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Abstract

We propose that the core mass function (CMF) can be driven by filament fragmentation. To model a star-forming
system of filaments and fibers, we develop a fractal and turbulent tree with a fractal dimension of 2 and a Larson’s
law exponent (3) of 0.5. The fragmentation driven by convergent flows along the splines of the fractal tree yields a
Kroupa-IMF-like CMF that can be divided into three power-law segments with exponents o = —0.5, —1.5, and
—2, respectively. The turnover masses of the derived CMF are approximately four times those of the Kroupa IMF,
corresponding to a star formation efficiency of 0.25. Adopting 3 = 1/3, which leads to fractional Brownian motion
along the filament, may explain a steeper CMF at the high-mass end, with « = —3.33 close to that of the Salpeter
IMF. We suggest that the fibers of the tree are basic building blocks of star formation, with similar properties
across different clouds, establishing a common density threshold for star formation and leading to a

universal CMF.

Key words: stars: formation — stars: kinematics and dynamics — turbulence — stars: luminosity function, mass

function — ISM: clouds

1. Introduction

The core mass function (CMF) is a fundamental concept in
the study of star formation. Observations indicate that the CMF
typically follows a power-law distribution (e.g., Motte et al.
1998; Konyves et al. 2015; Cheng et al. 2018; Pouteau et al.
2022), suggesting a potential link between the CMF and the
initial mass function (IMF, Salpeter 1955; Kroupa 2001; Alves
et al. 2007; Guszejnov & Hopkins 2015). Exploring the origin of
CMF is a key to finding out the fundamental physics that
regulate IMF and star formation (Motte et al. 2022). Various
theories have been proposed to construct the CMF. Some of the
most influential models (e.g., Hennebelle & Chabrier 2008;
Hopkins 2012; Haugbglle et al. 2018) begin with the
fragmentation of density fluctuations that follow a lognormal
distribution, which are produced by three-dimensional (3D)
supersonic shocks (e.g., Padoan & Nordlund 2002). These
theories focus on general 3D isotropic cases and do not account
for the filamentary nature of core-forming clouds or clumps,
such as their anisotropy, self-similarity, and low dimensionality.

Filaments are believed to play a very important role in star
formation (e.g., Hacar et al. 2023; Pineda et al. 2023, for recent
reviews). Filaments are elongated structures (typically longer
than 1 pc) that can extend through molecular clouds/clumps.
Herschel studies of nearby low-mass star-forming regions (e.g.,

André et al. 2010; Molinari et al. 2010; Juvela et al. 2012)
show that filaments dominate the mass budget of molecular
clouds and correspond to the birthplaces of most prestellar
cores (e.g., André et al. 2010; Schisano et al. 2014; Konyves
et al. 2015). Velocity gradients are common along the
filaments. The interferometers make it possible to resolve both
nearby and distant filament systems down to core scales (e.g.,
Beuther et al. 2018; Liu et al. 2020, 2024; Motte et al. 2022;
Wells et al. 2024). The distant, massive, dense clumps are also
found to consist of hierarchical filamentary hubs and networks
(e.g., Peretto et al. 2013; Zhou et al. 2022; Yang et al. 2023).
The filament systems can be further divided into fibers in both
low- (Hacar et al. 2018) and intermediate- (Yang et al. 2024),
as well as high-mass (Liu et al. 2024; Hacar et al. 2024) star-
forming regions. Fibers are small branches (typically shorter
than 1 pc) of filaments that can only be effectively resolved by
interferometers (e.g., Hacar et al. 2024). One of the most
important characteristics of fibers is that they may exist in
subsonic states (Yue et al. 2021).

Theories of CMF that emphasize the unique role of
filaments /fibers are crucial for unveiling the underlying nature
of star formation. Myers (2013) explained the CMF through
radial accretion onto filaments by introducing an exponential-
like stopping time in the accretion process. They presumed that
the CMF has a shape similar to that of the IMF. Another
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limitation of the model is that Myers (2013) have not
considered the fragmentation or the turbulent structure along
the filaments, making the model less specific to filamentary
structures. Roy et al. (2015) linked the power-law spectrum of
density fluctuations along the filament to the CMF. However,
they neither explained the origin of the power spectrum in
detail, nor how it may be influenced by different turbulence
structures. Moreover, they did not consider the fractal nature of
filaments. Overall, it is important to establish a theoretical
model that can produce an IMF-like CMF while fully
accounting for the fractal and turbulent characteristics of
filament networks.

In this work, we propose a theoretic model of filament
fragmentation that successfully constructs an IMF-like CMF.
The paper is organized as follows: in Section 2, we explain
why it is theoretically possible to derive the CMF by studying
filaments. In Section 3, we develop a model of fractal and
turbulent trees to analogize filament/fiber systems, and
construct a Kroupa-IMF-like CMF through filament fragmen-
tation. Further, we discuss how to construct a steeper (Salpeter-
IMF-like) CMF at the high-mass end based on fractional
Brownian motion (fBM, Section 4.1), explain the universality
of the CMF (Section 4.2), and present the assumptions and
caveats of the model proposed in this work (Section 4.3). In
Section 5, we provide a brief summary.

2. Why are Filaments a Stable Texture

The dimension (n =0, 1, 2) of a core, filament, or sheet is
defined by the dimensionality of its central part: point, line, or
plane. The typical radius (a) and central density (py) of an
isothermal n-dimensional (nD) structure are related by the
following equation (Equation (AS5))

a o py'’?, M

where the power-law index is independent of the dimension.
The mass (or line mass/surface density) enclosed within a
radius of a for the nD structures (n = 0, 1, 2), denoted as 7,4,
can be estimated as

g ~ poa® " o plf 2, @)

For n =2, it is evident that 7),, is an increasing function of p,.
This implies that reducing the scale a (and thus increasing pg)
of a sheet will require a higher surface density to make it
gravitationally bound. Therefore, a two-dimensional (2D) sheet
is difficult to compress continuously under its own self-gravity.
For n =0, the solution to Equation (A2) is the well-known
Bonnor-Ebert (B-E) sphere (Bonnor 1956), for which
Nog X pal/ 2. When a sphere in equilibrium is slightly
compressed due to perturbations, the critical mass becomes
smaller than the real mass, triggering an accelerating collapse.

For n=1, which corresponds to the case of an isolated
filament, 7, is independent of the filament width (Equation (2)).

Liu et al.

In equilibrium, the radial density profile is described by the
Plummer function (Plummer 1911), as confirmed by observa-
tions (e.g., Nutter et al. 2008; Arzoumanian et al. 2011; Liu et al.
2021; André et al. 2022). The precise value of the critical line
mass of a filament is given by (Ostriker 1964; Inutsuka &
Miyama 1997; André et al. 2014)

crit __ 2_62

e = 3)

Here, in the case of thermal support, § represents the sound

speed (cy); for turbulent support, the turbulent velocity
dispersion (8um) should be taken into account: 6% =
cf + 6t2urb. As an example calculation of nlcfj“, for 6 =
0.3kms™", 7 ~ 40 M, pc.

Overall, 2D sheets are difficult to be compressed by self-
gravity. One-dimensional (1D) filaments and zero-dimensional
cores are two key types of self-gravitating structures. The
instability of cores finally leads to formation of stars. However,
a filament cannot undergo a sustained global collapse.
Observations show that filaments can be disrupted by strong
impacts, such as the expansion of HII regions (e.g., Zhang
et al. 2016; Zhou et al. 2022). However, even under such strong
impact, the clumps/cores in the compressed gas may still
originate from the sweeping up of pre-existing fragments (e.g.,
Zhang et al. 2024). These analyses, supported by observational
evidence, suggest that filaments are stable structures, resistant
to disruption by both internal gravity and external pressures
(e.g., turbulence and stellar feedback). As a result, they help
preserve the initial seeds of star formation.

3. CMF of Filaments
3.1. Fragmentation Along a Filament of Infinite Length

Larson’s law (Larson 1981) yields that

oo L? @
where o is the velocity dispersion and L is the size of the cloud.
The original value of 3 given by Larson (1981) is 0.38, which
is close to the value (1/3) expected for standard Kolmogorov
turbulence (Kolmogorov 1941; Frisch 1995). For compressible
fluid (Burgers turbulence), 3 = 0.5 (Burgers 1948). We adopt
(= 0.5 for the turbulent and gravity-bound star-forming clouds
(e.g., Heyer et al. 2009).

An isolated filament can be treated as a 1D structure, with
the velocity along the filament following the turbulent motion
described by Larson’s law (Equation (4)). The velocity
distribution along the filament can then be modeled as 1D
random walk in Brownian motion,

(v?) o L. Q)
The probability distribution of the zero-crossing intervals L,
follows (Wiener 1923; Gardiner 2009)

P(Lyz) < L;', (6)
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Figure 1. The CMF of the ALMA-IMF survey (Motte et al. 2022; Louvet et al. 2024) is shown in orange, and that of the Herschel HGBS survey (Andr€ et al. 2010;
Konyves et al. 2015) in blue. We adopt the full core catalog of the ALMA-IMF survey for all 15 massive star formation regions, and the core catalog for the Aquila
cloud complex covered by HGBS. The cyan and purple dotted vertical lines indicate the 90% completeness core mass for the HGBS and ALMA-IMF surveys,
respectively. The CMFs of both data sets exhibit a similar turnover mass at ~2M_.,, consistent with the value predicted in this work (Section 3.3). The CMFs of the two
data sets also coincidentally have a similar number of cores around the turnover mass. Therefore, we combine them directly with equal weightings. The black line
represents the CMF of the combined data set (with the y-axis values adjusted so that it reaches 100 at 2 M..)). The red dashed line represents the shifted Kroupa IMF,
with the stellar mass multiplied by a factor of four. The values of « for the shifted Kroupa IMF within the three intervals (from left to right) are —0.3, —1.3, and —2.3,
respectively (Kroupa 2001). The green line represents the theoretical CMF of this work (Equation (33)).

and the average number of the zero-crossing events ((Nz))
within an interval of length L is given by

(Nz(L)) x L3, @)

We assume that a filament is radially supported by thermal
dispersion with a nearly constant nfgl. The fragmentation of the
filament is driven by convergent flow along the filament around
the zero-crossing points of the tangential velocity. The mass of
the fragmentation should be proportional to L, The mass
function of the fragmentation along a filament of infinite length

(FMF) is (Equation (6))
FMF(M) oc M~ 15, 8)

The FMF is noticeably flatter than the observed CMF and IMF
at the high-mass end (e.g., André et al. 2019, see also Figure 1).
Moreover, the integral of the above equation diverges. In
realistic scenarios, there should be cutoffs at both the high-mass
and low-mass ends, denoted as My, and M.y, respectively.
We adopt:

Miin ~ 153, ©)
Minax < 755 L, (10

where W is the width of the filament.

3.2. CMF of a Fractal Tree of Filaments
3.2.1. A Tree Embedded in a Star-forming Cloud/Clump

For a massive clump supported by turbulence as described
by Equation (4), the virial equilibrium requires

GMc

fc

x rc, (1)

where M and rc represent the mass and radius of the clump,
respectively. It yields

e oc MY (12)
The density profile of the clump (p¢) is
pe ~ Mc/rd o< i, (13)

We assume that a star-forming cloud/clump is dominated by
filamentary structures composed of fibers that are thermally
supported, with similar critical line masses. It implies that the
filament/fiber system should have a fractal dimension (Dgy)
given by

logMe) _ ,

D =
" log(r)

(14)

3.2.2. Construct the Fractal Tree

The fractal structure of the filament/fiber system plays a
critical role in regulating the statistical properties of core
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masses, and thus the FMF in Equation (8) cannot be directly
used to construct the CMF. Here, we explore the CMF through
constructing a model of a self-similar tree. The basic blocks of
a tree are fibers with constant length (£) and line mass. These
fibers merge progressively to form increasingly larger branches
(sub-trees), ultimately shaping the tree. The widths of the fibers
(W) may decrease as they evolve. The fibers along which
cores/stars begin to appear are denoted as 7; and its length is
denoted as L. Thus, the entire tree represents a core/star-
forming structure in a dynamically evolving process. Each sub-
tree has a longest path, denoted as the spline of the sub-tree. A
sub-tree is denoted as 7; if its spline has a length of
L; =i x L. Here, i is a natural number (i = 1, 2, 3, ...).
The whole tree, with a spline length of Ly = N x L, is
denoted as 7). We require

Ly ~ Re, 5)

where R is the cloud/clump size. Equations (10) and (15), as
well a constant 7,4, imply that the maximum core mass of the
clump (MS,,) follows

MS, o< ML/2. (16)

This is consistent with the results of simulations (e.g., Bonnell
et al. 2004) and observations (e.g., Anderson et al. 2021; Morii
et al. 2023; Yan et al. 2023). A recent statistical result based on
data from the Herschel HGBS survey (André et al. 2010) and
the ALMA-IMF survey (Motte et al. 2022) also yields a power-
law index ~0.5 (Jiao et al., submitted; private communication).

To construct the tree, we proceed from 7; at the tail of the
spline of 7. At the iy, step, the head of 7; would intersect with
the heads of smaller sub-trees (7; with j < i < N). Each 7;
appears with a probability given by

bj~
p4 = .
SNEC)
Here, ((y) = >_j 7, and b can be interpreted as the average

number of sub-trees that join at each step. Denote M; as the
mass of 7;. We have

a7

Mg~ Mi + 1+ pM,. (18)
1

M, should be proportional to L,»D fil (Equation (14)), that is
M; o L2, (19)

which is consistent with the statistical results of the observa-
tions (Hacar et al. 2023). It leads to

(i + P oc P 4 Pt =0p /() /(D + 1 — ), (20)

where 1 < Dg<2. It requires that v = 2, and
Dg = b/({(2)/(Dg — 1), which leads to

Dg = \b/C(2) + 0.25 + 0.5. 21

Adopting b = 2((2) yields a Dg, of 2.
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3.2.3. CMF at the High-mass End

On average, the entire tree 7, can be divided into N; sub-
trees 7;, where N; is estimated from Equation (19) as

Dgy
N; ~ (JX) oc L;Pm, (22)
i
It directly yields a spline length function (SLF) of
SLF(L) oc £72. (23)

The high-mass cutoff for the CMF along the spline and across
the entire branches of 7;, derived from Equation (10), is

M o< L o< i. (24)
Equations (7), (8), (23), and (24) lead to a high-mass-end CMF
(denoted as CMF")
CMFH(M) f x2OSEMF(x) dx
M
o M2, (25)

It means that the power-law index of the CMF at the high-mass
end is determined by that of the SLF. The massive cores are
likely to be situated at the convergent hubs, where different
branches intersect.

3.2.4. CMF at the Low-mass End
We assume that the density along the spline of a 7; (denoted
as p;) follows
p; o< iP, (26)
and p,, and p; are proportional to the densities at the central

and boundary of the cloud/clump, respectively. From
Equation (13), we have

pn/ pr o< N, (27)
which further requires that
p; X . (28)

From Equation (1), the width of the spline of 7; (denoted as W)
can be expressed as

W, o< i709, (29)

It sets a low-mass cutoff for the CMF along the spline and
across the entire branches of 7; as

ML, oc W, oc i793, (30)

Note that M. can be interpreted as the thermal Jeans mass
corresponding to p;. Low-mass cores with masses ~M. . are
primarily produced along the spline of 7;. The CMF at the low-
mass end (CMFL) can then be derived from Equations (7), (14),
(22), (29), and (30) as

. \0.5 i -1
CMFY(M) N(#) (d%) o M5, (31)
i l

1
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The longest (and thus most evolved) spline of the tree
contributes to the formation of cores with both the lowest
and highest masses. The power-law index of the derived CMF-
is compatible with that of the Kroupa IMF at the low-mass end
(—0.3 to —1.3).

3.3. The Merged CMF and its Turnover Masses

It is not straightforward to merge CMF"- and CMF", as most
of the quantities discussed are in very general cases without
characteristic scales. This is somewhat reasonable, as both
filaments and fragmentation are universal phenomena that span
a wide range of scales. For filament/fiber systems within star-
forming clouds/clumps that we focus on here, there exist some
characteristic scales. The fractal tree constructed above has two
important characteristic scales: the typical width and length of
T;, which determine the M. and M, respectively. The CMF
is expected to be divided into three segments by M.. and
M., with each segment having a different power-law index
(). The power-law indices at the low-, intermediate-, and
high-mass ends are adopted as —0.5 (Equation (31)), —1.5
(Equation (8)), and —2 (Equation (25)), respectively.

The filament length and width of 7; are uncertain. We
assume that the “typical width (0.1 pc)” of the Herschel
filaments (André et al. 2022) is contributed to the elemental
fibers (77) that intersect with the splines of the filaments, with a
length-to-width aspect ratio of five. Then, £, and W, are
estimated to be 10,000 au (~0.05 pc) and 2000 au, respectively.
This is consistent with the observational results from SMA and
ALMA for nearby clouds and distant massive clumps (e.g.,
Yue et al. 2021; Yang et al. 2024). A typical temperature of
25K of molecular gas corresponds to a critical line mass
n‘l’gt = 40M.pc ' (e.g., Yang et al. 2024). We thus further
estimate

. (32)

Mrlnax ~ Ufilnﬁl ~ 2M®7
MrLin ~ T}(l:glwl ~ 04 M@.

Then we have

M9 forM < 0.4 M,
CMFWM) = { M5 for04 < M < 2 M. (33)
M2 forM >2M,

The turnover mass M}~ 2 M, is consistent with the CMFs
given by the observations of the Herschel HGBS survey (Motte
et al. 2022; Louvet et al. 2024) and the ALMA-IMF survey
(Andr€ et al. 2010; Konyves et al. 2015) (Figure 1). The CMF
in Equation (33) is also similar to that of the Kroupa IMF
(Kroupa 2001), except for a multiplication of the star mass of
the Kroupa IMF by a factor of four, which corresponds to a
core-to-star mass efficiency of 25% (Figure 1).

The small discrepancy between the derived CMF
(Equation (33)) and the shifted Kroupa IMF may contribute

Liu et al.

to the nonlinear relationship between the CMF and the IMF
(e.g., Holman et al. 2013; Guszejnov & Hopkins 2015). The
overpopulation of the derived CMF, compared to the observa-
tions (Figure 1), may contribute to the miscounting of the
flattened cores of 7}, due to the limited angular resolution of
single-dish telescopes and the missing flux effect of inter-
ferometers (e.g., Sahu et al. 2023).

4. Discussion
4.1. Fragmentation Under Fractional Brownian Motion

Above, CMF" is obtained by convolving the FMF and SLF,
with the result depending solely on the SLF (Section 3.2.3). It
matches observations of massive star-forming regions, but is
slightly flatter than that of nearby low-mass star-forming
regions (Figure 1). Here, we note that a steeper CMF" can be
reproduced by the turbulence fragmentation of isolated
filaments.

In Section 3.1, we considered only 8 = 0.5. For other values
of 3 (e.g., 8 = 0.33 for Kolmogorov turbulence), we modeled
the velocity distribution along the filament as fBM,

(v?) o LM, (34)

where H = ( is the Hurst exponent. Similar to Equations (6)
and (7), for fBM (Mandelbrot & Van Ness 1968; Rambaldi &
Pinazza 1994; Biagini et al. 2008), the probability distribution
of the zero-crossing intervals (Py (L z)) and the average number
of zero-crossing events (Nz.x(L))) satisfy:

Py(Lz) o< L@, (35)
Nz (L)) o< L' 7, (36)

respectively. The first-level fragmentation by converging flows
along an isolated filament (Equation (35)) leads to a power-law
index of FMF of —(2—"H). The local velocity gradient could be
steeper than the global velocity gradient around the zero-
crossing points, leading to second-level fragmentation. We
assume that second-level fragmentation tends to break a
segment of length L into one larger sub-segment, with a length
distribution following Equation (35), along with several smaller
sub-segments. At the long-segment end, the length of the sub-
segment (/) follows a probability distribution given by

FMF,(I) o _Pu® o [7G-2H), 37)
<N ZH (l)>
which results in a CMF" with an exponent o« = —(3—27H). For

Kolmogorov turbulence (H = 8= 1/3), a = —2.33, very
close to the power-law index of the Salpeter IMF (—2.35)
(Salpeter 1955) and the Kroupa IMF (—2.3) at the high-mass
end. For Burgers turbulence (H = § = 1/2), it again gives a
top-heavy CMF with o = —2. These results suggest that the
CMF at the high-mass end may be linked to some fundamental
and universal mechanisms of star formation. We propose an «
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between —2 and —(3-203), depending on how the structures of
the turbulence and the filament system are formed.

4.2. Why the Fractal Tree is Universal

The column density of the splines of 7; (denoted as ¥3,) is
(Equations (28) and (29))

¥ o< p Wi o< i09. (38)
The distribution of X; can be expressed as
dN (%)) o< N.LWdi < X7 'd log(%)), (39)

yielding a column density probability distribution function (V-
PDF) power-law index (w) of —1. Observations show that the
value of w, at the high-column-density end influenced by star
formation (e.g., Scalo et al. 1998; Kainulainen et al. 2009),
exhibits a decreasing trend (from —1 to —3) over the evolution
of the cloud/clump, reaching a value of —1 in the early stages
(e.g., Stutz & Kainulainen 2015). It confirms that the fractal
tree we have established captures the key properties of the
early-stage structures that harbor the seeds of star formation.
The universality of the turnover masses of the CMF derived
in Section 3 relies on that of 7; (Equation (32)). The host
cloud/clump of 7; has an average volume density (n;) of

nei ~ Mi/ L} ~ nei/i, (40)
with
nep ~ /L3 ~ 105 em™>. (41)

The mass of a star-forming tree (M) is dominated by the
mass of all the 7; branches of the tree. The star formation rate
(SFR) follows

SFR o« My o Myspe,s (42)

where
Myong, = f pdVv. (43)
n>nci

We assume that n¢; is the density threshold above which star-
forming trees can be established, starting from 7. If these trees
share similar density thresholds and evolutionary processes, a
universal density threshold for star formation may be expected.
This is consistent with the concept of the well-known star
formation law, which describes the linear correlation between
dense gas surface density and SFR (Kennicutt 1998; Gao &
Solomon 2004). Commonly used dense gas tracers, such as
HCO™ (1-0) and HCN (1-0) (e.g., Gao & Solomon 2004;
Shimayjiri et al. 2017; Rybak et al. 2022), have critical densities
(approximately 10 cm>; Mangum & Shirley 2015) similar to
the value of nc;. We thus propose that the universality of the
CMF is linked to that of the star formation law.
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4.3. Assumptions and Caveats

Here, we list the key assumptions made in establishing the
model of this work. (1) The density and turbulent structures of
a cloud/clump are dominated by those of a hierarchically
structured filamentary tree. (2) The tree can be resolved into
fibers that are radially supported by thermal motion. (3)
Although the critical line masses of fibers and splines are
maintained throughout the evolution of the tree, their density
gradually increases. (4) Jeans fragmentation of the evolved
splines and convergent flows along them contribute to the
formation of low-mass and high-mass cores, respectively.

The first assumption posits that the 1D fibers merge into 2D
fractal filamentary trees that fully extend within the clouds/
clumps. Since a 2D sheet is difficult to compress under self-
gravity (Section 2), the filamentary trees play the roles of both
2D and 1D structures during the process of gas collection from
3D clouds/clumps into point-like protostars. The second
assumption is pretty strong. Fibers in low-mass clouds have
been observationally shown to be subsonic (Yue et al. 2021),
which is a key characteristic of fibers. Filaments in inter-
mediate-mass star-forming regions can also be resolved into
fibers that are narrow in line width (Yang et al. 2024). Some
observational evidence suggests that filaments in star-forming
regions with high-mass young protostars could also be resolved
into subsonic fibers by ALMA (Hacar et al. 2024). However, to
date, no systematic observational studies of remote high-mass
star formation regions have been conducted on this issue, and
we remain to treat it as an assumption. The third assumption
depends not only on the spatial distribution of the fibers, but
also on how they dynamically merge into a filamentary tree.
The detailed processes remain poorly understood, both
observationally and theoretically. The fourth assumption is
essentially the key concept of this model. One of the inferences
of the fourth assumption is that a young massive protostar
should be accompanied by some low-mass protostars of similar
evolutionary age around its birthplace. This is supported by the
recent detection of both a low-mass hot corino and a high-mass
hot core within the same protocluster (Liu et al. 2023).

There are several caveats associated with the model
presented in this work. Notably, the potentially important role
of magnetic fields has not been considered. Molecular clouds
with strong magnetic fields may require a higher threshold
density for the formation of star-forming filamentary structures,
thereby further altering the CMF. For simplicity, we have also
not considered the effects of feedback from high-mass
protostars. Although filaments can be resistant to disruption
by both internal gravity and external pressures (Section 2), the
strong influence of expanding HII regions may alter the
topology and CMF of the filaments. Additionally, the thermal
feedback from protoclusters may lead to higher core masses by
increasing the critical line masses of filaments and fibers. At
present, this model remains in the realm of theoretical



Research in Astronomy and Astrophysics, 25:025020 (8pp), 2025 February

exploration and requires further observations to help validate
its assumptions and inferences.

5. Summary

In this work, we propose that the filament system is a stable
structure that preserves the initial seeds of star formation. We
model a fractal and turbulent tree of filaments/fibers with a
fractal dimension of 2 and a Larson’s law exponent ((3) of 0.5
to explore the CMF under turbulent fragmentation along the
filaments. A Kroupa-IMF-like CMF can be produced. The
CMF at the low-mass end (<0.4 M) is influenced by the
turbulent fragmentation of sub-trees at different evolutionary
stages, and thus by variations in filament widths. The CMF at
the high-mass end (>2 M) depends on the fractal dimension
of the tree. By adopting a § of 1/3, it is possible to construct a
Salpeter-IMF-like CMF at the high-mass end. The turnover
masses of the CMF depend on the properties of the fibers on
which cores/stars begin to form. We suggest that these fibers
(7)) are the basic building blocks of star formation, sharing
similar properties across different clouds, motivated by the
universality of the so-called star formation law. These fibers set
a common threshold for star formation, leading to a
universal CMF.
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Appendix
Structure Density Profile

Denote r the radius (or width/thickness), and p the density
of the nD structures. For isothermal cases, the dynamic
equilibrium between gravity and the pressure gradient requires
that

F—@2-n fr lZ—np dl = —A dp , (A1)
0 pdr

where A = c,,wi—TG, k is the Boltzmann constant, G is the
H

gravitational constant, y is the mean molecular weight, my is
the mass of a hydrogen atom, and 7 is the temperature. Here, ¢,
is 1, 2, and 27 for n =0, 1, 2, respectively. Denote p = ¢”. By
differentiating both sides, the above equation (Equation (Al))
becomes

d%y dy ev

— 4+ Q2 —-n = ——. A2
dr? ( rdr A (A2)

Liu et al.

For small r close to the center of the structure, through
expanding y as

1
Y=Y — ;rz + 0(r?), (A3)

and substituting it into Equation (A2), we obtain
(6 — 2n)/a* ~ e%/A = py/A. (A4)

Here, po represents the density at r = 0. The typical scale of the
structures can be estimated to be a (half width at 1/e of the
maximum). From Equation (A4), we have

a o A2p 2 (AS)

For a 2D sheet (n = 2), the analytical solution to Equation (A2)
can be expressed as

y(r)=po| 1 — tanhz(%,/% r) . (A6)

From Equation (2), we have n,,; x p%)/ 2, which can be directly
examined using Equation (A6).
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