.3	69.5	99.9	_	109.5	_	_	_
867 4756	2.83	-1.730	14	144.4	113.0		_	149.2	_	_	_
868.8642	2.18	-1.202	1.2		206.0	_	_	297.9	_	_	_
869.9461	4.95	-0.380	1.4	101.8	65.6	78.2	_	93.1	_	92.1	_
875.7199	2.84	-1.954	1.4	_	95.9	138.8	_	137.1	_	115.9	_
FeII	$\log \epsilon_{\odot}$	= 7.53									
599.1378	3.15	-3.557	2.5	41.4	51.3	14.9	18.6	54.2	39.2	53.9	48.1
614.9249	3.89	-2.724	2.5	48.9	59.3	17.4	23.2	59.3	35.8	49.4	44.4
624.7562	3.89	-2.257	2.5	75.2	92.0	30.3	34.0	86.7	56.7	64.6	64.4
641.6928	3.89	-2.740	2.5	52.6	59.8	35.0	21.8	57.5	49.3	58.5	51.0
643.2683	2.89	-3.583	2.5	54.2	62.1	28.3	25.6	65.0	43.8	50.6	47.4
645.6391	3.90	-2.075	2.5	81.9	101.1	39.3	42.3	92.0	57.9	77.8	80.9
651.6083	2.89	-3.104	2.5	73.8	80.7	_	36.0	91.7	70.5	67.7	74.1
771.1731	3.90	-2.470	2.5	71.3	86.4	23.3	27.3	72.8	44.6	48.4	55.3
Ni I	$\log \epsilon_{\odot}$	= 6.28									
557.8729	1.68	-2.796	2.5	_	-	-	-	-	114.3	-	58.1
558.7868	1.93	-2.140	2.5	-	-	-	-	_	101.4	-	-
559.3746	3.90	-0.840	2.5	-	-	-	21.3	_	80.5	-	45.7
562.5328	4.09	-0.700	2.5	_	-	-	25.0	-	74.9	-	45.9
568.2208	4.10	-0.456	2.5	-	-	-	34.5	-	95.6	-	61.2
569.4991	4.09	-0.610	2.5	_	-	-	34.0	-	-	-	-
575.4666	1.93	-2.330	2.5	-	-	-	63.4	-	138.4	-	-
578.2136	1.64	-1.780	1.5	136.2	86.2	-	48.0	_	154.5	118.9	81.2
580.5226	4.17	-0.640	2.5	59.5	44.4	38.7	27.3	66.1	66.9	60.2	43.0
585.3688	0.60	-1.010	3.0	-	-	-	50.9	_	-	-	-
608.6288	4.26	-0.530	2.5	69.0	48.2	46.2	25.8	72.1	79.8	57.9	49.1
610.8125	1.68	-2.625	2.5	70.0	66.6	80.3	46.3	96.0	108.6	79.7	68.2
611.1078	4.09	-0.807	2.5	61.3	40.4	37.5	18.6	61.7	67.3	52.3	41.1
612.8984	1.68	-3.330	2.5	51.2	27.4	38.9	-	61.2	62.9	47.3	26.4
613.0141	4.26	-0.960	2.5	45.6	26.4	23.8	-	48.3	46.8	-	-
617.6816	4.09	-0.260	2.5	93.4	76.0	66.2	41.7	96.9	96.4	78.1	69.9
632.7604	1.68	-3.110	2.5	62.6	37.2	55.0	25.7	80.6	85.5	49.5	41.8
648.2809	1.93	-2.630	2.5	65.1	49.4	54.8	24.6	87.1	86.4	83.9	47.7
658.6319	1.95	-2.733	2.5	69.9	40.5	74.3	24.0	80.1	80.6	58.9	47.6
664.3638	1.68	-2.300	2.5	126.8	95.9	118.4	84.0	136.0	133.1	115.6	94.8
676.7784	1.83	-2.170	2.5	109.1	84.1	99.6	65.4	114.2	119.2	96.8	87.6
677.2321	3.66	-0.953	2.5	78.7	59.4	55.9	29.9	82.2	88.6	55.1	53.1
711.0905	1.93	-2.915	2.5	72.7	29.7	57.4	24.2	76.0	85.5	_	36.3
712.2206	3.54	-0.229	2.5	149.7	104.9	138.6	83.4	150.1	186.4	128.4	111.4
738.5244	2.74	-1.970	2.5	69.0	51.1	52.7	33.9	79.6	87.0	41.2	49.5
741.4514	1.99	-2.570	2.5	104.2	72.1	90.5	45.5	117.6	128.0	82.4	71.4
742.2286	3.63	-0.325	2.5	136.4	102.4	120.6	80.6	137.2	195.9	-	97.0
752.5118	3.63	-0.653	2.5	107.1	82.4	82.6	-	116.3	-	95.3	-
757.4048	3.83	-0.607	2.5	105.7	78.7	77.0	-	102.0	105 5	96.2	-
771.4310	1.93	-1.913	2.5	158.7	109.3	133.6	96.3	167.9	197.7	147.7	109.8
771.5591	3.70	-0.954	2.5	94.9	-	57.6	-	96.3	100 5	-	-
772.7616	3.68	-0.170	2.5	137.0	111.3	110.6	71.0	127.8	162.7	117.8	104.1
774.8894	3.70	-0.328	2.5	148.2	123.7	109.4		137.8	149 5	137.6	-
778.8933	1.95	-2.420	2.5	134.6	94.5	115.5	05.7	140.0	143.5	122.0	-
779.7588 D. H	3.90	-0.298	2.5	108.7	81.5	90.6	-	110.9	-	103.9	-
Ball	$\log \epsilon_{\odot}$	= 2.20	20				EO 0				
000.3088	0.00	-1.010	ა.U ვი	- 110 C	_		00.9 00.9	—	_	111 6	110.4
049.0908	0.00	-0.3//	ა.0 ვი	110.0	197.0	120.0	00.2	154.0	170 4	111.0 196 E	110.4 191 C
014.1/2/	0.70	-0.077	5.0	100.0	131.4	_	00.0	104.9	110.4	120.0	10110

λ	$\chi_l \qquad \log g f$	f_6	HD 98230	117176	120136	145675	187123	190228	217014
(nm)	(eV)				Equivale	nt Widths	(mA)		
CI are reio	$\log \epsilon_{\odot} = 8.45$					10 5	1 - 4		
658.7610	8.53 -1.08	1.5	-	_	_	18.7	17.4	_	-
01	$\log \epsilon_{\odot} = 8.75$	0.5	00 5	F 7 0	100.0	FF 77		20.4	04.0
777.1954	9.14 0.333	2.5	86.5	57.0	160.0	55.7	(4.7	39.4	84.2
777.5205	9.14 0.188	2.5	80.6	51.8	148.0	53.9	68.2	-	73.2
111.5395 N. J	9.14 - 0.034	2.5	53.2	44.3	129.3	_	əə. <i>t</i>	23.0	59.8
Na I	$\log \epsilon_{\odot} = 6.27$	0.0						100.4	
568.2650	2.10 -0.652	2.0	100 5	—	_	-	-	109.4	—
008.8217 615 4020	2.10 -0.341 2.10 1.570	2.0	120.5		40.6	106.0	-	131.5	57.9
010.4230	2.10 - 1.570	2.0	20.9	38.3	40.6	100.9	-	C 4 9	01.3 70.9
010.0755 MmI	2.10 - 1.228	2.0	47.0	08.8	_	137.4	-	04.8	70.8
Mg I	$\log \epsilon_{\odot} = 1.00$	0 F						16 9	
621.0200	5.11 - 1.97	2.0	—	_	—	_	-	40.8	_
031.9200	5.11 - 2.20	2.5	-	-	_	100 4	-	70.7	-
738.7700	5.75 - 0.970	2.5	_	_	_	186.4	-	107.1	_
765.7606	5.11 - 1.188	2.5	_	_	_	156.7	-	107.1	_
871.2701	5.93 - 1.260	2.5	-	_	—	149.5	-	-	—
871.7833	5.93 -0.970	2.5	-	_	—	184.5	-	-	—
892.3600	5.94 - 1.65	2.5	—	-	—	115.2	-	-	—
All	$\log \epsilon_{\odot} = 6.37$					05.0			
669.6020	3.14 - 1.330	1.5	-	_	—	95.9	-	-	_
669.8670	3.14 -1.873	1.5	-	-	—	74.3	-	24.4	_
783.5317	4.02 - 0.580	1.5	23.9	49.0	_	130.2	61.1	40.1	-
783.6130	4.02 - 0.400	1.5	35.6	64.1	_	146.6	71.9	54.9	-
877.2870	4.02 - 0.250	1.5	-	-	-	174.7	-	-	_
877.3900	4.02 - 0.070	1.5	-	-	-	208.0	-	-	_
SiI	$\log \epsilon_{\odot} = 7.64$								
566.5563	4.92 - 2.040	1.3	-	-	—	—	-	39.9	_
569.0433	4.93 - 1.870	1.3	33.1	52.2	51.3	—	-	41.2	—
570.1108	4.93 - 2.050	1.3	—	—	—	—	-	42.6	—
570.8405	4.95 - 1.399	1.5	66.5	87.4	105.9	—	-	-	—
577.2149	5.08 - 1.665	1.5	37.1	58.4	67.5	-	-	54.9	-
579.3079	4.93 - 1.946	1.3	—	—	—	—	-	41.4	63.6
579.7865	4.95 - 2.050	1.5	-	-	_	-	-	43.8	-
594.8548	5.08 - 1.190	1.5	69.5	85.7	93.7	123.1	105.5	78.6	106.9
612.5026	5.61 - 1.540	1.3	-	-	_	_	45.3	26.8	-
614.2494	5.62 - 1.480	1.3	-	-	_	67.4	45.3	31.9	-
614.5020	5.62 - 1.430	1.3	-	-	_	68.7	51.8	28.6	-
703.4910	5.87 - 0.810	1.3	-	-	_	105.3	79.6	55.5	-
722.6208	5.61 - 1.296	1.5	32.6	46.6	62.9	86.2	-	41.3	_
740.5790	5.61 - 0.681	1.5	73.6	92.1	114.5	125.8	103.5	85.1	110.5
741.5958	5.61 - 0.710	1.3	-	-	-	128.1	107.3	92.8	-
780.0000	6.18 - 0.782	1.3	_	—	—	-	78.0	53.5	_
791.8383	5.95 - 0.536	1.5	66.5	102.6	111.1	158.6	104.1	84.2	—
793.2351	5.96 - 0.352	1.5	—	116.2	—	151.0	129.6	90.7	—
872.8024	6.18 - 0.360	1.3	-	-	—	127.2	-	-	-
SI	$\log \epsilon_{\odot} = 7.18$								
604.6030	7.87 - 0.230	2.5	_	-	_	32.5	29.9	-	_
605.2670	7.87 - 0.440	2.5	_	-	_	30.2	17.3	8.5	_
869.3958	7.87 - 0.740	2.5	_	-	_	20.0	-	-	_
869.4641	7.87 - 0.210	2.5	-	-	-	-	-	-	-
ΚI	$\log \epsilon_{\odot} = 5.30$								
769.8977	0.00 -0.160	1.5	158.1	170.1	155.6	229.8	165.3	169.9	-
CaI	$\log \epsilon_{\odot} = 6.35$								
551.2989	2.93 - 0.530	1.8	76.4	126.3	-	-	-	-	99.4
558.1979	2.52 - 0.671	1.8	85.3	116.0	-	-	-	103.9	-
558.8764	2.52 0.061	1.8	149.2	179.7	159.7	-	-	155.0	-
559.0126	2.52 - 0.702	1.8	84.2	102.0	118.1	-	-	100.8	-

λ	<u>γ</u> 1	log a f	fe	HD 98230	117176	120136	145675	187123	190228	217014
(nm)	(eV)	055	,0			Equivaler	nt Widths	(mÅ)		
Cal	loge	= 6.35				1		()		
560.1286	2.52	-0.523	1.8	95.6	155.6	_	-	-	120.8	-
585.7459	2.93	0.112	1.8	_	148.6	_	-	-	144.3	-
586.7572	2.93	-1.610	1.8	_	_	_	62.9	_	25.8	_
610.2727	1.88	-0.790	2.3	137.0	147.0	_	242.9	-	152.6	-
616.1295	2.52	-1.192	1.8	57.5	90.8	_	150.6	_	80.4	_
616.3754	2.52	-1.069	2.0	62.7	_	_	_	_	_	_
616.6440	2.52	-1.189	1.8	55.2	77.4	69.2	123.6	73.1	76.4	_
616.9044	2.52	-0.797	1.8	87.6	102.6	_	174.7	104.9	106.4	_
616.9564	2.52	-0.511	1.8	102.6	122.1	_	196.4	126.6	124.3	_
643.9083	2.52	0.164	1.5	180.3	207.5	182.0	276.8	183.3	177.8	_
644.9820	2.52	-0.502	1.5	100.0	140.5			116.3	113.0	_
645.5605	2.52	-1.290	1.5			_	101.4	61.4	63.8	67.9
647.1668	2.52	-0.694	0.8	85.4	100.6	98.3	135.7	99.3	94.0	100.3
649.3788	2.52	-0.092	0.8	123.6	148.7	145.9	214.1	153.9	152.0	
649.9654	2.52	-0.811	0.8	76.8	93.5	88.7	137.4	100.4	88.6	_
671.7687	2.71	-0.524	1.5				213.1	- 100.1	124.3	_
714 8150	2.71	-0.137	1.5	_	_	_	235.2	_	149 7	_
ScII	loge	= 3.29	1.0				200.2		110.1	
552 6821	1 77	-0.256	25	78.1	89.0	_	_	_	88 7	88.4
565 7880	1.51	-0.603	2.5	58.8		_	_	_	74.6	00
624 5620	1.51	-0.003 -1.134	$\frac{2.5}{2.5}$		_	_	67.9	43 3	45.8	_
660 4600	1.31	-1.104 -1.309	2.0 2.5	28.6	51.4	_	65.1	45.1	40.0	_
T; I	logco	-5.01	2.0	20.0	01.4		05.1	40.1	44.0	
586 6461	1 07	- 0.840	15	32.0	66 5	30.7		54.6	61.5	65.0
505 3170	1.07	-0.340	1.5	52.0 22.5	56.0	50.7	_	04.0	50.6	46.3
612 6224	1.03	-0.200	1.5	22.0 18 7	33.5	_	76.6		33.6	$\frac{40.3}{34.7}$
625 8110	1.07	-1.320	1.5	10.7 38 /	68 D	37.9	106.0	20.4 56.8	55.0 71.6	54.7
626 1106	1.44	-0.431	1.5	21.9	66.0	20.0	100.0	54.4	71.0	62.6
842 6514	1.45	-0.479	1.5	31.8 40.0	00.2 79.6	32.2	191.0	04.4 60.2	13.5	03.0
842.0314	0.03	-1.179	1.5	40.9	72.0	_	145.7	65.9	_	_
VI	logra	-0.871	1.0	40.9	11.5	_	140.7	05.8	_	_
V 1 572 7057	1 09CO	- 4.09	15	25.6	60.8				61 5	56.0
572.7057 600.0216	1.08	-0.012	1.5	20.0	46.2	_		44.9	01.0 50.9	00.0 49.6
601.6259	1.00	-0.139	1.0	19.4	40.5		110.0	44.2	50.8	42.0
021.0508 Cn I	0.20	-0.747	1.5	19.7	40.5	20.4	112.0	45.5	51.1	_
UT1	$\log \epsilon_{\odot}$	= 5.77	1 5	96.9	50.0	41 C			51.0	CE A
578.3800	3.32	-0.195	1.5	20.8	52.0	41.6	-	-	51.0	00.4
078.7920	3.32	-0.181	1.5	28.4	50.7 C7.C	44.7	151 1	-	45.7	_
097.8383	3.40	0.142	1.5	40.9	07.0	_	151.1		85.9	_
697.9806 797.5001	3.40	-0.410	1.5	24.0	41.8	_	89.0	51.5	40.8	_
735.5891	2.89	-0.285	1.5	59.6	86.3	-	150.0	-	75.9	-
740.0188	2.90	-0.166	1.5	58.3	82.0	69.9	152.3	85.0	88.3	_
Mn I	$\log \epsilon_{\odot}$	= 5.38	0.5			100.0	155.0	100 5	04.0	100.0
601.3497	3.07	-0.251	2.5	-	-	102.8	100.8	103.5	94.8	102.8
601.6647	3.07	-0.100	2.5	-	-	—	165.1	105.9	104.2	_
602.1803	3.07	0.034	2.5	67.3	97.1	—	166.7	104.1	102.0	_
Fel	$\log \epsilon_{\odot}$	= 7.57	1.0	104.1					100.0	
550.6791	0.99	-2.710	1.0	124.1		—	-	-	162.2	-
552.2454	4.21	-1.550	1.4	33.7	54.4	—	-	-		54.0
552.5552	4.23	-1.084	1.4	44.0	63.1	_	-	-	74.7	—
554.3944	4.22	-1.140	1.4	63.3	79.2	67.7	-	-	—	—
554.6514	4.37	-1.310	1.4	44.1	60.8		—	-	-	-
556.0220	4.43	-1.190	1.4	35.3	59.7	56.8	-	-	53.8	-
556.9631	3.42	-0.571	1.4	150.9	190.5	143.6	-	-	162.4	-
557.6099	3.43	-1.000	1.4	104.2	137.0	111.7	-	-	124.1	-
558.6771	3.37	-0.120	1.4	210.5	262.9	193.6	-	-	217.3	-
561.8642	4.21	-1.275	1.4	40.9	57.3	56.9	-	-	54.2	-
562.4030	4.39	-1.480	1.4	_	-	-	-	-	-	-
563.3953	4.99	-0.270	1.4	56.3	76.3	70.9	-	-	74.7	-
563.8271	4.22	-0.870	1.4	67.1	84.7	83.7	-	-	83.6	-

$\overline{\lambda}$	<i>Y</i> 1	log a f	fe	HD 98230	117176	120136	145675	187123	190228	217014
(nm)	(eV)	055	,0			Equivaler	nt Widths	(mÅ)		
FeI	$\log \epsilon_{\odot}$	= 7.57						< /		
564.1448	4.26	-1.180	1.4	54.3	73.7	_	_	_	72.4	_
567.9032	4.65	-0.920	1.4	47.9	66.5	65.3	_	-	58.9	_
570.1557	2.56	-2.132	1.4	74.6	92.5	_	_	_	99.2	_
570.5473	4.30	-1.355	1.4	_	48.0	_	_	_	_	_
571.7841	4.28	-1.130	1.4	59.8	70.2	71.3	_	_	_	_
573.1772	4.26	-1.300	1.4	47.1	65.5	_	_	_	60.2	_
575.3132	4.26	-0.760	1.4	68.0	88.8	_	_	-	79.0	87.8
577.5088	4.22	-1.165	1.4	_	-	_	91.1	-	66.6	_
580.6732	4.61	-1.050	1.4	42.7	68.1	65.8	92.9	63.2	52.8	_
580.9224	3.88	-1.840	1.4	37.2	65.0	52.7	94.5	56.2	54.5	_
585.2228	4.55	-1.330	1.4	28.8	50.0	51.6	80.0	43.4	38.3	_
585.6096	4.29	-1.327	1.4	_	_	_	64.2	38.8	40.6	_
585.9596	4.55	-0.660	1.4	60.3	79.5	87.2	116.9	82.7	73.0	85.2
586.2368	4.55	-0.450	1.4	75.2	95.3	98.2	139.4	97.2	87.5	100.6
590.5680	4.65	-0.730	1.4	45.5	64.9	52.6	89.9	71.5	55.3	_
591.6257	2.45	-2.994	1.3	40.4	68.4	50.2	105.1	66.4	74.4	_
592.7797	4.65	-1.090	1.4	29.8	48.9	49.9	73.0	49.3	40.2	_
592.9682	4.55	-1.410	1.4	27.5	49.5	-	81.0	-		_
593.0191	4.65	-0.230	1.4	74.9	93.9	_	148.4	98.9	87.8	_
593.4665	3.93	-1.170	1.4	61.5	85.4	80.3	131.9	85.9		_
595.2726	3.98	-1.440	1.4	46.6	74.3		119.3	-	70.3	_
595.6706	0.86	-4.498	1.1	-		_	87.5	_	72.9	_
600.3022	3.88	-1.120	1.4	68.8	98.4	81.9	137.9	95.9	88.8	_
602.4068	4.55	-0.120	1.4	100.7	115.3	115.2	180.1	-	108.6	127.3
602.7059	4.07	-1.089	1.4	51.8	77.3	68.4	92.5	69.9	69.8	73.5
605.6013	4.73	-0.460	1.4	61.2	78.6	90.8	120.5	85.6	73.3	88.3
606.5494	2.61	-1.572	1.4		124.7	107.5	193.2		130.3	138.0
607 9016	4 65	-1.120	14	34.5	51.9	49.0	84.4	59.0		
609.3649	4.61	-1.500	1.4	17.0	34.0	25.3	59.1		31.9	_
609.6671	3.98	-1.930	1.4	22.3	42.3	31.0	73.9	42.4	40.0	49.5
613.6624	2.45	-1.405	1.3		-		239.2			
6137702	2.59	-1.370	14	119.3	161.8	134.5	254.1	_	150.7	_
615 1623	$\frac{2.00}{2.18}$	-3.282	12		59.8	34.1	78.2	55.1	61.3	_
615.7733	4.07	-1.260	1.4	54.7	76.1	83.7	106.9	66.5	70.3	_
616.5363	4.14	-1.473	1.4	_	49.4	44.6	84.5	46.1	48.7	_
617.3341	2.22	-2.880	1.2	55.5	79.6	70.0	112.7	75.5	80.1	_
618.0209	2.73	-2.586	1.4	43.9	78.5	54.1	112.1	61.2	70.5	_
618.7995	3.94	-1.720	1.4	33.1	56.9	48.1	85.8	53.1	49.7	_
619.1571	2.43	-1.416	1.3		-	_	-	-	-	_
620.0321	2.61	-2.442	1.4	58.2	83.5	67.1	122.7	80.8	84.7	_
621.3437	2.22	-2.579	1.2	71.5	90.7	75.9	131.5	88.0	91.6	_
621.5149	4.19	-1.134	1.4	51.2	86.4	83.2	_	_	84.8	_
621.9287	2.20	-2.430	1.2	78.1	101.4	84.9	145.7	-	102.1	-
622.9232	2.84	-2.805	1.4	_	49.3	30.4	74.5	46.9	49.8	-
623.2648	3.65	-1.223	1.4	_	-	_	139.9	90.9	93.6	95.9
624.0653	2.22	-3.269	1.2	32.7	60.8	_	89.6	52.4	64.0	60.4
624.6327	3.60	-0.877	1.4	110.6	126.5	112.7	202.0	-	119.6	_
625.2565	2.40	-1.727	1.3	111.5	131.7	115.4	194.0	_	135.1	_
626.5141	2.18	-2.500	1.2	76.7	97.4	84.3	139.2	92.0	100.3	98.6
627.0231	2.86	-2.609	1.4	38.2	59.4	42.3	86.4	64.2	62.0	_
629.7799	2.22	-2.733	1.2	63.3	85.9	66.7	127.0	82.5	87.0	_
630.1508	3.65	-0.718	1.4	-	-	-	203.0	-	117.3	133.4
630.2499	3.69	-0.910	1.4	_	_	_	148.3	_	114.0	
632.2694	2.59	-2.446	1.4	61.5	88.3	80.7	118.4	85.2	86.2	_
633.0852	4.73	-1.740	1.4	20.1	37.7	38.2	70.5	41.0	29.7	_
633.5337	2.20	-2.177	1.2		115.2	96.5	156.9		112.7	113.8
633.6830	3.69	-0.856	1.4	90.7	123.3	105.6		_	110.2	
634.4155	2.43	-2.897	1.3	55.7	76.0	_	_	_	81.1	_
635.8687	0.86	-4.166	1.1	60.8	97.1	79.8	129.4	_	98.5	_
638.0750	4.19	-1.290	1.4	43.2	59.7	59.4	92.7	57.6	54.0	_

λ	χ_l	$\log gf$	f_6	HD 98230	117176	120136	145675	187123	190228	217014
(nm)	(eV) Equivalent Widths (mÅ)									
FeI	$\log \epsilon_{\odot}$	= 7.57								
639.3612	2.43	-1.561	1.3	117.4	149.5	124.5	220.9	-	143.2	147.7
640.8026	3.69	-1.011	1.4	100 5	145 0	101.1	175.1	-	104.0	-
641.1658	3.65	-0.646	1.4	128.5	145.6	121.1	219.5 120.7	-	133.3	-
642.0856	4.75	-0.240	1.4	09.0 106.2	95.5	92.4	102.0	-	00.0 121.0	_
643.0650 648.1878	2.10	-1.970	1.2	100.5	76.8	74.3	195.9	_	131.9	_
640.4004	2.20	-2.972	1.2	47.0 151.6	188.0	165.8	101.2	_	174.8	_
649.4994 649.6472	$\frac{2.40}{4.79}$	-1.504 -0.570	1.5	101.0 60.6	85.0	105.8	113 3	_	174.0	_
649.8945	0.96	-4.699	1.4	30.7	60.0	_	92.8	59.2	65.0	_
651 8373	2.83	-2.455	1.1	47.1	73.7	_	108.6		63.5	_
659.3884	2.43	-2.422	1.3	75.8	-	78.1		98.1	104.0	_
660.9118	2.56	-2.661	1.4	52.3	81.2	68.8	122.2	70.7	76.5	_
667.7997	2.69	-1.418	1.4	110.4	148.1	129.3	226.5	-	143.4	_
670.3576	2.76	-3.160	1.4	21.9	46.0	26.6	76.6	42.5	46.1	-
672.6673	4.61	-1.000	1.4	_	_	_	79.9	54.6	48.9	_
675.0164	2.42	-2.604	1.3	62.9	86.1	72.1	112.8	82.1	86.7	86.3
675.2716	4.64	-1.204	1.4	29.7	55.1	44.0	79.6	49.0	43.2	-
680.6856	2.73	-3.210	1.4	19.5	44.3	-	77.2	37.7	-	46.8
681.0267	4.61	-0.986	1.4	45.1	53.6	54.6	90.8	54.5	49.1	61.3
682.8596	4.64	-0.920	1.4	47.9	61.8	77.1	96.2	53.9	47.9	-
683.9835	2.56	-3.450	1.4	22.4	45.5	-	-	36.6	43.0	-
684.1341	4.61	-0.750	1.4	50.6	95.2	94.1	140.9	83.8	83.0	-
684.2689	4.64	-1.320	1.4	24.8	49.3	-	82.4	49.1	40.0	-
684.3655	4.55	-0.930	1.4	45.0	66.6	69.9	109.1	70.1	58.9	76.8
685.5166	4.56	-0.614	1.4	-	-	-	118.6	90.1	88.2	-
685.8155	4.61	-0.930	1.4	34.4	55.1	62.6	89.6	57.9	54.3	66.3
694.5210	2.42	-2.452	1.3	71.8	99.8	86.2	149.8	88.7	89.0	-
697.8862	2.48	-2.490	1.3	68.3	92.4	-	132.8	-	89.6	-
699.9885	4.10	-1.560	1.4	43.4	66.0	-	111.2	64.4		-
702.2957	4.19	-1.250	1.4	51.3	68.1	—	111.3	-	64.7	—
702.4065	4.07	-2.208	1.4	—		-	-	-	-	-
703.8220	4.22	-1.300	1.4	-	75.5	-	-	-	93.8	-
707.1866	4.61	-1.700	1.4	16.5	33.4	-	57.3	36.8	26.0	-
709.0390	4.23	-1.210	1.4	47.7	(3.2	59.8	119.0	(4.3	73.0	-
712.0025	2.99	-2.994	1.4	19.9	41.5		81.3	42.5	37.9 07.6	-
712 2085	4.22	-0.790	1.4	_	120.4	98.4	- •••••	E9 1	97.0	-
713.2985	4.07	-1.028	1.4	36.8	-	- 59.4	02.2 81.0	00.1	47.2 56.5	_
721.9080	4.07	-1.353	1.4	30.8 24.6	-	02.4	01.9 78.6	49.9	50.5	_
730 6570	4.14	-1.730	1.4	24.0	46.8	_	90.6	42.2	55 7	_
740 1691	4.10	-1.740 -1.599	1.4	97.9	40.0	_	$\frac{30.0}{77.2}$	51.2	45.3	55.8
741.8672	4.14	-1.376	1.4	21.5	55.5	52.1	81.4	56.2	40.0 59.4	
744.3026	4.19	-1.820	1.4	21.5	45.3		80.1		39.8	_
751.1031	4.18	0.099	1.4			_	295.1	_	171.6	_
758.3796	3.02	-1.885	1.4	_	_	_	134.7	91.9	88.4	_
758.6027	4.31	-0.137	1.4	_	_	_	222.4	-	109.5	-
771.0367	4.22	-1.112	1.4	_	_	_	125.9	80.0	69.0	_
772.3210	2.28	-3.617	1.2	26.9	54.3	_	102.1	59.3	60.9	_
774.8284	2.95	-1.751	1.4	97.0	115.5	-	170.7	-	112.4	-
775.1116	4.99	-0.720	1.4	_	-	-	88.8	49.4	45.9	-
778.0568	4.47	-0.085	1.4	—	-	_	209.8	_	120.4	_
791.2870	0.86	-4.848	1.1	28.4	76.7	—	126.3	55.9	79.6	_
794.1096	3.27	-2.580	1.4	28.5	57.0	—	77.2	46.4	47.7	_
822.0388	4.32	0.275	1.4	-	-	-	-	-	-	-
832.7061	2.20	-1.535	1.2	165.1	196.8	-	-	-	-	-
836.5640	3.25	-2.042	1.4	-	-	-	127.0	-	-	-
838.7782	2.18	-1.503	1.2	180.5	215.4	-	-	-	_	—
851.4082	2.20	-2.215	1.2	114.0	-	—	192.2	-	-	-
851.5122	3.02	-2.073	1.4	-	-	-	138.3	-	-	-

λ	χ_l	$\log gf$	f_6	HD98230	117176	120136	145675	187123	190228	217014
(nm)	(eV)					Equivaler	nt Widths	(mÅ)		
FeI	$\log \epsilon_{\odot}$	= 7.57								
852.6676	4.91	-0.760	1.4	—	-	—	117.0	_	—	-
858.2271	2.99	-2.133	1.4	_	-	_	130.3	95.5	_	_
859.8836	4.39	-1.088	1.4	_	_	_	101.9	_	_	_
861.1812	2.84	-1.900	1.4	_	_	_	_	_	_	_
862.1618	2.95	-2.320	1.4	_	-	_	126.5	_	_	_
867.4756	2.83	-1.730	1.4	_	-	_	183.3	_	_	_
868.8642	2.18	-1.202	1.2	_	_	_	_	_	_	_
869.9461	4.95	-0.380	1.4	_	_	_	111.8	_	_	_
875.7199	2.84	-1.954	1.4	_	_	_	159.3	_	_	_
FeII	loge	= 7.53								
599.1378	3.15	-3.557	2.5	29.3	49.2	67.0	38.1	42.9	35.1	_
614 9249	3.89	-2.724	2.5	33.0	42.1	65.0	39.0	42.7	31.3	_
624 7562	3.89	-2.257	2.5	52.2	60.2	99.9	58.0	64.0	50.7	_
641 6928	3.89	-2.740	2.5	42.9	48.2	62.1	49.2	43.8	36.9	_
643 2683	2.80	2.140	2.0	33.0	46.2	72.5	45.2	48.8	30.7	47.6
645.2085	2.09	-3.035	2.5	55.9 63.4	40.2 68.0	12.0	40.2 64.8	40.0	56.0	41.0 64.7
651 6082	0.90	2.075	2.0	05.4	62.5	95 G	60.2	_	52.9	61.5
771 1721	2.09	-3.104	2.0	44.0	44.9	85.0	54.2	45.6	16 5	01.5
111.1131 N: I	3.90	-2.470	2.0	44.0	44.2	80.8	04.0	45.0	40.5	_
IN11 FF7 9790	$\log \epsilon_{\odot}$	= 0.28	0.5	97.0	70.0	49.0			79.0	744
551.8129	1.08	-2.790	2.5	37.9	10.8	48.0	-	_	13.8	(4.4
558.7808	1.93	-2.140	2.5	-	-	_	-	_	-	_
559.3746	3.90	-0.840	2.5	26.1	46.9	_	_	_	40.9	_
562.5328	4.09	-0.700	2.5	25.4	52.8	—	-	_	-	_
568.2208	4.10	-0.456	2.5	40.0	60.0	-	-	—	57.2	—
569.4991	4.09	-0.610	2.5	32.5	51.3	49.6	-	-		-
575.4666	1.93	-2.330	2.5	64.2	96.1		-	-	94.6	-
578.2136	1.64	-1.780	1.5	41.9	100.2	74.7	-	_	98.3	-
580.5226	4.17	-0.640	2.5	25.5	43.1	50.3	66.0	48.0	28.5	58.2
585.3688	0.60	-1.010	3.0	72.0	-	-	-	_	-	_
608.6288	4.26	-0.530	2.5	25.8	47.0	44.8	80.7	53.2	45.2	61.7
610.8125	1.68	-2.625	2.5	43.3	79.7	56.3	105.7	75.2	83.1	81.8
611.1078	4.09	-0.807	2.5	18.1	41.5	39.1	68.6	41.7	34.1	-
612.8984	1.68	-3.330	2.5	15.0	31.9	-	66.5	32.1	35.7	_
613.0141	4.26	-0.960	2.5	13.3	24.3	-	53.6	30.2	22.7	_
617.6816	4.09	-0.260	2.5	47.5	68.2	80.0	98.9	80.1	64.9	_
632.7604	1.68	-3.110	2.5	19.3	49.3	28.9	87.4	47.1	51.5	_
648.2809	1.93	-2.630	2.5	25.1	52.7	-	82.8	47.0	49.9	_
658.6319	1.95	-2.733	2.5	21.9	49.6	_	87.5	52.5	54.1	_
664.3638	1.68	-2.300	2.5	75.1	108.7	76.2	144.6	101.0	109.7	_
676.7784	1.83	-2.170	2.5	61.3	87.3	72.6	123.3	79.3	89.5	95.1
677.2321	3.66	-0.953	2.5	46.5	66.3	50.5	86.7	55.1	52.0	64.0
711.0905	1.93	-2.915	2.5	17.2	45.8	_	98.5	35.3	44.0	
712.2206	3.54	-0.229	2.5	84.8	110.1	102.3	189.7	115.9	104.7	_
738 5244	2.74	-1.970	2.5	31.1	49.5	28.2	85.5	57.8	52.5	_
741 4514	1 99	-2.570	2.5	48.1	79.9	55.3	119.4		90.8	_
742 2286	3.63	-0.325	2.5	74 7	100.6	105.9	151.3	110.0	101.9	_
752 5118	3.63	-0.653	2.5		100.0	- 100.5	125.5	82.7	69.2	_
757 4048	3 83	0.607	2.0				114 7	71.8	65.1	
771 4910	0.00 1.02	-0.007	2.0 2.5		190.1	087	186 5	11.0	108.2	_
771 5501	1.90 3.70	-1.913	2.0 2.5	00.4	149.1	30.1	100.0	_	120.0 52.0	_
779 7616	3.10 3.60	-0.904	⊿.0 2 ⊑	70 9	076	01.0	90.3 171 0	097	03.9 01 4	-
774.0004	3.08 9.70	-0.170	2.0 0.5	18.3	91.0	91.0	141.8	98.7	91.4	-
770.0000	3.70	-0.328	2.5	-	100.0		142.0	98.1	93.5	-
778.8933	1.95	-2.420	2.5	65.7	108.8	74.7	153.4	-	109.1	-
779.7588	3.90	-0.298	2.5	—	-	-	118.3	85.9	81.0	-
Ball	$\log \epsilon_{\odot}$	= 2.20								
585.3688	0.60	-1.010	3.0	72.0	-	_	-		-	-
649.6908	0.60	-0.377	3.0	107.9	113.1		121.0	122.6	116.8	-
$614\ 1727$	0.70	-0.077	3.0	128.7	131.0	134.1	152.9	134.1	130.9	123.3

Table 2 Continued

We also compared the EWs given by Smith et al. (2001) with our measurements for HD 19994 (see Fig. 2). The comparison also shows a good agreement, with a slight tendency for the equivalent widths of Smith et al.(2001) to be somewhat smaller for the strongest lines. A linear least squares fitting to a total of 40 common lines gives

EW (ZCQ) = $1.047(\pm 0.023)$ EW (SCL) + $2.771(\pm 1.757)$.

The scatter between the two sets of data is about 5.0 mÅ, which is slightly smaller than in the comparison with the work of Gonzalez (1998). Both the resolution and signal-to-noise ratio of their spectra are slightly higher than ours.

From the above comparison, we estimated that the error of equivalent widths measured from Xinglong spectra is around $4 \text{ m}\text{\AA}$ for these stars.

Acknowledgements This work is supported by NKBRSF G1999075406 and the National Natural Science Foundation of China under grant No. 10173014.

References

Gonzalez G., 1998, A&A, 334, 221
Smith V., Cunha K., Lazzaro D., 2001, AJ, 121, 3207
Zhao G., Qiu H. M., Chen Y. Q., Li Z. W., 2000, ApJS, 126, 461
Zhao G., Li H., 2001, Chin. J. Astron. Astrophys., 1, 555
Zhao G., Chen Y. Q., Qiu H. M., Li Z. W., 2002, AJ, in press