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Abstract

Accurate determinations of metallicity for large, complete stellar samples are essential for advancing various
studies of the Milky Way. In this paper, we present a data-driven algorithm that leverages photometric data from
the KiDS and the VIKING surveys to estimate stellar absolute magnitudes, effective temperatures, and
metallicities. The algorithm is trained and validated using spectroscopic data from LAMOST, SEGUE, APOGEE,
and GALAH, as well as a catalog of very metal-poor stars from the literature, and Gaia EDR3 data. This approach
enables us to estimate metallicities, effective temperatures, and g-band absolute magnitudes for approximately
0.8 million stars in the KiDS data set. The photometric metallicity estimates exhibit an uncertainty of around
0.28 dex when compared to spectroscopic studies, within the metallicity range of −2 dex to 0.5 dex. The
photometric effective temperature estimates have an uncertainty of around 149 K, while the uncertainty in the
absolute magnitudes is approximately 0.36 mag. The metallicity estimates are reliable for values down to about
−2 dex. This catalog represents a valuable resource for studying the structure and chemical properties of the Milky
Way, offering an extensive data set for future investigations into Galactic formation and evolution.
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1. Introduction

Understanding the chemical composition of the Milky Way
is key to unraveling its structure, formation, and evolutionary
processes (e.g., Casagrande et al. 2011; Peng et al. 2013; Yan
et al. 2019; Whitten et al. 2021; Martin et al. 2023; Sun et al.
2023; Hackshaw et al. 2024).

The field has been transformed by large-scale spectroscopic
surveys, such as the Radial Velocity Experiment (RAVE;
Steinmetz et al. 2006), Sloan Extension for Galactic Under-
standing and Exploration (SEGUE; Yanny et al. 2009), Large
Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST; Zhao et al. 2012; Liu et al. 2015), Apache Point
Observatory Galactic Evolution Experiment (APOGEE;
Majewski et al. 2017), and the Galactic Archaeology with
HERMES project (GALAH; De Silva et al. 2015). These
surveys have collected spectra for more than ten million stars
(e.g., Luo et al. 2015; Yuan et al. 2015a), providing critical
stellar parameters such as effective temperature (Teff), metalli-
city ([Fe/H]), surface gravity ( glog ), and other physical
properties. This wealth of data has enabled significant advances
in our understanding of the Milky Way’s structure, chemical
composition, and kinematics.

For example, using metallicity data from LAMOST, Wang
et al. (2019) found that the vertical metallicity gradient is
steeper in younger stars, reaches a maximum in stars of
intermediate age, and becomes flatter in older populations.
Rojas-Arriagada et al. (2020), employing APOGEE data,
identified a trimodal metallicity distribution in the Galactic

bulge, suggesting distinct spatial distributions and kinematic
structures among metal-rich, metal-intermediate, and metal-
poor populations, providing important clues about their
formation histories. Additionally, Guiglion et al. (2024) used
a hybrid convolutional neural network (CNN) approach to
reanalyze the Radial Velocity Spectrometer (RVS) sample and
characterized the [Fe/H]-[α/Fe] bimodality in the Galactic
disk. Further insights come from Zhang et al. (2024), who
examined a large sample of giant stars using Gaia DR3 XP
spectra. They found that a clear disk population emerges at
[M/H] ∼ −1.3 dex, with no such population present at
[M/H] < −1.6 dex, suggesting two distinct halo populations
in the very metal-poor regime. Similarly, Lian et al. (2023)
analyzed APOGEE metallicities and discovered that the radial
[Fe/H] gradients of older stellar populations are flatter than
those of younger stars. Finally, Hattori (2025) estimated [M/H]
and [α/M] for 48 million giant and dwarf stars in low-
extinction regions using Gaia DR3 XP spectra, finding that
high-[α/M] and low-[α/M] stars exhibit distinct kinematic
properties, particularly among giants and low-temperature
dwarfs.
Spectroscopic methods, while valuable, are resource-inten-

sive in terms of telescope time and are often constrained by
complex selection biases (e.g., Nidever et al. 2014; Wojno et al.
2017; Chen et al. 2018). Additionally, the faintness of the
target stars limits the scope of exploration, particularly in the
more distant regions of the Milky Way, such as the halo. In
contrast, large-scale, high-precision, multi-band photometric
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surveys—such as the SkyMapper Southern Survey (SMSS;
Wolf et al. 2018), Javalambre/Southern Photometric Local
Universe Survey (J/S-PLUS; Cenarro et al. 2019; Mendes de
Oliveira et al. 2023), and Gaia (Gaia Collaboration et al.
2016, 2018, 2021)—have proven capable of reliably deriving
stellar atmospheric parameters from photometry across a broad,
unbiased sample of stars (e.g., Ivezić et al. 2008; Yuan et al.
2015b; Huang et al. 2022; Xu et al. 2022; Sun et al. 2023; Lu
et al. 2024; Xiao et al. 2024).

Photometric methods have shown great promise in mapping
the chemical properties of the Milky Way. Ivezić et al. (2008)
demonstrated the ability to distinguish between the thin disk,
thick disk, and halo components using photometrically derived
metallicities from SDSS data. Building upon this, An & Beers
(2020, 2021a, 2021b) advanced the photometric mapping of the
Milky Way by integrating spatial and chemical information
with Gaia proper motions. Further, Fernández-Alvar et al.
(2021) identified a stellar population exhibiting the rotational
velocities characteristic of the thin disk, even at metallicities as
low as [Fe/H] ∼ −2 dex, using stars from the Pristine survey
(Starkenburg et al. 2017) in the direction of the Milky Way’s
anticenter. Huang et al. (2019, 2022, 2023) applied the stellar
loci fitting technique to the photometric data from SMSS DR2
and the Stellar Abundances and Galactic Evolution Survey
(SAGES; (Fan et al. 2023)) DR1. Thanks to the well-optimized
narrow/medium-band u, v filters, they were able to estimate
photometric metallicities down to [Fe/H] ∼ −3.5 dex for
nearly 50 million stars. Similarly, Youakim et al. (2020)
mapped the metallicity distribution within the Milky Way’s
inner halo using Pristine Survey data, revealing a higher
fraction of metal-poor stars than previously reported and
estimating the likely number of metal-poor globular clusters in
the halo. Chiti et al. (2021a, 2021b) explored the Milky Way’s
Metallicity Distribution Function (MDF), deriving metallicities
for approximately 28,000 stars down to [Fe/H] ∼ −3.75 dex
using SMSS data. Additionally, Whitten et al. (2021) used
S-PLUS photometry to estimate effective temperatures,
metallicities, carbon abundances, and carbonicity for over
700,000 stars. These data enabled them to characterize the
K-dwarf halo MDF and the frequency of Carbon-Enhanced
Metal-Poor (CEMP) stars in the Milky Way. Expanding on
this, Kim & Lépine (2022) compiled a catalog of 551,214
main-sequence stars in the local thick disk and halo, calibrated
their photometric metallicities, and analyzed their kinematics,
identifying structures consistent with known halo components.
Finally, Martin et al. (2023) utilized Gaia BP/RP spectra to
derive synthetic photometry of the Ca II H&K region, based on
narrow-band photometry from the Pristine Survey, to illustrate
how the Milky Way’s structure varies with metallicity.

In this study, we leverage deep multi-band photometric data
from the Kilo-Degree Survey (KiDS; Kuijken et al. 2019)
and the VISTA Kilo-degree Infrared Galaxy (VIKING; Edge
et al. 2013) survey to estimate photometric metallicities for

approximately 820,055 stars in the Milky Way. This extensive
catalog allows us to explore the Milky Way’s structure,
formation, and evolutionary processes.

2. Data

In this study, we aim to derive photometric metallicities
using multi-band photometry, trained on a foundation of
spectroscopic data.

2.1. Photometric Data

The photometric data are sourced from the KiDS and VIKING
surveys, which cover an area of 1350 square degrees, providing
observations in both optical and near-infrared (NIR) wavelengths.
The KiDS survey, conducted with the VST/OmegaCAM
telescope (Capaccioli & Schipani 2011; Kuijken 2011), utilizes
four optical filters (u, g, r, i) with a resolution of 0.2 pixel−1. The
r-band images are taken under optimal seeing conditions, with an
average full width at half maximum (FWHM) of approximately
0.7. These images reach a mean limiting AB magnitude (5σ in a
2″ aperture) of 25.02 ± 0.13mag. The remaining bands (u, g, i)
have slightly lower resolution (FWHM < 1.1) and fainter
limiting magnitudes of 24.23± 0.12 mag, 25.12± 0.14mag, and
23.68 ± 0.27 mag, respectively (Kuijken et al. 2019).
The VIKING survey, using the VISTA/VIRCAM instru-

ment (Sutherland et al. 2015), complements KiDS with five
NIR bands (Z, Y, J, H, KS). The median seeing for these images
is approximately 0.9, with depths ranging from 21.2 mag to
23.1 mag across the passbands (Edge et al. 2013). Together, the
KiDS DR4 and VIKING DR4 releases contain photometric
data for over 100 million unique sources. The deep limiting
magnitudes of these data sets provide an excellent sample for
investigating the Milky Way’s chemical properties.
For stellar distance measurements, we used Gaia EDR3

photometric and astrometric data. Rather than directly inverting
Gaia parallax measurements to estimate distances, we employed
the distance catalog from Bailer-Jones et al. (2021), which
provides distance estimates for nearly 1.47 billion stars.
This catalog is based on Gaia parallaxes and includes a weak
prior that accounts for the spatial distribution of stars in the
Milky Way.
Since the KiDS and VIKING surveys primarily target

regions at high Galactic latitudes (|b| > 22°), the observed stars
are minimally affected by extinction. The magnitudes and
colors presented in this study have been corrected for reddening
using E(B − V ) values from Schlegel et al. (1998), with
extinction coefficients for the KiDS and VIKING passbands
adopted from Kuijken et al. (2019).

2.2. Spectroscopic Data

To derive photometric Teff and metallicities from the multi-
band photometry of the KiDS and VIKING surveys, we rely on
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training samples with robust spectroscopic metallicity measure-
ments. Our primary spectroscopic data set is drawn from the
LAMOST Galactic survey. The LAMOST telescope, a quasi-
meridian reflecting Schmidt instrument, is capable of simulta-
neously obtaining spectra for up to 4000 celestial objects
within a 5° diameter field of view. The spectra cover a
wavelength range from 3700 to 9100Å, with a resolution of
R ≈ 1800. The LAMOST DR9 release includes over 11 million
spectra, comprising 242,569 galaxies, 10,907,516 stars, and
76,167 quasars. Stellar atmospheric parameters, such as
metallicity ([Fe/H]), are determined using the LAMOST
Stellar Parameter Pipeline (LASP; Wu et al. 2014), providing
reliable metallicity estimates for stars with [Fe/H] values above
−2.5 dex.

To ensure broader coverage across a range of stellar types
and effective temperatures (3300 K� Teff� 8800 K), we also
incorporate data from other spectroscopic surveys, including
APOGEE, SEGUE, and GALAH DR2. However, combining
multiple spectroscopic data sets introduces challenges due to
systematic differences in stellar parameter estimations, which
can arise from variations in instrumentation and data proces-
sing methods across the surveys. To mitigate these discrepan-
cies, we cross-match stars from LAMOST, GALAH, and
SEGUE with those in APOGEE. This allows us to apply zero-
point corrections for metallicity and effective temperature,
harmonizing the metallicity scales between LAMOST and the
other data sets.

For the characterization of extremely metal-poor stars—a
regime where many spectroscopic surveys face limitations—we
augment our data set with stars from specialized studies
targeting this population (Jacobson et al. 2015; Li et al. 2018;
Da Costa et al. 2019; Aguado et al. 2019). This sample includes
10,224 stars with metallicities predominantly in the range −3.5
to −2 dex, all with [Fe/H] < −2 dex. These extremely metal-
poor stars enhance the precision of our metallicity estimates at
the lowest end of the metallicity distribution.

2.3. Training Data Set

We constructed two distinct training sets to derive
metallicities, Teff, and distances for stars. The first set, referred
to as the “KS” sample, consists of objects common to both the
KiDS data set and the spectroscopic samples described earlier.
The second set, named the “KG” sample, includes stars that are
cross-matched between the KiDS data set and Gaia EDR3.

The selection criteria for both the KS and KG samples are as
follows:

1. Stars must be detected in all nine KiDS and VIKING
filters, with photometric uncertainties below 0.08 mag.

2. The star classification probability, as indicated by
the KiDS image classification (“class_star”), must be at
least 0.9.

3. Reddening values, sourced from Schlegel et al. (1998),
must satisfy E(B − V ) < 0.1 mag.

Additionally, for the KS sample (which includes spectroscopic
data), we apply the following constraints:

1. The spectral signal-to-noise ratio (S/N) must exceed 30.
2. The uncertainty in effective temperature (δTeff) should be

less than 150 K.
3. Errors in surface gravity ( ( )glogd ) must not exceed

0.2 dex.
4. Metallicity errors (δ[Fe/H]) should be below 0.2 dex.

For the KG sample, which relies on Gaia data, the additional
selection criteria are:

1. Relative errors in Gaia parallaxes (δϖ/ϖ) must be less
than 0.1.

2. The Renormalized Unit Weight Error (RUWE) must be
1.4 or lower.

For the metal-poor star sample, we relaxed the spectroscopic
data quality requirements to ensure sufficient representation of
metal-poor stars in the final sample. After applying these
selection criteria, the KS sample contains 11,318 stars, while
the KG sample includes 136,708 stars. Table 1 summarizes the
parameter ranges for stars within both training sets.
The metallicities in the KS sample predominantly range from

−0.5 to −1.5 dex, while the absolute magnitudes in the KG
sample (Mg) are primarily between 5 and 10 mag. This
distribution introduces an imbalance in the sample, which
could affect the accuracy of regression models due to
insufficient coverage of certain regions in parameter space.
To mitigate this, we applied a grid-based averaging technique
within a three-dimensional space defined by Teff, ( )glog , and
[Fe/H] for the KS sample. We computed the average
metallicity and Teff at each grid. The grid dimensions were
set to 150 K in effective temperature, 0.05 dex in surface
gravity, and 0.02 dex in metallicity. This process generated
9312 synthetic stars, including 8248 dwarfs and 1064 giants.
For the KG sample, we divided the parameter space into two

dimensions: Mg and (g − r)0, with grid steps of 0.01 mag for
both parameters. This resulted in 26,996 synthetic stars, with
348 giants and 26,648 dwarfs. The relatively low number of
giants is due to the long exposure times of the KiDS survey and

Table 1
Parameter Ranges for Stars in the KS and KG Training Samples

Parameter Range

Teff [3311–8846] K
( )glog [0.20–5.53] dex

[Fe/H] [−3.92–0.44] dex
Mg [2.26–16.22] mag
(g − r)0 [−0.28–1.12] mag
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the larger relative errors in Gaia parallaxes for distant, faint
stars. These gridded populations of 9001 stars (KS sample) and
26,996 stars (KG sample) constitute our final training data set.

3. Methods

This section describes the methodology employed in this
study. First, we distinguish between giant and dwarf stars using a
Random Forest Classifier (RFC; Breiman 2001). Once the stars
are classified, we apply two separate Random Forest Regression
(RFR) models—one for dwarfs and one for giants—to estimate
photometric metallicities and Teff. Additionally, we train another
pair of RFR models to predict absolute magnitudes for each
stellar class. The Random Forest (RF) algorithm (Breiman 2001;
Hastie et al. 2009) is an ensemble learning method that
aggregates the predictions of numerous decision trees to arrive
at a final estimate. Each tree in the forest is built on a randomly
selected subset of features and is trained on a bootstrapped
sample of the data, ensuring diversity among the trees. The final
RF prediction is obtained by averaging the outputs from all trees
in the ensemble. Importantly, the algorithm also calculates
feature importance (Imp(x)) by assessing how much each feature
contributes to the decision-making process across all trees. These
importance scores are then averaged to provide an overall
ranking of feature significance.

In this study, all RF models are implemented using the scikit-
learn package (Pedregosa et al. 2011) in Python. To construct
the RF models, we randomly split the training data, using 70%
for model training and reserving the remaining 30% for testing
and evaluating predictive performance. In addition to the RF
algorithm, we experimented with other machine learning (ML)
techniques, including Support Vector Machines (SVM), Multi-
layer Perceptron (MLP), and Deep Learning (DL) approaches.
After comparing the performance of these methods, Random
Forest was found to be the most effective for accurately
determining stellar parameters.

3.1. Dwarf-Giant Classification

In this subsection, we describe the classification algorithm
used to distinguish between dwarf and giant stars. We employ a
Random Forest Classifier (RFC) that processes intrinsic color
indices: (u − g)0, (g − r)0, (r − i)0, (i − Z)0, (Z − Y)0, (Y − J)0,
(J − H)0, ( )H Ks 0- , along with nine de-reddened magnitudes.
We made an empirical classification of giants and dwarfs on the
Kiel diagram following the approach of previous works (e.g.,
Thomas et al. 2019; Guo et al. 2021). Figure 1 shows a Kiel
diagram for all stars in the KS training sample. Stars within the
red polygon are classified as giants, while those outside are
considered dwarfs. The RFC provides the probability of a star
being a giant, Pgiant, or a dwarf, Pdwarf, where Pdwarf is
complementary to Pgiant, i.e., Pdwarf = 1 − Pgiant.

To evaluate the performance of our classification, we
calculate the completeness and purity for both the dwarf and

giant classes within the test set, as predicted by the trained
RFC. These metrics are presented in Table 2. The depth of the
KiDS survey, which reaches beyond 25 mag in the g-band,
results in a sample dominated by dwarf stars. The RFC proves
highly effective at classifying dwarfs, achieving a completeness
of 93% with less than 1% contamination by giant stars. For the
less frequent giants, the RFC successfully classifies nearly half,
with a purity of around 31%.

3.2. Estimating Metallicities, Effective Temperature, and
Absolute Magnitudes

In this step, the algorithm estimates metallicity ([Fe/H]),
effective temperature (Teff), and g-band absolute magnitude
(Mg) for both giant and dwarf stars. We use a RFR to predict
these parameters, with eight intrinsic colors serving as input
features. Once trained, the RFR models are applied to the test
samples to predict [Fe/H], Teff, and Mg, and the results are
compared to the reference values, as shown in Figure 2.
The systematic deviations between the predicted and true

values of [Fe/H], Teff, and Mg are minimal, with mean offsets of
0.00 dex for [Fe/H], −2 K for Tef,f, and −0.01mag for Mg. The
standard deviations of the residuals are 0.34 dex for [Fe/H],
149 K for Teff, and 0.36mag for Mg. The dispersion of the
[Fe/H] residuals is 0.28 dex for stars with metallicity in the

Figure 1. The Kiel diagram for the KS sample used in the dwarf-giant
classification. The red polygon encloses stars classified as giants, while those
outside are classified as dwarfs.

Table 2
Completeness and Purity of Dwarf and Giant Classifications in the Test Set

Class Fraction of Sample Completeness Purity

Dwarf 0.96 0.93 0.99
Giant 0.04 0.47 0.31

Note. The second column shows the proportion of giants and dwarfs in the
sample, the third column lists the completeness of the classifications, and the
fourth column provides the purity.
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range −2 < [Fe/H] < 0.5 dex. Across most of the metallicity
range, there are no significant trends in the [Fe/H] residuals,
except for the most metal-poor stars ([Fe/H] < −2 dex). For
these stars, the algorithm tends to overestimate the metallicity
compared to spectroscopic measurements, suggesting reduced
reliability for stars with [Fe/H] < −2 dex. The broad u-band
filter used in the KiDS survey, similar to that in SDSS, is less
sensitive to changes in metallicity for stars with [Fe/H] below
−2 dex, which may contribute to this reduced accuracy. The
residuals of the effective temperature (Teff) show no significant
trends across the range of 3500K–8800K.

For absolute magnitudes, Mg, most stars in the training set
fall within a range of 5–12 mag. The residuals show no
significant trends within this range, though some deviations are
observed at the extremes (Mg < 4 mag and Mg > 12 mag).
These outliers could be due to smaller sample sizes at the
boundaries of the data set and the inherent limitations of
machine learning algorithms when extrapolating beyond the
core of the training distribution.

3.3. Estimating Uncertainties in the Training Sample

RF models inherently exhibit variability due to the
randomization involved in bootstrap sampling and feature
selection. Typically, a single partition of the data set into
training and test sets is used to train the RF models. In this
study, however, we improve the robustness of our results by
dividing the training sample into seven distinct training and test
set pairs, each generated using a different random seed, while
maintaining a consistent partition ratio of 70% training and
30% testing. For each of the seven splits, we train four
independent RFR models, each initialized with a different

random state. This approach results in a total of 28 models. The
variation in random states ensures that each decision tree
evaluates a different subset of features at each node, enhancing
the diversity of the ensemble. These models are then used to
predict metallicities ([Fe/H]), effective temperature (Teff), and
absolute magnitudes (Mg) for the stars in our sample. The final
predicted values are the averages across the ensemble of 28
models, and the standard deviations of these predictions are
taken as a measure of the internal uncertainty of our method.
However, this internal uncertainty does not account for the

full predictive error, as it excludes uncertainties from the input
measurements. To capture the total uncertainty, we follow the
approach of Nepal et al. (2023) and Guiglion et al. (2024).
Specifically, we calculate the dispersion of the differences
between the true labels and those predicted by the RF models
as a function of the true labels in the training sample. This
dispersion provides an estimate of the precision relative to the
training input, referred to as the “systematic” uncertainty.
In Figure 3, we present both types of uncertainties—internal

and systematic—for the [Fe/H], Teff, and Mg predictions. The
systematic errors are measured by the spread of predictions
across the 28 RFR models. For [Fe/H], the systematic errors
are 0.24 dex for giants, 0.20 dex for dwarfs, and 0.21 dex
overall. For Teff, the systematic errors are 90 K for giants,
127 K for dwarfs, and 124 K overall. For Mg, the systematic
errors are 0.30 mag for giants, 0.22 mag for dwarfs, and
0.22 mag overall. The fitting errors, which are derived from the
dispersion between the true and predicted values in the training
data, are also calculated. For [Fe/H], the fitting errors are
0.14 dex for giants, 0.12 dex for dwarfs, and 0.12 dex overall.
For Teff, the fitting errors are 46 K for giants, 54 K for dwarfs,

Figure 2. Comparisons between true and RFR-predicted Teff (left panel), [Fe/H] (middle panel), and Mg (right panel) for the test samples. The top panels show
predicted values vs. true values, with the red lines indicating the one-to-one correspondence. The bottom panels show the residuals (predicted minus true values), with
red lines and error bars indicating the mean differences and standard deviations within individual bins.
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and 53 K overall. For Mg, the fitting errors are 0.17 mag for
giants, 0.13 mag for dwarfs, and 0.13 mag overall. We combine
these systematic and fitting uncertainties in quadrature to
compute the final uncertainties for our predictions. As a result,
the typical uncertainty in [Fe/H] is found to be 0.24 dex, the
typical uncertainty in Teff is approximately 134 K and the
typical uncertainty in Mg is approximately 0.26 mag.

4. Results and Discussion

4.1. The Catalog

We compiled a sample of 820,055 stars from the KiDS and
VIKING surveys to estimate their metallicities, effective
temperatures, and g-band absolute magnitudes. The selection
criteria were as follows:

1. The stars have detections in all nine KiDS and VIKING
filters with photometric uncertainties below 0.1 mag.

2. They are classified as stars, with the KiDS image
classification parameter, “class_star” > 0.9.

We applied the trained RFC and RFR models to the selected stars
to estimate their [Fe/H], Teff, and Mg values. We have identified
814,383 dwarfs and 5672 giants in the final sample. The complete
catalog, including our estimated parameters and associated
uncertainties, is available online at https://nadc.china-vo.org/
res/r101527/. Table 3 provides a description of the catalog
contents. For each star, we list its coordinates, photometric
magnitudes, and corresponding errors in each filter, along with
reddening values from Schlegel et al. (1998). Additionally, we
have included our classification of the star as a giant (1) or
dwarf (0), along with our estimates for its metallicity, effective

Figure 3. Uncertainty estimates for Teff (left panel), [Fe/H] (middle panel), and Mg (right panel) as a function of the predicted values for the training samples. The red
colormap represents the internal uncertainty, computed from the spread of predictions across the 28 RFR models. The green line shows the running dispersion derived
from the training labels, representing systematic errors. The blue colormap depicts the 2D histogram of the total uncertainty, calculated as the quadratic sum of internal
and systematic errors, providing a comprehensive uncertainty estimate.

Table 3
Field Description for the Final Sample

Column Label Description Unit

1 R.A. R.A. (J2000) from KiDS DR4 degrees
2 decl. decl. (J2000) from KiDS DR4 degrees
3 l Galactic longitude degrees
4 b Galactic latitude degrees
5–8 u/g/r/i Photometric magnitudes from KiDS DR4 mag
9–13 z/y/J/H/Ks Photometric magnitudes from VIKING DR4 mag
14–17 e_u/e_g/e_r/e_i Photometric uncertainties from KiDS DR4 mag
18–22 e_Z/e_Y/e_J/e_H/e_Ks Photometric uncertainties from VIKING DR4 mag
23 E(B − V ) Reddening values mag
24 p_giant Classification as giant (1) or dwarf (0) L
25 Teff Photometric effective temperature K
26 e_Teff Uncertainty in effective temperature estimates K
27 feh Photometric metallicity dex
28 e_feh Uncertainty in metallicity estimates dex
29 Mg Absolute magnitude in g-band mag
30 e_Mg Uncertainty in Mg estimates mag
31 d Distance kpc
32-34 X/Y/Z Galactic Cartesian coordinates kpc
35 R Galactocentric distance kpc
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temperature, g-band absolute magnitudes, and the associated
uncertainties. The three-dimensional (3D) positions of each star in
Galactic Cartesian coordinates (X, Y, Z) are also provided. Here,
the coordinate system is centered on the Galactic center: X points
away from the Sun, Y aligns with the direction of Galactic
rotation, and Z extends toward the North Galactic Pole.

Figure 4 illustrates the spatial distribution of our sample stars
in the X-Z plane. The Sun is located at (X, Y, Z)= (−8.122, 0.0,
0.0) kpc (Abuter et al. 2018). As shown, the majority of stars
lie within 30 kpc of the Sun, with X coordinates extending from
about −20 kpc to 5 kpc and Z coordinates −30 kpc to 30 kpc.
As previously discussed, our sample predominantly consists of
dwarf stars, which are more numerous in the KiDS survey due
to their fainter absolute magnitudes. Although dwarfs are
detectable at relatively shallow distances, their distance
estimates are accurate. However, thanks to the deep magnitude
range covered by KiDS, we can probe substantial distances.
For the small fraction of giant stars in our sample, the detection
limit extends beyond 40 kpc.

4.2. Validation of Our Metallicity Effective Temperature
and Distance Estimates

In this section, we validate the accuracy of our photome-
trically derived metallicities, effective temperature and dis-
tances by comparing them with independent measurements
from previous studies, including Lin et al. (2022), Huang et al.
(2022), Martin et al. (2023), Vallenari et al. (2023), Lu et al.
(2024), and Zhang et al. (2024).

Zhang et al. (2024) employed the DD-PAYNE method on
the low resolution spectra from Dark Energy Spectroscopic
Instrument (DESI) Early Data Release (EDR; DESI Collabora-
tion et al. 2016, 2024), providing abundances for 12 elements
and stellar atmospheric parameters. They obtained a precision
of 0.05 dex for metallicity and an uncertainty of 20 K for
effective temperature. We have identified 21,687 stars common

to both data sets, with 143 classified as giants and 21,544 as
dwarfs. Assuming the classifications by Zhang et al. (2024) are
flawless, our classification achieves a purity of 93% for dwarfs
and 67% for giants. The left panel of Figure 6 shows a
comparison between our results and their metallicities. Overall,
our metallicities are in good agreement with those from Zhang
et al. (2024), with a negligible systematic difference of
μ =−0.02 dex and a standard deviation of σ = 0.29 dex. In
the left panel of Figure 6, we observe an anomalous region
where some stars have DESI metallicities between −1.1 and
−0.7 dex, while our estimates range from −0.4 to 0 dex. Upon
further investigation, these stars are primarily cool giants with
Teff ≈ 4000 K. It is likely that the DD-PAYNE method used by
Zhang et al. (2024) underestimates the metallicities for these
cooler giants. The left panel of Figure 5 compares our Teff
estimates with those from Zhang et al. (2024). Overall, the
results are consistent, with a mean difference of μ = 80 K and a
standard deviation of σ = 139 K. However, a larger systematic
offset is observed for cooler stars (Teff < 4300 K). Cross-
matching with the spectroscopic data used in this study reveals
an offset of 89 K in this regime, suggesting that the Zhang et al.
(2024) results may have limitations in accurately measuring Teff
for cooler stars.

Martin et al. (2023) calculated metallicities by utilizing
synthetic photometries obtained from the Gaia BP/RP spectra,
in conjunction with the observed photometries of the narrow-
band filters from the Pristine Survey. Metallicity estimates were
obtained using the stellar loci method. They released two
photometric metallicity catalogs: the Pristine-Gaia synthetic
catalog covering most of the sky, and the higher-quality
Pristine DR1 catalog, which is limited to the Pristine footprint.
We compare our results with their Pristine DR1 catalog, which
includes 27,565 giants and 276 dwarfs common to both data
sets. The middle panel of Figure 6 shows excellent agreement
between our metallicities and those from Martin et al. (2023),
with a negligible median difference of μ = −0.02 dex and a
small standard deviation of σ = 0.28 dex.
Lu et al. (2024) combined photometric data from GALEX

GR6+7 AIS and Gaia. They established relationships between
stellar loci, metallicity, and absolute magnitude (MG) to
estimate stellar metallicities. We found 4004 common sources
between our catalog and theirs, with 20 stars consistently
classified as giants and 3825 as dwarfs. Assuming that their
classifications are correct, our classification shows a purity of
87% for dwarfs and 96% for giants. The right panel of Figure 6
shows that our metallicities are consistent with those from
Lu et al. (2024), with only a small median difference of
μ = −0.08 dex and a standard deviation of σ = 0.31 dex.
Lin et al. (2022) used a Bayesian isochrone-fitting method to

derive distances, extinctions, and stellar parameters (Teff, glog ,
[Fe/H]) for nearly 18 million stars from SMSS DR3. Their
analysis incorporated 14 photometric bands from four surveys
(SMSS, Gaia, 2MASS, and WISE). For the comparison, we

Figure 4. Spatial number-density distributions for stars in the final sample. The
panel shows the X-Z plane. The color bar at right indicates the number
densities. The Sun is positioned at (X, Y, Z) = (−8.122, 0.0, 0.0) kpc.
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selected stars from both catalogs with reliable measurements.
In our KiDS sample, we required metallicity uncertainties of σ_
[Fe/H] < 0.2 and σ_Teff < 150 K. From the Lin et al. (2022)
catalog, we selected stars with metallicity uncertainties
ERR_FEH < 0.15, distance uncertainties ERR_DIST_A-
DOP/DIST_APOD < 0.1, and clean photometry (band_flags
set to “00000000000000”). This yields 13,796 common stars
for the metallicity and Teff comparison, and 57,893 stars for the
distance comparison. The comparison between our results and
those from Lin et al. (2022) is shown in Figure 7. For Teff, the
agreement is excellent, with a negligible mean difference of
μ = 3 K and a standard deviation of σ = 150 K. For metallicity,

however, we find a significant systematic difference of
μ = −0.24 dex. Given the strong agreement between our
metallicities and those of Zhang et al. (2024), Martin et al.
(2023), and Lu et al. (2024), we suspect that Lin et al. (2022)
may have overestimated the metallicities of their stars. For
absolute magnitudes (Mg), we find good agreement with Lin
et al. (2022), especially for stars with Mg > 4 mag, where the
systematic difference is only μ = −0.04 mag and the dispersion
is σ = 0.49 mag.
Huang et al. (2022) derived Teff by calibrating photometric

data from SMSS DR2 and Gaia EDR3 using metallicity-
dependent color–Teff relations. Among the 118,549 common

Figure 5. Comparison of our effective temperature estimates with those from Zhang et al. (2024, left panel), Huang et al. (2022, middle panel), and Vallenari et al.
(2023, right panel). The color scales represent source density, and the red lines indicate equality between the data sets in each panel for reference.

Figure 6. Comparison of our metallicity estimates with those from Zhang et al. (2024, left panel), Martin et al. (2023, middle panel), and Lu et al. (2024, right panel).
The color scales represent the density of sources. The red lines indicate equality between the two data sets in each panel to guide the eye.

Figure 7. Comparisons of our findings with those of Lin et al. (2022) in terms of Teff (left panel), [Fe/H] (middle panel), and Mg (right panel). The color scales
indicate the density of sources, and the red lines represent equality between the two data sets.
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sources between our catalog and theirs, we restricted the
comparison to stars with errors smaller than 100 K for
reliability. The middle panel of Figure 5 shows that our Teff
values agree well with Huang et al. (2022), with a mean
difference of μ = −24 K and a dispersion of σ = 88 K. The
observed small negative offset is primarily attributed to a
systematic difference of −68 K between the Teff values
reported by Huang et al. (2022) and the spectroscopic data
used in this study.

Vallenari et al. (2023) derived effective temperatures (Teff)
using Gaia XP spectra through the GSP-Phot module, which
estimates Teff by fitting observed XP spectra to stellar models.
The right panel of Figure 5 compares our Teff estimates with
those from Gaia XP spectra. For reliable comparisons, we
selected 98,720 common sources from Vallenari et al. (2023)
with well-constrained temperatures (B_Teff_xa − b_Teff_x <
20 K). Our results show a mean difference of μ = 89 K and a
dispersion of σ = 202 K. While our Teff estimates are generally
consistent with those of Vallenari et al. (2023), we observe a
noticeable systematic offset. Additionally, discrepancies are
more pronounced at lower temperatures (Teff ∼ 4000 K). A
comparison between the effective temperatures from Vallenari
et al. (2023) and spectroscopic data sets, such as those from
LAMOST, reveals similar offsets and inconsistencies at the
low-temperature end.

To assess the accuracy of the distances in our sample, we
compared our results with two other independent data sets: the
open cluster distances from Cantat-Gaudin et al. (2020) and
distances derived from Gaia parallaxes by Bailer-Jones et al.
(2021). Due to the fact that the KiDS survey primarily covers
high Galactic latitude regions and masks globular clusters
(Kuijken et al. 2019), we identified only one open cluster
suitable for comparison: Blanco_1. Our sample contains 85
members of this cluster. As shown in the left panel of Figure 8,

the literature distance for Blanco_1 is 0.237 ± 0.003 kpc
(Cantat-Gaudin et al. 2020), while our KiDS-derived mean
distance is 0.225 kpc, with a dispersion of 0.027 kpc. The close
agreement between our results and the literature values
confirms the reliability of our distance estimates for these stars.
We also compared our distance estimates with those

provided by Bailer-Jones et al. (2021), which are based on
Gaia parallax measurements. To ensure the quality of the
comparison, we selected sources with reliable Gaia parallaxes,
defined as having fractional parallax errors of 0.1 < δϖ/
ϖ < 0.2. This selection resulted in 99,526 common sources, of
which 385 are classified as giants and 99,141 as dwarfs. The
comparison is shown in the right panel of Figure 8. Our
distances are in good agreement with those from Bailer-Jones
et al. (2021), with a mean difference of 0.048 kpc and a
dispersion of 0.38 kpc.

5. Conclusion

Using spectroscopic training data sets, we developed RFC
and RFR models to estimate the metallicity ([Fe/H]), effective
temperature (Teff), and absolute magnitude (Mg) of stars, based
on photometric data from KiDS DR4 and VIKING DR4. The
input features for the RFC model, which classifies stars as
giants or dwarfs, include intrinsic colors and de-reddened
magnitudes, while the output is the classification of each star as
either a giant or a dwarf. The RFR models use intrinsic colors
as input features to predict Teff, [Fe/H], and Mg for each star.
Our models demonstrate strong predictive performance. For
Teff, the systematic difference compared to spectroscopic
measurements is −2 K with a scatter of 149 K. For metallicity
([Fe/H]), the systematic difference is 0.00 dex with a scatter of
0.28 dex. For absolute magnitudes (Mg), we find a systematic
difference of −0.01 mag and a dispersion of 0.36 mag in the

Figure 8. Left panel: Histogram of our distance estimates for the member stars of the open cluster Blanco_1, with the blue dashed line showing a Gaussian fit. The
vertical red solid and dashed lines indicate the distance and uncertainty of Blanco_1 from Cantat-Gaudin et al. (2020). Right panel: Comparison of our distance
estimates with those from Bailer-Jones et al. (2021). The red line denotes equality between the two data sets.
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test sample. These results indicate the reliability of our models
in deriving accurate stellar parameters from photometric data.

Using our models, we derived metallicity, Teff, and Mg

values for 820,055 stars in the KiDS and VIKING data sets,
including 814,383 dwarfs and 5672 giants. When comparing
our Teff and metallicity estimates with those from spectroscopic
data and other studies, we find small systematic offsets. For
Teff, the offset ranges between 0 and 100 K, with a dispersion
of 100–200 K. For metallicity, the systematic offset is between
0 and 0.08 dex, with a dispersion of 0.27–0.37 dex. These
comparisons highlight the consistency of our results with
previous studies and spectroscopic measurements. The dis-
tances derived in our final sample also show good agreement
with values from the literature. Furthermore, our algorithm will
be applied to larger stellar samples obtained from upcoming
surveys such as the Multi-channel Photometric Survey
Telescope (Mephisto) and the Chinese Space Station Telescope
(CSST).
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