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Abstract We present an exact analytical solution of the gravitational field equa-
tions describing a static spherically symmetric anisotropic quark matter distribution.
The radial pressure inside the star is assumed to obey a linear equation of state,
while the tangential pressure is a complicated function of the radial coordinate. In
order to obtain the general solution of the field equations a particular density profile
inside the star is also assumed. The anisotropic pressure distribution leads to an
increase in the maximum radius and mass of the quark star, which in the present
model is around three solar masses.
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1 INTRODUCTION

Since the pioneering work of Bowers and Liang (1974) there has been an extensive literature
devoted to the study of anisotropic spherically symmetric static general relativistic configura-
tions. The study of static anisotropic fluid spheres is important for relativistic astrophysics. The
theoretical investigations of Ruderman (1972) about more realistic stellar models showed that
nuclear matter may be anisotropic at least in certain very high density ranges (ρ > 1015 g cm−3),
where the nuclear interactions must be treated relativistically. According to these views in such
massive stellar objects the radial pressure may not be equal to the tangential one. No celestial
body is composed of purely perfect fluid. Anisotropy in fluid pressure could be introduced by
the existence of a solid core or by the presence of type 3A superfluid (Kippenhahn & Weigert
1990), different kinds of phase transitions (Sokolov 1980), pion condensation (Sawyer 1972) or
by other physical phenomena. On the scale of galaxies, Binney and Tremaine (1987) consid-
ered anisotropies in spherical galaxies, from a purely Newtonian point of view. Other source
of anisotropy, due to the effects of the slow rotation in a star, has been proposed recently by
Herrera and Santos (1995). The mixture of two gases (e.g., monatomic hydrogen, or ionized
hydrogen and electrons) can formally be also described as an anisotropic fluid (Letelier 1980).
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Observations of pulsars predict large surface magnetic fields of the order of B ∼ 1014 G
(Weber 1999). The interior magnetic fields are a few order of magnitude higher, with the virial
theorem predicting fields of ∼ 1018 G or more (Weber 1999). The magnetic field generates
a force F which acts upon a medium through which electric current, with density j, flows:
F = j × B/c. With the use of the Maxwell equations, relating the current to the field,
∇ × B = 4πj/c and ∇ · B = 0, the expression for the force can be expressed in the form
Fi = −∂Tij/∂xj , where Tij = − (1/4π)

[
BiBj − (1/2) δijB

2
]
, a form which is similar to the

effect of a pressure, F = −∇p (Weber 1999). Instead of a single scalar quantity (pressure),
in the case of a magnetic field we deal with a stress tensor: in the direction of the magnetic
field there is a tension which is equivalent to a force per unit area B2/8π, and in the other
two perpendicular directions there is a pressure, opposite in sign but of the same magnitude,
−B2/8π. For a magnetic field ∼ 1018 G or higher, the magnetic pressure could be of the same
order of magnitude to the matter pressure. Therefore strong magnetic fields could generate an
anisotropic pressure distribution inside a compact astrophysical object.

The starting point in the study of fluid spheres is represented by the interior Schwarzschild
solution from which all problems involving spherical symmetry can be modelled. Bowers and
Liang (1974) investigated the possible importance of locally anisotropic equations of state for
relativistic fluid spheres by generalizing the equations of hydrostatic equilibrium to include
the effects of local anisotropy. Their study shows that anisotropy may have non-negligible
effects on such parameters as maximum equilibrium mass and surface redshift. Heintzmann and
Hillebrandt (1975) studied fully relativistic, anisotropic neutron star models at high densities
by means of several simple assumptions and showed that for arbitrary large anisotropy there is
no limiting mass for neutron stars, but the maximum mass of a neutron star still lies beyond 3−
4M�. Hillebrandt and Steinmetz (1976) considered the problem of stability of fully relativistic
anisotropic neutron star models. They derived the differential equation for radial pulsations
and argued that there exists a static stability criterion similar to the one obtained for isotropic
models. Anisotropic fluid sphere configurations have been analyzed, using various additional
assmptions, in Bayin (1982) and Cosenza et al. (1981) (Krori et al. 1984; Maharaj & Maartens
1989; Stewart 1982; Singh et al. 1992; Magli & Kijowski 1992; Magli 1993; Bondi 1992; Chan et
al. 1993; Herrera & Ponce de Leon 1985; Gokhroo & Mehra 1994; Durgapal & Bannerji 1983;
Knutsen 1988; Patel & Mehra 1995; Harko & Mak 2000; Harko & Mak 2002).

For static spheres in which the tangential pressure differs from the radial one, Bondi (1992)
examined the link between the surface value of the potential and the highest occurring ratio
of the pressure tensor to the local density. Chan, Herrera and Santos (1993) studied in detail
the role played by the local pressure anisotropy in the onset of instabilities and showed that
small anisotropies might in principle drastically change the stability of the system. Herrera and
Santos (1995) have extended the Jeans instability criterion in Newtonian gravity to systems
with anisotropic pressures. Recent reviews on isotropic and anisotropic fluid spheres can be
found in Delgaty & Lake (1998) and Herrera & Santos (1997). There are very few interior
solutions (both isotropic and anisotropic) of the gravitational field equations satisfying the
required general physical conditions inside the star. From 127 published solutions analyzed in
Delgaty and Lake (1998) only 16 satisfy all the conditions.

It is widely believed today that strange quark matter consisting of the u, d and s quarks
is the most energetically favorable state of baryon matter. Witten (1984) specified two ways
of formation of the strange matter: the quark-hadron phase transition in the early universe
and conversion of neutron stars into strange ones at ultrahigh densities. Quark bag models in
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the theories of strong interactions suppose that the breaking of physical vacuum takes place
inside hadrons. As a result the vacuum energy densities inside and outside a hadron become
essentially different and the vacuum pressure B on a bag wall equilibrates the pressure of quarks
thus stabilizing the system.

There are several proposed mechanisms for the formation of quark stars. Quark stars
are expected to form during the collapse of the core of a massive star after the supernova
explosion as a result of a first or second order phase transition, resulting in deconfined quark
matter (Dai, Peng & Lu 1995). The proto-neutron star core or the neutron star core is a
favorable environment for the conversion of ordinary matter to strange quark matter (Cheng et
al. 1998). Another possibility is that some neutron stars in low-mass X-ray binaries can accrete
sufficient mass to undergo a phase transition to become strange stars (Cheng & Dai 1996).
This mechanism has also been proposed as a source of radiation emission for cosmological γ-ray
bursts (Cheng & Dai 1998).

The structure of a realistic strange star is quite complicated and can be described as follows
(Cheng et al. 1998). Beta-equilibrated strange quark - star matter consists of an approximately
equal mixture of up, down and strange quarks, with a slight deficit of the latter. The Fermi gas
of 3A quarks constitutes a single color-singlet baryon with baryon number A. This structure
of the quarks leads to a net positive charge inside the star. Since stars in their lowest energy
state are supposed to be charge neutral, electrons must balance the net positive quark charge
in strange matter stars. Being bound by the Coulomb, rather than the strong force, as is the
case for quarks, the electrons extend several hundred fermis beyond the surface of the strange
star. Associated with this electron displacement is a very strong electric dipole layer that can
support, out of contact with the surface of a strange star, a crust of nuclear material, which
it polarizes. The neutron drip density determines the maximal possible density at the base of
the crust (the inner crust density) (Cheng et al. 1998). Being electrically charge neutral the
neutrons do not feel the Coulomb force and hence would gravitate toward the quark core where
they become converted into strange quark matter.

If the hypothesis of the quark matter is true, then some neutron stars could actually be
strange stars, built entirely of strange matter (Alcock et al. 1986; Haensel et al. 1986). However,
there are general arguments against the existence of strange stars (Caldwell & Friedman 1991).

The basis for the study of most of the static relativistic models of strange stars has been
the bag model equation of state (BMEOS) p =

(
ρc2 − 4B

)
/3, where ρ is the energy density

and B is the bag constant (Cheng et al. 1998). A complete description of static strange
stars was obtained based on numerical integration of mass continuity and TOV (hydrostatic
equilibrium) equations for different values of the bag constant (Witten 1984; Haensel et al.
1986). Using numerical methods the maximum gravitational mass Mmax, the maximum baryon
mass MB,max ≡ 1.66×10−27 kg×NB (NB-the total baryon number of the stellar configuration)
and the maximum radius Rmax of the strange star, have been obtained, as a function of the bag
constant, in the form (Witten 1984; Alcock et al. 1986; Haensel et al. 1986; Haensel & Zdunik
1989; Friedman et al. 1989; Gourgoulhon et al. 1999):

Mmax =
1.9638M�√

B60

, MB,max =
2.6252 M�√

B60

, Rmax =
10.172 dkm√

B60

, (1)

where B60 ≡ B/(60 MeV fm−3).
More sophisticated investigations of quark-gluon interactions clarified that BMEOS repre-

sents a limiting case of more general equations of state. For example MIT bag models with
massive strange quarks and lowest order QCD interactions lead to some correction terms in the
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equation of state of quark matter. Models incorporating restoration of chiral quark masses at
high densities and giving absolutely stable strange matter can no longer be accurately described
by BMEOS. On the other hand in models in which quark interaction was described by an in-
terquark potential originating from gluon exchange and by a density dependent scalar potential
which restores the chiral symmetry at high densities (Dey et al. 1998), the equation of state
P = P (ρ) can be well approximated by a linear function in the energy density ρ (Gondek-
Rosinska et al. 2000). It is interesting to note that already Frieman and Olinto (1989) and
Haensel and Zdunik (1989) mentioned the approximation of the EOS by a linear function (see
also (Prakash et al. 1990; Lattimer et al. 1990)). Recently Zdunik (2000) examined the linear
approximation of the equation of state, obtaining all the parameters of the EOS as polynomial
functions of strange quark mass, QCD coupling constant and bag constant. The scaling rela-
tions have been applied to the determination of the maximum frequency of a particle in stable
circular orbit around strange stars.

It is the purpose of the present paper to consider an exact analytical model for an anisotropic
quark matter distribution, with the radial pressure obeying a linear equation of state. Moreover,
in order to obtain a non-singular stellar model, we shall also fix the density profile inside the
star. With the use of these assumptions the general solution of the Einstein gravitational
field equations can be obtained in an exact form, and it describes an anisotropic quark matter
distribution, with unequal tangential and radial pressures.

The present paper is organized as follows. In Section 2 we obtain the general solution of
the gravitational field equations for the anisotropic quark star. In Section 3 we discuss and
conclude our results.

2 GENERAL SOLUTION OF THE FIELD EQUATIONS FOR AN ANISOTROPIC
STRANGE STAR

In the following we shall adopt geometrized units such that 8πG = c = 1. The sign conven-
tions used are those of the Landau-Lifshitz timelike convention. Let us consider a spherically
symmetric static distribution of strange quark matter. In Schwarzschild coordinates the line
element takes the following form:

ds2 = A2 (r) dt2 − V −1 (r) dr2 − r2
(
dθ2 + sin2 θdχ2

)
. (2)

The energy-momentum tensor T k
i inside the strange star is assumed to have the form

T k
i = (ρ + p⊥) uiu

k − p⊥δk
i + (pr − p⊥) χiχ

k, (3)

where ui is the four-velocity Aui = δi
0, χi is the unit spacelike vector in the radial direction,

χi =
√

V δi
1, ρ is the energy density, pr the pressure in the direction of χi (normal pressure) and

p⊥ the pressure orthogonal to χi (transversal pressure). We assume pr 6= p⊥. The case pr = p⊥
corresponds to the isotropic fluid sphere. ∆ = p⊥ − pr is a measure of the anisotropy and is
called the anisotropy factor. The Einstein field equations describing the interior of a strange
star can be expressed as

Rk
i −

1
2
δk
i R = T k

i . (4)

Using the line element (2) the field equations (4) and the conservation equations T i
k;i = 0,

(where a semicolon “;” denotes the covariant derivative with respect to the metric), take the
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form (we denote the derivative with respect to the radial coordinate r by a prime):

ρ =
1− V

r2
− V

′

r
, (5)

pr =
2A′V

Ar
+

V − 1
r2

, (6)

and

p′r + (pr + ρ)
A′

A
=

2
r
∆. (7)

In the conservation equation Eq. (7) a supplementary term of the form 2(p⊥−pr)
r appears,

representing a force that is due to the anisotropic nature of the fluid. This force is directed
outward when p⊥ > pr and inward when p⊥ < pr. The existence of a repulsive force (in the
case p⊥ > pr) allows the construction of more compact objects when using anisotropic fluid
than when using isotropic fluid.

In the standard static fluid stellar models Einstein’s equation represents an under-determined
system of nonlinear ordinary differential equations. In the present anisotropic stellar model the
field equations of Einstein’s theory can be reduced to a set of three coupled ordinary differential
equations in five unknowns pr, p⊥, ρ, A and V . In order to obtain a realistic stellar model and
to complete the system of the field equations, we assume that quark matter is described by a
linear barotropic equation of state, which takes the form

pr =
1
n

(ρ− ρ0) , (8)

where n and ρ0 are constants. For the MIT bag model equation of state n = 3 and ρ0 = 4×B =
4× 1014g cm−3. Rearranging Eq. (5) yields

(V r)′ = 1− r2ρ. (9)

On integration we obtain the metric function V in the form

V = 1− 2m (r)
r

, (10)

where we have introduced the mass function of the star defined as m (r) = 1
2

∫ r

0
ρξ2dξ . From

Equations (6) and (7) we obtain the following differential equation for the radial pressure pr:

2V

r

dpr

dr
+ (pr + ρ)

(
pr +

1− V

r2

)
=

4V

r2
∆. (11)

With the use of the Eqs. (8), (10) and (11) one can derive the following highly non-linear
second order differential equation for the mass function of the star:

(r − 2m) d2m
dr2 +

[
(5 + n) m

r −
ρ0(n+2)

2n r2 − 2
]

dm
dr + 1+n

n

(
dm
dr

)2
− ρ0

2 rm + ρ2
0

4nr4 = nr (r − 2m) ∆,
(12)

which leads to the expression of the anisotropy parameter inside the star:

∆(r) =
2r2 dρ

dr + 1+n
n ρ2r3 − ρ0(n+2)

n ρr3 + ρ2
0

n r3 −
[
ρ0 − (1 + n) ρ + 2r dρ

dr

] ∫ r

0
ξ2ρdξ

4n
(
r −

∫ r

0
ξ2ρdξ

) . (13)
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In order to have a non-singular monotonic decreasing matter density inside the star, we
assume for the density profile of the quark star the following functional form:

ρ(r) = ρc

[
1−

(
1− ρ0

ρc

)
r2

R2

]
, (14)

where ρc is the central density of the star and R the radius of the sphere. We require that the
condition ρc ≥ ρ0 holds. Obviously, the matter density has a maximum value ρc at center r = 0,
and the value ρ0 at the surface of the sphere. With the use of Eq. (14) we obtain immediately
the mass distribution inside the anisotropic quark star:

m (r) =
ρc

6
r3 − ρc − ρ0

10R2
r5. (15)

Therefore an explicit exact solution describing the interior of an anisotropic strange quark star
is given by

A2(r) = A0

∏
i=+,−

[
R (C + 5εiRρc) + 6εi (ρc − ρ0) r2

]Dεi , (16)

V (r) = 1− ρc

3
r2 +

ρc − ρ0

5R2
r4, (17)

∆(r) =
r2

4n2R2

{
∆0(r)

3 (ρc − ρ0) r4 − 5R2 (ρcr2 − 3)
− 4n (ρc − ρ0)

}
, (18)

and

pr(r) =
(ρc − ρ0)

n

(
1− r2

R2

)
, (19)

p⊥(r) = ∆(r) +
(ρc − ρ0)

n

(
1− r2

R2

)
, (20)

where A0 is an arbitrary constant of integration,

C =
√

5 [36ρ0 + ρc (5ρcR2 − 36)] ,

D± = −5 + n

4n
+ ε±

5R [6ρ0 − (1 + n)ρc]
4nC

,

∆0(r) =
[
(1 + n) (ρ0 − ρc) r2 + R2 ((1 + n) ρc − ρ0)

] [
3(5 + n) (ρ0 − ρc) r2 + 5R2 ((3 + n) ρc − 3ρ0)

]
and ε± = ±1.

In view of Eq. (19), the condition of the radial pressure vanishing at the surface of the star,
pr (R) = 0 holds. On the other hand, the tangential pressure is generally not zero at the surface
of the quark star, a situation specific to anisotropic stellar models (Herrera & Santos 1997).

For r > R the solution of the Einstein equations is given by the Schwarzschild metric as

ds2 = (1− 2M/r) dt2 − (1− 2M/r)−1 dr2 − r2
(
dθ2 + sin2 θdχ2

)
, (21)

where M is the total mass the star. To match the line element (2) with the Schwarzschild
metric across the boundary at r = R we require the continuity of the gravitational potentials
A2 and V at r = R . The continuity of A2 leads to the determination of the constant A0:

A0 =
1− 2M

R∏
i=+,− [R (C + 5εiRρc) + 6εi (ρc − ρ0) R2]Dεi

. (22)
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At the centre of the star the line element is flat and is given by

ds2 = A0

∏
i=+,−

[R (C + 5εiRρc)]
Dεi dt2 − dr2 − r2

(
dθ2 + sin2 θdχ2

)
. (23)

We have now obtained the complete solution of the gravitational field equations for an anisotropic
strange quark star described by an arbitrary linear equation of state.

3 DISCUSSION AND FINAL REMARKS

The following conditions have been generally recognized to be crucial for anisotropic fluid
spheres (Herrera & Santos 1997):

a) the density ρ and pressure pr should be positive inside the star;
b) the gradients dρ

dr , dpr

dr and dp⊥
dr should be negative;

c) inside the static configuration the speed of sound should be less than the speed of light,
i.e. 0 ≤ dpr

dρ ≤ 1 and 0 ≤ dp⊥
dρ ≤ 1;

d) a physically reasonable energy-momentum tensor has to obey the conditions ρ ≥ pr+2p⊥
and ρ + pr + 2p⊥ ≥ 0;

e) the interior metric should be joined continuously with the exterior Schwarzschild metric,
that is A2(R) = 1− 2M/R;

f) the radial pressure pr must vanish but the tangential pressure p⊥ may not vanish at the
boundary of the sphere. However, the radial pressure should be equal to the tangential pressure
at the center of the fluid sphere.

The solution to the gravitational field equations we have obtained satisfies most of these
six criteria, since we have ρ ≥ 0, pr ≥ 0, p⊥ ≥ 0, dρ

dr = −2ρc

(
1− ρ0

ρc

)
r

R2 < 0 and dpr

dr =

−2ρc−ρ0
n

r
R2 < 0. The radial speed of sound is given by vs = c/

√
n. Moreover, all the physi-

cal (density, pressure and anisotropy parameter) and geometrical (metric tensor components)
quantities are finite throughout the star and thus ρ+pr +2p⊥ ≥ 0. At the center of the star the
radial pressure equals the tangential pressure and the radial pressure vanishes at the surface.
However, the condition dp⊥

dr < 0 is not satisfied generally inside the star, showing that the p⊥
is an increasing function of r. For some regions the speed of sound in the tangential direction
dp⊥
dρ is not defined or can exceed the speed of light. Now, Caporaso and Brecher (1979) claimed

that dp/dρ does not represent the signal speed. If therefore this speed exceeds the speed of
light, this does not necessarily mean that the fluid is non-causal. In fact, this argument is quite
controversial and not all authors accept it (Glass 1983).

The variation of the anisotropy parameter ∆ as a function of the radial coordinate r and
for different values of the central density is presented in Fig. 1. At the center of the quark star
the anisotropy is zero, ∆(0) = 0. The anisotropy has a maximum value inside the star and it
tends to zero at the vacuum boundary.

The radius of the star can be obtained from the requirement that the anisotropy vanishes
at the surface of the quark star, ∆(R) = 0. This condition gives

R =
√

60

√
ρc − ρ0

8ρ2
c + 2(2 + n)ρ0ρc − 3(4− n)ρ2

0

. (24)
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Hence in this model both the radial and
tangential pressures pr and p⊥ vanish at
the surface of the star. However, a non-
vanishing surface tangential pressure p⊥ is
also acceptable from a physical point of
view (Herrera & Santos 1997). The radius
of the anisotropic quark star can be ex-
pressed as a function of the central density
ρc and of the parameters of the equation of
state of the quark matter in an exact form.
The total mass of the anisotropic quark
star is

M =
(2ρc + 3ρ0)

30
R3. (25)

The radius of the star has a maximum
for the value of the central density ρ

(Rmax)
c

satisfying the equation dR/dρc = 0. The
value of the central density for which the
radius is maximum is given by

ρ(Rmax)
c =

[
1 +

√
5n

8

]
ρ0. (26)

Fig. 1 Variation of the anisotropy parameter ∆

inside the anisotropic quark star with the radial

pressure obeying the bag model equation of state

(n = 3 and ρ0 = 4× 1014g cm−3), as a function of

ε = r/R for different values of the central density:

ρc = 1.0 × 1015g cm−3 (solid curve), ρc = 1.2 ×
1015g cm−3 (dotted curve), ρc = 1.6× 1015g cm−3

(dashed curve) and ρc = 2 × 1015g cm−3 (long

dashed curve).

For an anisotropic quark star with the radial pressure obeying the bag model equation of
state with n = 3 and ρ0 = 4 × B = 4 × 1014g cm−3, the maximum radius is at the central
density ρ

(Rmax)
c = 9.48× 1014g cm−3. The density corresponding to the maximum radius in the

case of isotropic quark stars obeying the BMEOS is ρ
(Rmax)
c = 10.15 × 1014g cm−3 (Cheng &

Harko 2000). Hence the maximum radius of the anisotropic quark matter distribution is given
by

Rmax =
√

30√
10 + n + 2

√
10n

1
√

ρ0
. (27)

For n = 3 and ρ0 = 4 × B = 4 × 1014g cm−3 we obtain Rmax = 1.29 × 106 cm. The value of
the maximum radius in case of isotropic quark stars is Rmax = 1.14× 106 cm (Cheng & Harko
2000). Therefore the pressure anisotropy increases the maximum radius of quark stars.

With respect to a scaling of the parameter ρ0 of the form ρ0 → αρ0, α = constant, the
maximum radius scales as Rmax → α−

1
2 Rmax, a scaling property also specific to isotropic quark

stars. The variations of the radii of the anisotropic quark star, with the radial pressure obeying
the bag model equation of state and of the isotropic quark star are presented in Fig. 2.

The mass of the anisotropic strange star corresponding to the maximum radius is given by

M (Rmax) =
(2ρc + 3ρ0)

30

( √
30√

10 + n + 2
√

10n

)3

ρ
−3/2
0 . (28)

For the bag model equation of state we obtain M (Rmax) = 2.78M�, while for the isotropic
quark star this value is only 1.81M� (Cheng & Harko 2000). For the anisotropic quark star
M (Rmax) obeys the scaling property M (Rmax) → α−3/2M (Rmax) with respect to the scaling
of the parameter ρ0 of the form ρ0 → αρ0.

The central density ρ
(Mmax)
c , giving the maximum mass of the star, follows from the equation
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dM/dρc = 0 and is found to be

ρ(Mmax)
c =

4 + n +
√

n (n + 30)
4

ρ0. (29)

For the radial pressure obeying the BMEOS the central density of the maximum mass anisotropic
star is ρ

(Mmax)
c = 1.69 × 1015g cm−3. For the isotropic quark stars this value is ρ

(Mmax)
c =

1.97× 1015g cm−3 (Cheng & Harko 2000). The maximum mass of the anisotropic quark star is
given, as a function of the parameters of the equation of state, by the expression

Mmax = 9

√
5
2

10 + n +
√

n
√

n + 30[
5(n + 6) + 4

√
n
√

n + 30
]3/2

1
√

ρ0
. (30)

For the maximum mass of the anisotropic quark star we obtain Mmax = 3.26M�. For the
isotropic quark star the maximum mass is Mmax = 2M� (Cheng & Harko 2000). Hence the
inclusion of an anisotropic pressure distribution leads to a significant increase in the maximum
mass of the quark star, which is of the same order of magnitude as the maximum mass of the
isotropic neutron stars.

The maximum mass of the anisotropic quark star has the same scaling property with respect
to the scale transformation of ρ0, ρ0 → αρ0, as the maximum radius of the star, Mmax →
α−1/2Mmax. This scaling property is similar to that of isotropic quark stars described by a
linear equation of state (Zdunik 2000). The variation of the mass of the anisotropic and of the
anisotropic star, respectively, as a function of the central density, is presented in Fig. 3.

An important observational parameter, which in principle could distinguish between anisotropic
and isotropic quark stars or even anisotropic quark and neutron stars, is the surface red-shift
parameter, defined as z = (1 − 2GM/c2R)−1/2 − 1. The variation, as a function of the cen-
tral density, of the surface red-shift for anisotropic and isotropic quark stars, respectively, is
presented in Fig. 4.

Fig. 2 Variation of the radius R (in units of

106 cm) of the anisotropic quark star with the

radial pressure obeying the bag model equation

of state (n = 3 and ρ0 = 4× 1014g cm−3) (solid

curve) and of the isotropic star (dashed curve)

as a function of the parameter η = ρc/B.

Fig. 3 Variation of the mass M (in solar mass

units) of the anisotropic quark star with the ra-

dial pressure obeying the bag model equation of

state (n = 3 and ρ0 = 4 × 1014g cm−3) (solid

curve) and of the isotropic star (dashed curve)

as a function of the parameter η = ρc/B.
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For values of the central density ρc > 1015g cm−3, the z for anisotropic quark stars is
much higher than for the isotropic quark or neutron stars. For a range of central densities
4× 1014g cm−3 < ρc < 1015 g cm−3, the red-shift of the isotropic and anisotropic quark stars is
approximately equal.

From the study of the data base obtained by the measurement of gravitationally red-shifted
511 keV e± pair annihilation lines from the surface of neutron stars, Liang (1986) suggested
that the neutron star red-shift ranges over 0.2 ≤ z ≤ 0.5, with the highest concentration in
the range 0.25 ≤ z ≤ 0.35. As can be seen from Fig. 4, the maximum redshift of isotropic
quark stars also cannot exceed the value z ≈ 0.5. Therefore detection of compact objects with
red-shifts higher than z = 0.5 would be a strong observational evidence for relativistic stars
with anisotropic pressure distribution.

An important problem is the origin of the anisotropy in quark stars. In the Introduction we
have mentioned several mechanisms which could generate an anisotropic pressure distribution
inside a neutron star. Since in the interior of a strange star a solid core should not appear, the
existence of a superfluid core inside the star could generate different pressures along the radial
and tangential directions. It has been suggested a long time ago that the quarks may eventually
form Cooper pairs (Bailin & Love 1984). In fact pairing is unavoidable in a degenerate Fermi
liquid if there is an attractive interaction. The resulting superfluidity (and in case of charged
particles, superconductivity) has a major effect on the star’s evolution and also induces an
intrinsic anisotropic pressure distribution.

Fig. 4 Variation of the surface red-shift z of the anisotropic quark star with radial pressure
obeying the bag model equation of state (n = 3 and ρ0 = 4× 1014g cm−3) (solid curve) and
of the isotropic quark star (dashed curve) as a function of the parameter η = ρc/B.

To analyze this effect in more details let us consider a strange star consisting of two different
components: a superfluid with energy density ρs, pressure ps and four-velocity U i and a normal
matter component with ρn, pressure pn and four-velocity W i. Then the total energy-momentum
tensor is

T ik = (ps + ρs) U iUk − psg
ik + (pn + ρn) W iW k − pngik, (31)

where UiU
i = 1 and WiW

i = 1. By means of the transformations (Bayin 1982)

U∗i = U i cos α +

√
P2 + ρ2

P1 + ρ1
W i sinα, W ∗i = −

√
P2 + ρ2

P1 + ρ1
U i sinα + W i cos α, (32)
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the energy momentum tensor (31) can always be cast into the standard form for anisotropic
fluids,

T ik = (ρ + p⊥) V iV k − p⊥gik + (pr − p⊥) χiχk, (33)

where V i = U∗i/
√

U∗iU∗
i , χi = W ∗i/

√
−W ∗iW ∗

i , ρ = TikV iV k, p⊥ = ps + pn and pr =

− 1
2 (ρs − ps + ρn − pn) + 1

2

[
(ρs + ps − ρn − pn)2 + 4 (ρs + ps) (ρn + pn)

(
U iWi

)2]1/2

(Herrera
& Santos 1997). Therefore a quark star consisting of a mixture of two fluids will have the
general structure of an anisotropic compact general relativistic object.

The behavior of the anisotropy parameter ∆, given by Eq. (18), can also be interpreted in
the framework of the two-fluid model. Since one expects that the superfluid or superconducting
components are located in the core of the star, the anisotropic effects are strongest in the interior
of the star, for r ∈ [0, Rc], where Rc is a critical distance below which anisotropic effects are
important. Assuming that for r > Rc the star consists of only the normal component (usual
quark matter), then ρs, ps → 0, and hence in this region the energy momentum tensor Eq.
(31) takes the usual form of a single perfect fluid, corresponding to equal radial and tangential
pressures and with vanishing anisotropy.

Whether the anisotropic stellar model presented in this paper actually describes a well-
determined stellar structure can only be decided once reliable knowledge about the mechanisms
that characterize strange and neutron star formation becomes available from the underlying
theory of stellar evolution and from observational data.
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