Review Article: Resonant families of periodic orbits in the restricted three-body problem *

Shanshan Pan1,2,3 and Xiyun Hou1,2,3

1 School of Astronomy and Space Science, Nanjing University, 163 Xianlin Ave, Qixia District, Nanjing, China, 210023; houxiyun@nju.edu.cn
2 Institute of Space Environment and Astrodynamics, Nanjing University, 5 Nanxiu Cun, Gulou District, Nanjing, China, 210093
3 Key Laboratory of Modern Astronomy and Astrophysics, Ministry of Education, Nanjing, China, 210023

Received 20XX Month Day; accepted 2022 April 20

Abstract The restricted three-body problem (RTBP) is a fundamental model in celestial mechanics. Periodic orbits in the synodic frame play a very important role in understanding the dynamics of the RTBP model. Most of these periodic orbits, when interpreted in the sidereal frame, are actually resonant periodic orbits. As a result, numerical computation of the periodic orbits is also one approach for researchers to understand the orbital resonances of the three-body problem. Extensive studies have been carried out on this topic, concerning either the circular case or the elliptic case of this model. In this paper, we make a brief review of the history and current status of the studies on resonant periodic orbits in the RTBP model. Starting from the unperturbed two-body problem, we organize the review paper by the two cases of this model—the circular restricted three-body problem (CRTBP) and the elliptic restricted three-body problem (ERTBP).

Key words: celestial mechanics — proper motions — planets and satellites: dynamical evolution and stability

1 INTRODUCTION

A resonance arises when there is a simple numerical relationship between frequencies or periods (Murray & Dermott 1999). Mean motion resonance (MMR) or orbital resonance is of great importance in the dynamics of planets and satellites. Orbital resonance is believed to be the source of many interesting dynamical phenomena related to long-term stability and instability. In the solar system, there are a great number of MMRs involving asteroids, planetary rings, moonlets, and smaller Kuiper belt objects (a few involve planets, dwarf planets, or larger satellites). Meanwhile, resonant orbits have been widely employed in mission design for planetary flyby trajectories (Jupiter Europe Orbiter (NASA 2009)) and as nominal orbits, including the mission extension phase of IBEX (Mccomas et al. 2011; Dichmann et al. 2014) and the TESS mission (Gangestad et al. 2013). Besides, investigations on transferring from a low Earth orbit to the vicinity of the Earth-Moon libration points via resonant arcs (Vaquero & Howell 2014a)

* Supported by the National Natural Science Foundation of China.
and between different resonant orbits (Vaquero & Howell 2014b; Lei & Xu 2018) are also carried out.

Generally, there are two approaches to study resonances in celestial mechanics. One is the Hamiltonian approach. By focusing on the specific resonant term and eliminating other periodic terms (the so-called averaging process), the Hamiltonian is reduced to a 1-degree of freedom system with the resonance angle as the action variable (Henrard & Lemaitre 1983b; Feng et al. 2016; Tan et al. 2020). The other is the approach of periodic orbits. It is proved by (Birkhoff 1927; Arenstorf 1963; Guillaume 1969; Schmidt 1972) that families of symmetric periodic orbits exist in the rotating frame, which can be generated by continuation w.r.t. the parameter μ of the periodic orbits in the corresponding degenerate ($\mu = 0$) model. The periodic orbits can be computed rather easily with good accuracy and they refer to the complete system, i.e. no approximation is involved (Hadjidemetriou 1992). Resonant motion is associated with the periodic motion. Therefore, the computation of families of periodic orbits provides useful information on the resonant structure of the phase space (Berry 1978; Hadjidemetriou 1993b; Benet et al. 1999). Furthermore, the stability of resonant periodic orbits has been extensively studied in (Broucke 1968; Hadjidemetriou 1975; Hadjidemetriou & Ichtiaroglou 1984) to better understand the dynamics of the real solar system. However, there exist some limitations of computing the periodic orbits: (a) time-consuming computations of mappings; (b) the problem of accuracy in the exact initial conditions and, more importantly, their stability (Hadjidemetriou 1993b). Therefore, researchers sometimes use a combination of the two methods above to provide a comprehensive understanding of the phase space. Anyhow, the periodic orbit is a powerful tool for studying resonant problems. A review of the existence proofs for various types of periodic orbits in connection with the study of problems in celestial mechanics and stellar dynamics is given by (Hadjidemetriou 1984). Meanwhile, a systematic review of periodic orbits and their stability in different planetary systems is presented by (Hadjidemetriou 1988). In this paper, we briefly review the efforts on the studies of resonant periodic families in the CRTBP and ERTBP models carried out by previous researchers.

The remainder of the paper is structured as follows. Families of two kinds of periodic orbits (circular and elliptic cases) in the unperturbed model are introduced in Section 2. Families of resonant periodic orbits in the CRTBP and ERTBP are introduced in Section 3 and 4, respectively. In Section 5, we conclude this review.

2 FAMILIES OF PERIODIC ORBITS IN THE UNPERTURBED MODEL

We start from the unperturbed two-body problem to obtain a clear view of the resonant structure in the restricted three-body problem (RTBP). P_1 and P_2 are denoted as the two primaries with masses m_1 and m_2 of the system, respectively. The second primary P_2 revolves around the first primary P_1 in a circular orbit. We study the motion of an infinitesimal particle P_3 ($m_3 = 0$) in a uniformly rotating frame $O-xy$ (the synodic frame), whose initial phase is on the positive x-axis which points from P_1 to P_2. The parameter μ is defined as $\mu = m_3/(m_1 + m_2)$. Take the units of the system as $[M] = M_1$, and $[L] = P_1P_2$. With these units, the period of the second primary is equal to 2π and the angular velocity of the $O-xy$ frame (and of the second primary) ω' is equal to one. In the unperturbed case, we have $\mu = 0$, i.e., the second primary has a zero mass and moves on a Keplerian orbit around the first primary.

Theory of periodic orbits in the unperturbed model has been presented by many researchers (Hadjidemetriou & Ichtiaroglou 1984; Hadjidemetriou 1988; Ichtiaroglou et al. 1989; Hadjidemetriou 1993b). Moreover, investigations on the limits of the periodic solutions in the restricted problem as $\mu \to 0$ and families of periodic solutions which are called generating families have been investigated by researchers (Hénon 1997; Bruno & Varin 2006; Bruno & Varin 2007; Zaborsky 2020). Generally, two kinds of periodic orbit families exist in the unperturbed model ($\mu = 0$). One is the family of circular periodic orbits, and the other is the family of elliptic periodic orbits. We make a brief introduction to them in this section.
For the planar case, we denote the initial condition of the periodic orbit as \((x_0, y_0, \dot{x}_0, \dot{y}_0)\), its Jacobi constant as \(C\), and its orbital period as \(T\). Usually, a symmetric periodic orbit can be represented by a point in the plane \(x_0-y_0\), or \(x_0-C\), or equivalently, in the plane \(T-C\). A monoparametric family of symmetric periodic orbits is represented by a smooth curve in the plane \(x_0-C\) or \(x_0-y_0\), which is called the “characteristic curve”. The term “characteristic curve” has been indicated by many researchers to study the resonant periodic families (Hadjidemetriou & Ichtiaroglou 1984; Ichtiaroglou et al. 1989; Hadjidemetriou 1992; Kotoulas & Hadjidemetriou 2002; Hou et al. 2018). In this review, we present the first order resonant periodic families in the \(T-C\) plane and discuss their properties from a different perspective.

Fig. 1: Characteristic curves of families of periodic orbits in the unperturbed model. Upper left: the interior circular periodic family \(D_{int}\) and the first order interior resonant periodic families of 2:1, 3:2, 4:3, and 5:4 resonance. Upper right: the exterior circular periodic family \(D_{ext}\) and the first order exterior resonant periodic families of 1:2, 2:3, 3:4, and 4:5 resonance. The abscissa is half the orbital period in the synodic frame and the ordinate is the Jacobi constant. Lower left: family \(D_{int}\) and the 3:2, 5:3 and 7:4 resonances. Lower right: family \(D_{ext}\) and the 2:3, 3:5 and 4:7 resonances.

2.1 Families of circular orbits

In the inertial frame, a periodic orbit of \(P_3\) is called direct (retrograde) orbit if \(P_3\) revolves around \(P_1\) in the same (opposite) direction as that of \(P_2\) (Ichtiaroglou et al. 1989). Therefore, there exist two families of circular periodic orbits: the direct family \(D\) and the retrograde family...
In this review, we pay our attention to the direct family D. Due to the existence of P_2, family D has two branches (denoted as D_{int} and D_{ext}), which correspond to the inside and outside of the orbit of P_2, respectively. In Fig. 1, we present the circular families of the unperturbed model in the T-C plane. Both of the families D_{int} and D_{ext} have one thing in common: the Jacobi constant C decreases from infinity and gradually converges to a constant as the period T continues to increase. Taking one orbit in family D_{int} as an example, the orbit is circular in both the inertial frame and synodic frame (see orbit-1 in the first column of Fig. 2).

2.2 Families of resonant periodic orbits

There is an infinite number of resonant periodic families which bifurcate from the circular family D at the resonance $n : n' = p : q$, where n is the mean motion of the small body, n' is that of the second primary, and p, q are integers. For each of these resonant periodic families, the semi-major axis a, and the value $n : n'$ remains unchanged. The eccentricity, however, increases with decreasing value of the Jacobi constant C. For each resonance, there exist two different branches of the resonant family, differing in phase only (Hadjidemetriou 1993b). In Fig. 1, characteristic curves of some example resonant periodic families related to the first, second, and third order resonances are shown. They appear as vertical lines in the T-C plane. Along each vertical line, from top to bottom, the orbital eccentricity gradually increases. As we have mentioned, actually there are two branches of the $n : n'$ resonant periodic family. Taking the 2:1 resonant periodic family as an example, one branch has the periapsis on the positive x-axis (denoted as family $I_{2:1}$) and the other has the apoapsis on the positive x-axis (denoted as family $II_{2:1}$). Example orbits of each branch are presented in the middle and the right column of Fig. 2, respectively. In the unperturbed model, the T-C curves of the two branches exactly coincide with each other, so they appear as a single vertical line (actually two identical vertical lines) in Fig. 1. In the following perturbed model, due to the perturbation from the secondary, the two branches separate from each other in the T-C plane.

One remark is that characteristic curves of the unperturbed model displayed in Fig. 1 look different from those displayed in the x_0-y_0 plane (Hadjidemetriou 1988; Hadjidemetriou & Ichtiaroglou 1984) or the x_0-\dot{y}_0 plane (Ichtiaroglou et al. 1989; Hadjidemetriou 1993a; Kotoulas & Hadjidemetriou 2002), but they all represent the same resonant periodic families. All the periodic orbits in the unperturbed model are orbitally stable (Hadjidemetriou & Ichtiaroglou 1984).

3 FAMILIES OF PERIODIC ORBITS IN THE CRTBP MODEL

Periodic orbits in the unperturbed model can be continued from $\mu = 0$ to $\mu > 0$. In this section, we focus on the resonant periodic families in the CRTBP model, including the symmetric and asymmetric periodic families.

3.1 The Symmetric Resonant Periodic Families

There are two different kinds of symmetric periodic orbits when $\mu > 0$: (a) periodic orbits of the first kind: the periodic orbits correspond to the nearly circular orbits of the small body, which are continued from the families D_{int} and D_{ext} in Section 2; (b) periodic orbits of the second kind: the periodic orbits correspond to elliptic orbits of the small body, which are continued from the resonant periodic orbits in Section 2. In what follows, we mainly focus on periodic orbits of the second kind and review families near the first, second, and even higher order resonances in different systems separately. The results obtained by different researchers are presented.
Fig. 2: Example orbits in the unperturbed model: the upper three orbits are in the inertial frame and the lower three are in the synodic frame. The first column illustrates an example orbit (orbit-1: $C_1=3.095526261903474$) in the family D_{int}. The second column shows an example orbit (orbit-2: $C_2=2.500304912949211$) in the family $I_{2:1}$ and the last column displays an example orbit (orbit-3: $C_3=2.5003039570216568$) in the family $II_{2:1}$. The larger and smaller blue dots represent the positions of P_1 and P_2, respectively. The green dots indicate the initial phases of the example orbits.
3.1.1 The First Order Resonances

Continuation of circular orbits in family D of the small body is possible in all cases except at the first order interior resonance $n : (n + 1)$ or exterior resonance $(n + 1) : n, (n = 1, 2, 3\ldots)$. A review of the existence proof is given in (Hadjidemetriou 1984). Analytic studies of behaviors near the first order resonances have been made by (Guillaume 1969; Hadrava & Kadrnoska 1986).

Numerical investigations of symmetric periodic families near the first order resonance have been made by many researchers. (Colombo et al. 1968; Hadjidemetriou & Ichtiaroglou 1984) perform a detailed analysis of families near the interior first order resonance $2:1, 3:2,$ and $4:3$ with the mass parameter $\mu = 0.001$. Each of the continued families consists of a part with a circular branch (continued from family D_{int}) while the remaining parts consist of elliptic branches. For each first order resonance, there exist two branches of periodic orbits of the second kind, one with periapsis on the positive x-axis (denoted as family $I_{(n+1):n}$) and the other with apoapsis on the positive x-axis (denoted as family $I_{(n+1):n}$). One family is stable and the other is unstable, but along the family, the stability type changes. Families of periodic orbits in the 2:1 resonance in the Sun-Jupiter system are investigated by many researchers (Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000; Celletti et al. 2002; Voyatzis et al. 2009). The results show that family $I_{2:1}$ is stable. Family $I_{2:1}$ consists of two parts. One part is stable and the other is unstable, separated by a collision orbit (Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000). Meanwhile, families of resonant periodic orbits at the 3:2 resonance are also investigated in (Hadjidemetriou & Voyatzis 2000). Details of the 2:1 and 3:2 resonant periodic families in the space of initial conditions x_0-h are shown in figure 1 of (Hadjidemetriou & Voyatzis 2000). Besides, families of periodic orbits in the 3:2 resonance are also studied by (Antoniadou et al. 2011; Antoniadou & Libert 2018a) in the CRTBP model with $\mu = 0.001$. More details about the 3:2 resonant periodic families are given by those authors. Two families are formed near the 3:2 resonance. Family $I_{3:2}$ is stable but could not be continued to high eccentricities of the small body, due to close encounters with the primaries. Family $I_{3:2}$ consists of two parts, one is stable and the other is unstable, divided by the region where collisions occur (see figure 4 of (Antoniadou & Libert 2018a)).

Besides, studies about the asteroid motion in the 2:1 and the 3:2 resonance in the Sun-Jupiter system are made by many researchers to have a better understanding of their different behaviors (gap in the 2:1 resonance, group in the 3:2 resonance) (Moons & Morbidelli 1993; Morbidelli 1996; Hadjidemetriou & Lemaître 1997; Hadjidemetriou 1999; Michtchenko & Ferraz-Mello 1995, 1996; Hadjidemetriou & Voyatzis 2000; Tsiganis et al. 2002).

Exterior first order resonant periodic families $n : (n + 1), (n = 1, 2, 3\ldots)$ evolve in a similar way as the interior first order resonant periodic families. The symmetric resonant families join smoothly the circular family (continued from family D_{ext}), leaving a gap on the characteristic curves at the position of the first order resonance when $\mu \neq 0$. Similarly, there are two families of periodic orbits of the second kind for each exterior first order resonance $n : (n + 1)$, denoted as family $I_{n:(n+1)}$ (with periapsis on the positive x-axis) and family $I_{n:(n+1)}$ (with apoapsis on the positive x-axis), respectively. A systematic investigation of symmetric periodic orbits at the exterior 1:2, 2:3, and 3:4 resonances in the Sun-Neptune system is given by (Kotoulas & Hadjidemetriou 2002). (Hadjifotinou & Hadjidemetriou 2002; Kotoulas & Hadjidemetriou 2003) calculated the periodic orbits and their stability for the 2:3 and the 3:4 resonant motion, respectively. A comparative study of the 2:3 and the 3:4 resonant motion in the Sun-Neptune system is also performed by (Kotoulas & Voyatzis 2004). The results show that the stable and unstable region of the family $I_{2:3}$ and $I_{3:4}$ in the CRTBP model are separated by a collision orbit. Family $I_{2:3}$ and family $I_{3:4}$ are stable for all values of the eccentricities, with the exception of a small region where collision orbits exist (Kotoulas & Hadjidemetriou 2002). Besides, systematic studies of families at the exterior first order resonance $n : (n + 1)$ with $2 \leq n \leq 7$ are conducted by (Kotoulas & Voyatzis 2005; Voyatzis & Kotoulas 2005) in the Sun-Neptune system. Family...
Fig. 3: Genealogy of the first order interior resonant periodic families in the T-C plane, continued from the upper left frame of Fig. 1 to the Sun-Earth (upper frame), Sun-Jupiter (middle frame) and Earth-Moon (lower frame) system. The abscissa is half the orbital period in the synodic frame and the ordinate is the Jacobi constant.

$I_{(n+1):n}$ joins smoothly with the family $II_{(n+1):(n+2)}$ through a segment of near circular orbits. A closed characteristic curve is formed by three families at the exterior 6:7 and the 7:8 resonance (Voyatzis & Kotoulas 2005). Besides, the stability and bifurcation analysis of the exterior 1:2 and 2:3 resonant families in the Earth-Moon system are studied by (Li et al. 2021).

As an example, we continue these first order resonant periodic families from the unperturbed two-body system (see the upper left and right of Fig. 1) to the Sun-Earth (μ_{SE}), Sun-Jupiter (μ_{SJ}) and Earth-Moon (μ_{EM}) system and present them in the T-C plane. Interior as well as exterior first order resonant periodic families, including the near circular family are displayed in Fig. 3 and 4, respectively. Stable family members are highlighted with dark blue color in Fig. 3 and 4. Example orbits corresponding to different branches of the 2:1, 3:2, and 4:3 resonant families in the Sun-Jupiter system are displayed in the Fig. 5. Comparing Fig. 3 as well as 4 with the upper frames of Fig. 1, we notice that characteristic curves of the two branches of each resonant periodic family no longer coincide with each other. Also, we find: (1) Starting from higher values of n, the interior $(n + 1) : n$ and the exterior $n : (n + 1)$ resonances are gradually influenced by the 1:1 resonance, in the form that the genealogy of first order resonant periodic families becomes more complex and more distorted from the unperturbed two-body
3.1.1 The First Order Resonances

For the Sun-Earth (upper frame), Sun-Jupiter (middle frame), and Earth-Moon (lower frame) system. The abscissa is half the orbital period in the synodic frame and the ordinate is the Jacobi constant.

System with increasing μ, especially for those close to the 1:1 resonance. (2) With increasing μ, stable orbits in the first order resonances are becoming fewer and fewer. This is due to the gradual increasing strength of the 1:1 resonance, which leads to its gradual overlap with nearby interior and exterior resonances. The resonances being overlapped generally become chaotic. For example, judging from Fig. 3, for the Sun-Jupiter system, we cannot expect stable first order resonance periodic orbits beyond the 4:3 one, and for the Earth-Moon system, we cannot expect stable first order resonance periodic orbits beyond the 3:2 one.

3.1.2 The Second Order Resonances

Continuation of the circular family D from $\mu = 0$ to $\mu > 0$ is possible at the second order resonances $(2n + 1) : (2n - 1)$ and $(2n - 1) : (2n + 1), (n = 1, 2, 3...)$ (Hadjidemetriou 1988). It is proved by (Hadjidemetriou 1982) that at the resonant circular orbits $n : n' = 3 : 1, 5 : 3, 7 : 5,...,(2n + 1) : (2n - 1),...$ there always exists a Hamiltonian perturbation which generates instability. According to (Hadjidemetriou & Ichtiaroglou 1984), the increase of the mass of the second primary ($\mu > 0$) is such a perturbation. Asteroid motions near the 3:1 resonance in the Sun-Jupiter system have been investigated by researchers (Henrand & Caranicolas 1990;
Fig. 5: Example orbits of first order resonance in the Sun-Jupiter system: orbit-4 (family $I_{2,1}$): $C=2.50023207717493$; orbit-7 (family $II_{1,1}$): $C=2.50010438547575$; orbit-5 (family $I_{3,2}$): $C=2.501824165160431$; orbit-8 (family $II_{3,2}$): $C=2.500138565225013$; orbit-6 (family $I_{4,3}$): $C=2.803722842001424$; orbit-9 (family $II_{4,3}$): $C=2.813137090752240$.
It is proved by (Hadjidemetriou & Ichtiaroglou 1982, 1985, 1993b; Hadjidemetriou & Ichtiaroglou 1984) that a small unstable region \((A, B)\) is generated in the characteristic curve near the 3:1 resonance, where \(A\) and \(B\) represent critical orbits. A similar property holds for the resonance 5:3 (Hadjidemetriou & Ichtiaroglou 1984). From the two critical orbits that define the unstable region, two families of symmetric periodic orbits of the second kind bifurcate, which are denoted as family \(I_{3:1}\) and family \(I'_{3:1}\), differing in phase only (Hadjidemetriou & Ichtiaroglou 1984; Hadjidemetriou 1993a, b). The family \(I_{3:1}\) is unstable and the family \(I'_{3:1}\) is stable (Hadjidemetriou 1992; Celletti et al. 2002). The two 3:1 resonant periodic families are displayed in Fig. 6. The families of periodic orbits of the first kind (near circular family) and the families of the second kind near 3:1 and 2:1 resonances are presented in the \(x_0-C\) plane (see the left frame of Fig. 6). In the right frame of Fig. 6, we show the near circular family and families near 3:1 resonance in the \(T-C\) plane. The unstable segment \((A, B)\) in the near circular family and families \(I_{3:1}\) as well as \(I'_{3:1}\) bifurcating from them are vividly shown. We also present one example orbit in each of the two 3:1 families in Fig. 8 (see orbit-10 and orbit-13). From the orbit shapes, we know that periodic orbits in the family \(I_{3:1}\) have two perpendicular crossings with the \(x\)-axis at \(x > 0\), while those in the family \(I'_{3:1}\) have two perpendicular crossings with the negative \(x\)-axis. By the way, the unstable 3:1 family for greater eccentricity value of the small body is further studied by (Antoniadou & Libert 2018a) and another bifurcation point is found.

Furthermore, a systematic study of periodic families at the 3:5, 5:7, and 7:9 exterior mean motion resonances is performed by (Kotoulas & Voyatzis 2005; Voyatzis & Kotoulas 2005) in the Sun-Neptune system. Similar to the interior second order resonance, for each resonance two families bifurcate: one has two perpendicular crossings with the \(x\) axis at \(x < 0\), and the other has two perpendicular crossings with the \(x\) axis at \(x > 0\). Collision orbits and close encounter orbits occur along the families, leading to more complex characteristics of the phase space.
3.1.3 Other Higher Order Resonances

A systematic investigation of the interior resonance in the Sun-Jupiter-Asteroid system, with frequency $4:3 \leq n : n' \leq 5:1$ has been carried out by (Celletti et al. 2002). For each resonance, the stability of the two families of periodic orbits (family I and family II) as a function of the averaged eccentricity $e \in (0, 1)$ is indicated in the work. The 4:1 resonance of the Sun-Jupiter asteroid system is investigated by (Hadjidemetriou 1993b). Continuation of the family D_{in} near the 4:1 resonance is possible, but no instability is generated during the continuation process. Hadjidemetriou indicated that there is only one critical point named A, from which two resonant families of periodic orbits (family $I_{4:1}$ and $II_{4:1}$) bifurcate. The family $I_{4:1}$ is stable and the family $II_{4:1}$ is unstable. Besides, families at the exterior third order resonances (4:7, 5:8, 7:10) in the Sun-Neptune system are studied in (Voyatzis & Kotoulas 2005; Kotoulas & Voyatzis 2005). Two families of elliptic resonant periodic orbits bifurcate from the circular family at the 4:7, 5:8, and 7:10 resonances. Detailed bifurcation and stability properties of the families can be found in (Voyatzis & Kotoulas 2005). Furthermore, periodic orbits near the 2:5 resonance, typically corresponding to the Sun-Jupiter-Saturn system are investigated by (Kwok & Nacozy 1982, 1985; Michtchenko & Ferraz-Mello 2001).

3.2 The Asymmetric Resonant Periodic Orbits

In the context of the planar CRTBP model, asymmetric periodic orbits have been identified for the exterior MMRs near 1:2, 1:3, 1:4, ... as well as for co-orbital motion (1:1 resonance). For the 1:1 resonance, (Taylor 1981) studied the problem of horseshoe periodic orbits in the 1:1 resonance for the Sun-Jupiter system and the asymmetric periodic orbits were found. The 1:1 asymmetric periodic families also exist and emanate from L_4 in the planar CRTBP model (Zagouras et al. 1996) and was continued to general planetary system (Giuppone et al. 2010; Hadjidemetriou & Voyatzis 2011).

(Message 1958) indicated the existence of asymmetric periodic orbits near the 1:2 resonances in the Sun-Jupiter system. (Schubart 1964) also detected the existence of asymmetric periodic orbits near the 1:2 and 1:3 resonances for the Sun-Jupiter system while investigating the long-period effects in nearly commensurable motion. Asymmetric periodic orbits related to the 1:2 and 1:3 resonances in the Sun-Jupiter system have been verified using numerical integrations by (Frangakis 1968, 1973a). By analyzing many cases of interior and exterior commensurabilities, (Frangakis 1973b) found that only for $\pm 1 : n$ ($-1 : n$ means that the orbit is retrograde) would it be possible to have an asymmetric periodic solution in the averaged problem. (Beaugé 1994) used an analytical approach to show the existence of asymmetric periodic orbits in the $1 : n$ exterior MMRs and their absence in other exterior MMRs as e.g. the 2:3 and 3:4. Furthermore, the existence of asymmetric periodic orbits associated with the $1 : n$ resonances was clearly revealed in the Poincare surfaces of the section by (Winter & Murray 1997; Voyatzis et al. 2005). Besides, (Bruno 1994) also confirmed the existence of asymmetric periodic orbits only for the exterior $1 : n$ resonances when studying the generating orbits.

The family of asymmetric periodic orbits near the 1:2 resonances was numerically determined by (Message 1970) using a method that detects bifurcations of asymmetric periodic solutions with the symmetric periodic solutions. Using the theory derived by (Message 1970), (Message & Taylor 1978) indicates that bifurcations of a family of asymmetric periodic solutions with a family of symmetric periodic solutions exist near the $1 : (n + 1), (n = 1, 2, ..., 7)$ resonances and the complete family near 1:4 resonance is determined by numerical integration. Values of eccentricity for which the bifurcation occurs for $1 : (n + 1), (n = 1, 2, ..., 7)$ resonances are also given in (Message & Taylor 1978). Extensive numerical studies of asymmetric periodic orbits in the planar CRTBP have been conducted by (Taylor 1983) for the Sun-Jupiter mass ratio. Taylor showed the existence of bifurcations of families of asymmetric periodic orbits near the exterior $1 : (n + 1)$ resonances with n up to 50 and computed the whole families

1
1.5
2
2.5
3
3.5

0.5
1
1.5
2
2.5
3
3.5

Fig. 7: The symmetric and asymmetric periodic families near 1:2 and 1:3 resonance in the Sun-Jupiter system. Family AI and AII are symmetric about the y axis. The red color indicates the unstable orbits, while the blue color indicates the stable orbits.

for (1 ≤ n ≤ 5) as well as particular segments for (6 ≤ n ≤ 12). Families of symmetric and asymmetric periodic orbits and their stability type for the 1:2, 1:3, and 1:4 exterior resonances in the Sun-Neptune system are studied in (Voyatzis et al. 2005). Asymmetric orbits bifurcating from the corresponding symmetric ones are found. We present the 1:2 and 1:3 asymmetric periodic families in the Sun-Jupiter system (see Fig. 7). As can be seen from the left of Fig. 7, an unstable segment exists in family 1:2, which starts from a low initial eccentricity value and is extended up to high eccentricity values (small value of C). A similar pattern of the characteristic curve exists for the 1:3 resonance (see the right of Fig. 7). The characteristic curve of stable asymmetric periodic orbits bifurcates from the ends of the unstable segment (critical points), but along the asymmetric family, the stability type changes (see the red dash line in the right of Fig. 7). Each characteristic curve of the asymmetric periodic orbits in Fig. 7 contains two families (family AI and AII). Along the family AI, y0 > 0, while along the family AII, y0 < 0. The representative 1:2 and 1:3 symmetric and asymmetric orbits are displayed in the second and third columns of Fig. 8, respectively.

Besides, studies indicate that the asymmetric resonant solutions also exist in the extrasolar planetary systems (Lee & Peale 2003; Beaugé et al. 2003; Voyatzis & Hadjidemetriou 2005). Research concerning the capture particles into exterior resonances when considering dissipative effects are conducted by (Patterson 1987; Sicardy et al. 1993; Lazzaro et al. 1994; Beaugé et al. 2003; Ferraz-Mello et al. 2003).

3.3 Resonant Periodic Families in 3D-CRTBP model

The 3-dimensional families of symmetric periodic orbits in the circular problem bifurcate from the vertical critical orbits of the corresponding circular problem (Hénon 1973). Numerical computation of resonant families of 3-dimensional periodic orbits are presented in (Ichiarioglu et al. 1989), at the resonances 3:1, 5:3, 1:3 and 3:5 for μ = 0.001. The 3-dimensional orbits are found by continuation to the third dimension of the corresponding planar problem. For the Sun-Neptune system, spatial resonant families are studied in the 3D-CRTBP, namely for the 1:2 resonances by (Kotoulas 2005), for the 1:2, 2:3 and 3:4 resonances by (Kotoulas & Hadjidemetriou 2002) and for the first order resonances (n : (n + 1), 2 ≤ n ≤ 6), second order resonances (3:5, 5:7, 7:9) and the third order resonances (4:7, 5:8, 7:10) by (Kotoulas & Voyatzis 2005).

Furthermore, (Markellos 1978) indicates that asymmetric vertical critical orbits contain bifurcation points for the generation of families of spatial asymmetric periodic orbits. He investigated the exterior 1:2 resonances by computing the asymmetric vertical orbits of the planar
Fig. 8: Example orbits in the CRTBP model: (1) Column 1: the unstable 3:1 resonant orbit (orbit-10: $C=3.018610188218501$) and stable 3:1 resonant orbit (orbit-13: $C=3.062181617495304$). (2) Column 2: the 1:2 symmetric (orbit-11: $C=2.415187005979774$) and asymmetric orbit (orbit-14: $C=2.4679972205675615$). (3) Column 3: the 1:3 symmetric (orbit-12: $C=2.166233870424831$) and asymmetric orbit (orbit-15: $C=2.624973271833538$). The larger and smaller blue dots represent the positions of P_1 and P_2, respectively.
CRTBP for the mass parameter $\mu \in [0.001, 0.5]$ and some samples of spatial asymmetric periodic orbits are provided in the 3D-CRTBP model. Following the approach of Markellos, (Voyatzis et al. 2018) computed the $1 : n, n = 2, 3, 4, 5$ resonant families of asymmetric periodic orbits in the 3D-CRTBP model, which can be related to the dynamics of trans-Neptunian objects.

4 FAMILIES OF PERIODIC ORBITS IN THE ERTBP MODEL

The CRTBP is a simple model to explain the resonant structure. However, the role of the secondary’s orbit eccentricity cannot be revealed by this model. Therefore, many attempts were made to have a better explanation of the resonant structure, using the model of ERTBP.

A short review on resonant periodic families in the elliptic restricted problem was given in (Hadjidemetriou 1988). In the ERTBP model, the eccentricity of the secondary P_2 is not zero ($\epsilon' \neq 0$). The periodic orbits are considered in the rotating frame $O-xy$ with the origin O at the center of mass of the two primaries and the positive x-axis along the line P_1-P_3. This is a non-autonomous Hamiltonian system with two degrees of freedom, which depends periodically on time, with a period equal to 2π (the period of the secondary’s orbit) (Hadjidemetriou 1993b; Kotoulas & Hadjidemetriou 2002). The energy integral no longer exists, which means that the stability depends on two pairs of eigenvalues, instead of one in the planar circular case (Kotoulas & Hadjidemetriou 2002).

Generally, there exist isolated periodic orbits in the ERTBP model for a fixed value of ϵ'. A family of periodic orbits can be obtained by varying the eccentricity of the second primary ϵ'. Details on the method to compute these families of periodic orbits and their stability have been studied by (Broucke 1969), which was dedicated to the Earth-Moon system. Families of the periodic orbits in the ERTBP model bifurcate from the families in the CRTBP model mentioned in Section 3, at those periodic orbits whose period is always equal to 2π, or a multiple of it. This means that periodic orbits in the elliptic problem in the rotating frame are also periodic in the inertial frame (Broucke 1969; Hadjidemetriou 1992; Kotoulas 2005). Similarly, a family of resonant periodic orbits in the ERTBP model can be represented by a characteristic curve in the three dimensional space x_0, y_0, ϵ' (Kotoulas & Hadjidemetriou 2002).

4.1 The Symmetric Resonant Periodic Families

4.1.1 The First Order Resonances

For the first order resonances, researchers (Colombo et al. 1968; Hadjidemetriou & Ichtiaroglou 1984; Bien 1980; Ferraz-Mello 1988) have shown that families of the elliptic problem bifurcate from orbits of the circular problem which lie on the resonant elliptic branches $2:1$, $3:2$, ...

Besides, (Bien 1980) indicated that for the Sun-Jupiter system the bifurcation takes place at the orbit with its eccentricity $\epsilon \simeq 0.73 (T = 2\pi)$ in the $2:1$ resonance and $\epsilon \simeq 0.45 (T = 4\pi)$ in the $3:2$ resonance. Both of these orbits lie on the stable branch of the corresponding resonance (Hadjidemetriou 1988). For the interior $2:1$ resonance in the Sun-Jupiter system, (Hadjidemetriou 1993b) indicated that there exists only one bifurcation periodic orbit on the family of periodic orbits of the CRTBP model near the $2:1$ resonance, with a period exactly equal to 2π. We present the bifurcation of the families near the $2:1$ resonance from CRTBP to ERTBP in the Sun-Jupiter system in the x_0, ϵ' space (see Fig. 9). Families in the ERTBP model near the $2:1$ resonance are denoted as family $I_{2:1e}$ and $II_{2:1e}$, respectively. The two families bifurcating from the family $I_{2:1}$ are also schematically shown in the x_0, y_0, ϵ' space by (Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000). As an example, we select the eccentricity of Jupiter $\epsilon' = 0.2$, two isolated periodic orbits of the family $I_{2:1e}$ and $II_{2:1e}$ are displayed in the first column of Fig. 11 (see orbit-16 and orbit-19). Similarly, the $3:2$ resonance has a stable family $I_{3:2}$ of symmetric periodic orbits which shows a bifurcation point on the characteristic curve to the ERTBP model (Hadjidemetriou & Voyatzis 2000; Antoniadou et al. 2005).
Antoniadou indicated that two families of symmetric periodic orbits originate from this point and both of them start stable. Antoniadou and Libert justify the existence of another bifurcation point (denoted as $B^{3:2}_{II}$), which lies on the stable parts of the characteristic curve of family $I_{3:2}$. From the bifurcation point, two new families are computed, one being stable and the other being unstable. Furthermore, periodic orbits in the 3:2 resonance and their stability of the extrasolar planetary systems are studied in (Varadi 1999).

Fig. 9: The bifurcations near 2:1 resonance of the ERTBP model in the Sun-Jupiter system ($\mu = \mu_{SJ}$), shown in the x_{0}-e' plane. Blue: Families $I_{2:1e}$. Red: Family $II_{2:1e}$.

(Ferraz-Mello 1988) found that the eccentricity of the asteroid becomes larger when we go deeper into the 2:1 and the 3:2 resonances in the ERTBP, which is verified in (Hadjidemetriou 1993b; Hadjidemetriou & Voyatzis 2000). Averaged Hamiltonian valid for high values of eccentricity of the asteroid is investigated by researchers (Morbidelli & Giorgilli 1990a, b; Ferraz-Mello et al. 1992; Hadjidemetriou & Voyatzis 2000). Furthermore, many periodic orbits for the ERTBP model associated with the dynamics of asteroids and Kuiper belt objects have been computed by (Hadjidemetriou 1999; Voyatzis & Kotoulas 2005; Henrard & Lemaître 1983a, 1987; Lemaître & Henrard 1990; Morbidelli & Giorgilli 1990b).

For exterior resonances, (Kotoulas & Hadjidemetriou 2002) performed a systematic study of periodic orbit families of the elliptic problem at the 1:2, 2:3, and 3:4 resonance with Neptune. For the exterior 1:2 mean motion resonance in the Sun-Neptune system, there are two pairs of families of periodic orbits bifurcating from the family $II_{1:2}$ at different eccentricities of e_N (Kotoulas & Hadjidemetriou 2002). (Voyatzis et al. 2009) studied the interior 2:1 resonance and the exterior 1:2 resonance in the Sun-Jupiter system. There are bifurcation points on the characteristic curve, three of them belonging to symmetric families and the other two belonging to asymmetric families. Moreover, an extensive numerical study of the periodic orbits in the ERTBP model consisting of a star, an inner massive planet, and an outer massless body in the 1:2 mean motion is made by (Haghighipour et al. 2003; Antoniadou et al. 2011). For the 2:3 and 3:4 resonances in the Sun-Neptune system, there is only one pair of families of periodic orbits bifurcating from family $II_{2:3}$ and $II_{3:4}$, respectively (Kotoulas & Hadjidemetriou 2002). The dynamical mechanisms in the 2:3 as well as the 3:4 resonance have been investigated in several studies (Levison & Stern 1995; Duncan et al. 1995; Hadjifotinou & Hadjidemetriou 2002; Kotoulas & Hadjidemetriou 2003). Furthermore, a comparative study of the 2:3 and the 3:4 resonances is performed in (Kotoulas & Voyatzis 2004). Besides, systematical studies of
bifurcations and stability of exterior first order resonance \(p : q = n : (n + 1), n = 1, 2, \ldots 6 \) are conducted in (Voyatzis & Kotoulas 2005; Kotoulas & Voyatzis 2005). Bifurcations and stability of the resonant families at the 4:5, 5:6, and 5:7 resonances in the ERTBP model are presented clearly by (Kotoulas & Voyatzis 2005).

4.1.2 The Second Order Resonances

The numerical computations performed by (Hadjidemetriou & Ichtiaroglou 1984) reveal that the periodic orbits of the first kind with a period equal to \(\pi, 3\pi, 5\pi \ldots \) exist on the circular branch of the families of periodic orbits of the circular problem. All these orbits lie on the unstable zone at the resonance 3:1, 5:3, 7:5..., respectively (Hadjidemetriou & Voyatzis 1988), from which families of periodic orbits of the elliptic problem bifurcate. Numerical computations of (Hadjidemetriou 1992) indicate that there are two pairs of 3:1 resonant families of periodic orbits of the planar ERTBP model, for the Sun-Jupiter system. Two of them, (denoted as family \(I_{3:1c}, II_{3:1c} \)), bifurcate from a periodic orbit \(E_1 \) of the CRTBP model, which lie in the unstable region \(AB \) (see Fig. 6) of family of periodic orbits of the first kind and the period is equal to \(\pi \). The other two families, (denoted as family \(I_{3:1e}, II_{3:1e} \)), bifurcate from a periodic orbit \(E_2 \) of the CRTBP model, which lies on the stable family of resonant periodic orbits of the second kind, i.e.family \(II_{3:1} \) and the period is equal to \(2\pi \). One of the families \(I_e \) and \(II_e \) is stable and the other is unstable. The detailed methods of computing the 3:1 resonant periodic families in the ERTBP model are performed by (Hadjidemetriou 1992, 1993a). Besides, the averaged Hamiltonian has been widely used to explain the 3:1 resonant motion of the ERTBP model in the Sun-Jupiter system by (Wisdom 1982, 1985, 1987; Hadjidemetriou 1991; Ferraz-Mello & Klaśk 1991). Extensive studies combining the periodic orbits and the averaged model about the 3:1 resonance in the Sun-Jupiter system are made by (Hadjidemetriou 1992, 1993a,b; Grau 1995; Antoniadou & Libert 2018a). (Antoniadou & Libert 2018a) extends the work of Hadjidemetriou to the high eccentricity of both the asteroid and the second primary. They indicated that family \(I_e \) possesses an unstable segment before it becomes stable again. Stable periodic orbits can be found in family \(I_e \) when the eccentricities of both the asteroid and the second primary are high enough. Furthermore, two new unstable families are generated in the ERTBP model from the new bifurcation point found by the authors in the CRTBP model.

Here we give an example of the bifurcations near the 5:3 resonance corresponding to the ERTBP model with the method developed in (Hadjidemetriou 1992) and present the results in the left frame of Fig. 10. Two pairs of 5:3 resonant periodic families of the planar ERTBP model for the Sun-Jupiter system are vividly shown in the \(x_0-e' \) plane. Similar to the case of 3:1 resonance studied in (Hadjidemetriou 1992), the first orbit of the family \(I_{5:3c} \) and the first orbit of the family \(II_{5:3c} \) are the same orbit of the CRTBP model \((e' = 0)\) at \(t = \pi/2 \), and \(t = 0 \), which lies in the unstable region \(AB \) of the first kind periodic family and its period is equal to \(3\pi \). Therefore, the initial states of family \(I_{5:3c} \) and \(II_{5:3c} \) are on the negative and positive \(x \)-axis, respectively. Representative orbits of family \(I_{5:3c} \) (orbit-17) and \(II_{5:3c} \) (orbit-20) are shown in the second column of Fig. 11. Family \(I_{5:3e} \) and \(II_{5:3e} \) bifurcate from a periodic orbit of the CRTBP model, which lies on the stable branch of the second kind 5:3 periodic family, and its period is equal to \(6\pi \). Example orbits of family \(I_{5:3e} \) (orbit-18) and \(II_{5:3e} \) (orbit-21) are shown in the last column of Fig. 11. Different from the case of the 3:1 resonance, family \(I_{5:3c} \) and family \(I_{5:3e} \) are actually the same family in the \(x_0-e' \) plane and in the \(x_0-y-e' \) space.

Besides, exterior second order resonance 3:5, 5:7, and 7:9 of the ERTBP model in the Sun-Neptune system have been systematically studied in (Kotoulas & Voyatzis 2005; Voyatzis & Kotoulas 2005). Three bifurcation points exist in the case of 3:5 resonance, which belong to different families near the 3:5 resonance. There are five bifurcation points for both 5:7 and 7:9 resonance. The generated families of the two families have the same qualitative features.
Fig. 10: The bifurcations of the ERTBP model in the Sun-Jupiter system ($\mu = \mu_{SJ}$), shown in the x_0-e' plane. Left: Bifurcations near 5:3 resonance. Right: Bifurcations near 7:4 resonance.

4.1.3 Other Higher Order Resonances

Stability of periodic resonance orbits (3:1, 4:1, 5:1, and 6:1) in the ERTBP model for different values of the eccentricity of the second primary for $\mu = 0.1$ and $\mu = 0.5$ are investigated in (Kribbel & Dvorak 1988). Detailed bifurcations of the 4:1 resonance of the ERTBP model for the Sun-Jupiter system are analyzed in (Hadjidemetriou 1993b). Hadjidemetriou indicates that there are three periodic orbits of the CRTBP model near the 4:1 resonance, from which families of periodic orbits of the ERTBP model bifurcate. Extensive studies about the stability of these generated families for greater eccentricity values of the second primary are conducted in (Antoniadou & Libert 2018a). Moreover, the third order exterior resonances (4:7, 5:8, 7:10) of the ERTBP model in the Sun-Neptune system are investigated in (Kotoulas & Voyatzis 2005; Voyatzis & Kotoulas 2005). Bifurcation points and stability of the generated families are vividly shown. Besides, research on periodic orbits of the ERTBP model for the Sun-Jupiter-Saturn system (2:5 resonance) has been conducted by many researchers (Kwok & Nacozy 1982, 1985; Michtchenko & Ferraz-Mello 2001).

Taking the 7:4 resonance in the Sun-Jupiter system as an example, we present the bifurcations of the third order resonance of the ERTBP model in the right frame of Fig. 10. Similar to the case of 4:1 resonance studied in (Hadjidemetriou 1993b), there are three periodic orbits (denoted as orbit-BP1, BP2 ad BP3) of the circular problem near the 7:4 resonance, from each of which two periodic families of the elliptic problem bifurcate (one family with Jupiter at perihelion, the other with Jupiter at aphelion). The orbit-BP1 lies on the first kind periodic family and its period equals $8\pi/3$, from which family $I_{7.4c}$ and $II_{7.4c}$ bifurcate. The orbit-BP2 and orbit-BP3 are on the second kind periodic family with their period equal to 8π, from which the other two pairs of periodic families, family $I_{7.4e}$ and $II_{7.4e}$ as well as family $III_{7.4e}$ and $IV_{7.4e}$ bifurcate. We present these three pairs of 7:4 resonant periodic families of the planar ERTBP model for the Sun-Jupiter system in the right frame Fig. 10. Six example orbits belonging to family $I_{7.4c}$ (orbit-19), $II_{7.4c}$ (orbit-22), $I_{7.4e}$ (orbit-20), $II_{7.4e}$ (orbit-23), $III_{7.4e}$ (orbit-21) and $IV_{7.4e}$ (orbit-24) are shown in Fig. 12. It is not easy to find that family $II_{7.4c}$ and $II_{7.4e}$ belongs to one family in the x_0-e' plane, and so do the family $I_{7.4c}$ and $III_{7.4c}$. Details of the second and third order bifurcated families in the ERTBP model and their stability will appear in our future work.
Fig. 11: Example orbits in the ERTBP model ($e' = 0.2$): (1) Column 1: example orbit in the family $I_{2:1e}$ (orbit-16) and in the family $II_{2:1e}$ (orbit-19). (2) Column 2: example orbit in the family $I_{5:3c}$ (orbit-17) and in the family $II_{5:3c}$ (orbit-20). (3) Column 3: example orbit in the family $I_{5:3e}$ (orbit-18) and in the family $II_{5:3e}$ (orbit-21). The larger and smaller blue dots represent the positions of P_1 and P_2, respectively.
Fig. 12: Example orbits in the ERTBP model: (1) Column 1: example orbit in the family $I_{7:4c}$ (orbit-22: $e' = 0.2$) and in the family $II_{7:4c}$ (orbit-25: $e' = 0.04$). (2) Column 2: example orbit in the family $I_{7:4c}$ (orbit-23: $e' = 0.1$) and in the family $II_{7:4c}$ (orbit-26: $e' = 0.04$). (3) Column 3: example orbit in the family $III_{7:4c}$ (orbit-24: $e' = 0.1$) and in the family $IV_{7:4c}$ (orbit-27: $e' = 0.2$). The larger and smaller blue dots represent the positions of P_1 and P_2, respectively. The green dots indicate the initial phases of the example orbits.
4.2 The Asymmetric Resonant Periodic Families

Different from the symmetric cases, much less work has been carried out for asymmetric periodic orbits in the ERTBP model. (Voyatzis & Kotoulas 2005) find that many bifurcation points along the symmetric periodic orbits and conjectured the existence of asymmetric periodic orbits in the elliptic problem. (Antoniadou et al. 2011) computed and showed the existence of such families in the ERTBP model and examined their continuation to the general model.

4.3 Resonant Periodic Families in 3D-ERTBP model

There are two ways to compute the resonant families of periodic orbits in the 3D-ERTBP model, one by bifurcating from the 3D-periodic families of the 3D-CRTBP model, and the other by vertically bifurcating from the families of the planar ERTBP model. In the Sun-Neptune system, (Kotoulas & Hadjidemetriou 2002) computed families of periodic orbits of the 3D-RTBP, at the resonances 1:2, 2:3, and 3:4 with both methods. An extensive study on the 1:2 resonance has also been done by (Kotoulas 2005). Besides, a symplectic mapping model based on the averaged Hamiltonian is constructed by (Hadjifotinou & Hadjidemetriou 2002), which is used to study the 2:3 and the 3:4 exterior resonances for the 3D-ERTBP model in the Sun-Neptune system by (Hadjifotinou & Hadjidemetriou 2002; Kotoulas & Hadjidemetriou 2003; Kotoulas & Voyatzis 2004).

Spatial resonant periodic orbits corresponding to the planetary systems are also investigated by researchers. Resonant periodic orbits in 3-dimensional exoplanetary systems and their stability are analyzed for 2:1 resonance by (Antoniadou & Voyatzis 2013) and for 4:3, 3:2, 5:2, 3:1, and 4:1 resonances by (Antoniadou & Voyatzis 2014). Besides, spatial families which emanate from the circular family for the 5:2 and 7:3 resonances are shown by (Antoniadou & Voyatzis 2017). Extensive studies of (Antoniadou & Libert 2018a,b) related to 3:2, 2:1, 5:2, 3:1, 4:1, and 5:1 interior resonances from 2D-RTBP to 3D-RTBP (circular and elliptic cases) are also performed by (Antoniadou & Libert 2019).

5 CONCLUSION

Resonant periodic orbits in the restricted three-body problem are reviewed. Starting from the unperturbed two-body problem, resonant periodic orbits in two models are presented, including the CRTBP and ERTBP, each of which includes the planar as well as the 3-dimensional case. Works related to the symmetric and asymmetric periodic orbits in these two models are introduced, respectively. Bifurcations of resonant periodic families and their stability are presented in detail for the first order, second order, and other higher order resonances.

In the CRTBP model, the near circular family D continued from the unperturbed model bifurcates at the first order resonances, from which two families of symmetric periodic families are generated, differing in phase only. The continuation of circular family D from $\mu = 0$ to $\mu > 0$ is possible at the second order resonances. Due to the perturbation of the second primary, an unstable region exists near the second order resonance, from which symmetric families of the second order resonances are generated. In addition to the first and the second order resonances, families near other higher order resonances and their properties are also reviewed.

Investigations on the resonant periodic families in the ERTBP model were made by researchers to reveal the influence of the secondary’s orbital eccentricity. It is found that families of the elliptic problem bifurcate from periodic orbits of the circular problem which reside on the resonant elliptic branches of the first order resonances and the circular branches of the second order resonances. The period of these bifurcation orbits is always equal to 2π, or a multiple of it. Furthermore, families of asymmetric periodic orbits bifurcating from symmetric periodic orbits in the CRTBP and ERTBP are determined. Vertical critical orbits exist in the resonant
periodic families of the planar CRTBP and ERTBP, from which the 3-dimensional families are generated and investigated by researchers.

MMRs are very important in shaping the current structure of the solar system, and resonant periodic family is one approach to study them. Therefore, studies on the resonant periodic families in the restricted three-body model of the Sun-planet system, especially for the Sun-Jupiter and Sun-Neptune system, are performed by many researchers. These studies give us a better understanding of these resonance phenomena in the solar system (e.g. Kirkwood gaps, trans-Neptunian objects). Meanwhile, there is a growing interest in extrasolar planetary systems. MMRs are also detected and analyzed with the resonant periodic orbits in the extrasolar planetary system by researchers.

One final remark is that: the current review only focuses on the direct (prograde) resonance orbits, leaving the 1:1 resonance, i.e., co-orbital motion and the retrograde orbits untouched. These resonances also have their correspondence in the solar system (for example, the Trojans, and the retrograde asteroids) and are the research interest of many historical and current studies.

Acknowledgements This work is supported by the National Natural Science Foundation of China (No11773017).

References

Antoniadou, K. I., & Libert, A.-S. 2018a, Celestial Mechanics and Dynamical Astronomy, 130, 41
Antoniadou, K. I., & Voyatzis, G. 2013, Celestial Mechanics and Dynamical Astronomy, 115, 161
Antoniadou, K. I., & Voyatzis, G. 2017
Beaugé, C. 1994, Celestial Mechanics and Dynamical Astronomy, 60, 225
Bien, R. 1980, Celestial Mechanics, 21, 157
Birkhoff, G. D. 1927, Dynamical systems, Vol. 9 (American Mathematical Soc.)
Broucke, R. 1969, AIAA Journal, 7, 1003
Broucke, R. A. 1968, Periodic orbits in the restricted three-body problem with earth-moon masses
Bruno, A. D., & Varin, V. P. 2006, Celestial Mechanics and Dynamical Astronomy, 95, 27
Frangakis, C. N. 1968, PhD thesis, -
Grau, M. 1995, Celestial Mechanics and Dynamical Astronomy, 61, 389
Hadjidemetriou, J. D. 1975, Celestial Mechanics, 12, 255
Hadjidemetriou, J. D. 1982, Celestial Mechanics, 27, 305
Hadjidemetriou, J. D. 1984, Celestial Mechanics, 34, 379
Hadjidemetriou, J. D. 1985, in Resonances in the Motion of Planets, Satellites and Asteroids, 1
Hadjidemetriou, J. D. 1986, Zeitschrift Angewandte Mathematik und Physik, 37, 776
Hadjidemetriou, J. D. 1988, Celestial Mechanics, 43, 371
Hadjidemetriou, J. D. 1992, Celestial Mechanics and Dynamical Astronomy, 53, 151
Hadjidemetriou, J. D. 1993a, Celestial Mechanics and Dynamical Astronomy, 56, 563
Hadjidemetriou, J. D. 1993b, Celestial Mechanics and Dynamical Astronomy, 56, 201
Hadjidemetriou, J. D. 1999, Celestial Mechanics and Dynamical Astronomy, 73, 65
Hadjidemetriou, J. D., & Voyatzis, G. 2011, Celestial Mechanics and Dynamical Astronomy, 111, 179
Hadjidemetriou, J., & Voyatzis, G. 2000, Celestial Mechanics and Dynamical Astronomy, 78, 137
Hadjifotinou, K., & Hadjidemetriou, J. 2002, Celestial Mechanics and Dynamical Astronomy, 84, 135
Hadrová, P., & Kadrnoska, J. 1986, Celestial Mechanics, 39, 267
Hénon, M. 1997, Generating Families in the Restricted Three-Body Problem
Henrard, J., & Lemaître, A. 1983a, Icarus, 55, 482
Henrard, J., & Lemaître, A. 1983b, Celestial Mechanics, 30, 197
Henrard, J., & Lemaître, A. 1987, Icarus, 69, 266
Hou, X., Xin, X., & Feng, J. 2018, Communications in Nonlinear Science and Numerical Simulations, 56, 93
Ichtiaroglou, S., Katopodis, K., & Michalodimitrakis, M. 1989, Journal of Astrophysics and Astronomy, 10, 367
Kotoulas, T. A., & Hadjidemetriou, J. D. 2002, Earth Moon and Planets, 91, 63
Kotoulas, T. A., & Hadjidemetriou, J. D. 2003, Earth Moon and Planets, 93, 203
Kotoulas, T., & Voyatzis, G. 2004, Celestial Mechanics and Dynamical Astronomy, 88, 343
Kribbel, J., & Dvorak, R. 1988, Celestial Mechanics, 43, 391
Lee, M. H., & Peale, S. J. 2003, in AAS/Division of Dynamical Astronomy Meeting, Vol. 34, AAS/Division of Dynamical Astronomy Meeting #34, 12.06
Li, X., Qian, Y., Yang, X.-D., & Zhang, W. 2021, Results in Physics, 31, 104961
McCormas, D., Carrico, J., Hautamaki, B., et al. 2011, Space Weather, 9, 11002
Morbidelli, A., & Giorgilli, A. 1990a, Celestial Mechanics and Dynamical Astronomy, 47, 145
Morbidelli, A., & Giorgilli, A. 1990b, Celestial Mechanics and Dynamical Astronomy, 47, 173
Patterson, C. W. 1987, Icarus, 70, 319
Schubart, J. 1964, SAO Special Report, 149
Tsiganas, K., Varvoglis, H., & Hadjidemetriou, J. D. 2002, Icarus, 159, 284
Voyatzis, G., & Hadjidemetriou, J. D. 2005, Celestial Mechanics and Dynamical Astronomy, 93, 263
Voyatzis, G., Kotoulas, T., & Hadjidemetriou, J. D. 2005, Celestial Mechanics and Dynamical Astronomy, 91, 191
Voyatzis, G., Tsiganas, K., & Antoniadou, K. I. 2018, Celestial Mechanics and Dynamical Astronomy, 130, 29
Wisdom, J. 1985, Icarus, 63, 272
Wisdom, J. 1987, Icarus, 72, 241
Zaborsky, S. 2020, Journal of the Astronautical Sciences, 67, 1300