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Abstract

This work aims to investigate the different stability conditions of two scenarios of the inhomogeneous Lemaitre—
Tolman-Bond model of the universe with holographic dark energy. We considered the Rényi and Tsallis
holographic models of interacting dark energy. These holographic models are investigated using the IR cutoff that
equals the Hubble horizon. Various stability conditions of these models have been investigated to understand how
much these models can tell us about the recent and future epochs of the universe in comparison with the
cosmological constant model, or ACDM model. The conditions of violating the cosmological energy conditions
have been studied. The evolution of the entropy and its first and second derivatives have been calculated and
plotted for these holographic models. This gives an idea of how far these models satisfy the generalized second law
of thermodynamics and hence have thermodynamical stability. The dynamical stability is studied for these evolved
models, which give us glimpses of the dynamical stability at different phases of its evolution. We focus on
investigating the stability in recent and near future times up to z < —4. Further investigation of stability has been
obtained by studying the evolved sound speed squared parameter for these models, which gave us a final and

decisive evaluation of the stability of these models.
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1. Introduction

The accelerated expansion of the observable universe has
been confirmed over the last decades. This observation has
been confirmed using the observational data of distant super-
novae (Riess et al. 1998; Perlmutter et al. 1999) and the cosmic
microwave background (CMB, Ade et al. 2000; Huang et al.
2006). These observations also provided significant evidence
for the existence of a cosmic component called dark energy
(DE) which is thought to be responsible for the accelerated
expansion of the observable universe. This component
represents around 70% of the matter-energy content of the
universe. Many measurements indicate that the cosmological
constant model, the ACDM model, is very consistent with the
observations. The ACDM model is based on the homogeneous
and isotropic solution of Einstein field equations of general
relativity, which is called the Friedmann—Lemaitre—Robertson—
Walker (FLRW) metric. However, this scenario has some
difficulties. The first is the cosmological constant problem in
which the magnitude of the expected vacuum energy,
calculated according to quantum mechanics, is very large
(about 120 orders of magnitude different from the observed
value). Second is the coincidence problem, where the DE
density, pp, is not only small but also in the same order of
magnitude as matter density, p,,.

So, some cosmologists started to look for alternative models of
the observable universe to explain its accelerated expansion. Some
of these alternatives are the scalar field models such as
Quintessence and K-essence. Other models include modified
gravity models, higher-derivative gravity, etc. All these proposi-
tions are still open topics of research. Another alternative proposes
that the universe is isotropic but inhomogeneous, rather than
homogeneous as in the standard cosmological models. This
inhomogeneous model is considered to explain the accelerated
expansion of the universe without assuming the existence of the
DE component. The most common one of these inhomogeneous
models is the Lemaitre—Tolman—Bondi (LTB) model. This is
based on the idea that we are living close to the center of a huge
spherically symmetric matter underdensity with volume on the
scale of Gigaparsecs (Gpc). This idea faced some difficulties as it
is very unlikely that such underdense matter would be observed in
any consistent large-scale cosmological observations. Instead,
inhomogeneity can be assumed in the DE sector to explain the
accelerated expansion without totally giving up the existence of
DE (Grande & Perivolaropoulos 2011). This scenario considers
the global structure of the universe as made of regions of matter
whose matter density is less than its surroundings. These regions
of matter underdensity are called voids or bubbles. In each of
these bubbles, DE is assumed to have a constant density, as is
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assumed in the ACDM model. Adopting this scenario has some
observational consequences and this is useful in understanding
some large-scale observations that are related to the existence of a
preferred cosmological direction and cannot be explained
consistently using the FRW universe with perfect fluids of
cosmological constant DE and dark matter. These observations
are: (i) planarity and the alignment of the CMB multipole
moments, (ii) Large-scale alignment of the optical polarization
data, (iii) Large-scale velocity bulk flow, (iv) Profiles of cluster
halos. The inhomogeneous LTB model can predict that there is
arbitrariness in the location of the observers near the center of the
assumed isotropic inhomogeneity. This means that any off-center
observer will naturally observe a preferred direction of an
alignment of the low CMB multipole moments and bulk velocity
flows.

Some of these observational phenomena can be explained by
using an appropriate model of interacting DE with dark matter.
It has been shown before by Sheykhi (2011), Jahromi et al.
(2018) that using the holographic dark energy (HDE) model
with the Hubble horizon can explain the present state of the
universe with consideration of the interacting DE scenario. This
motivated us to use the HDE models with the Hubble horizon
as the infrared (IR) cutoff to alternate the cosmological constant
DE inside the proposed bubble of matter underdensity. The
holographic model is mainly proposed to describe the physics
of black holes and the evolution of its event horizons by
connecting its three-dimensional bulk interior with its two-
dimensional surface. This was first proposed by Hooft (1993)
to give a prime description of a quantum theory of gravity
inspired by black hole thermodynamics. It is later developed by
Susskind (1995), Thorn (1994) to give a string theoretical
description of this principle. It has been used in cosmology to
describe the evolution of some cosmological models that can
be considered as alternatives of the ACDM model. Recently,
the HDE models became a very active topic of research in
cosmology. In the interacting scenario of DE with cold dark
matter (CDM), the evolution of the universe becomes non-
adiabatic. This more generalized cosmological situation needs a
generalized statistical formalism of the holographic principle
entropy assigned to the horizon entropy of this interacting
scenario of dark sectors. Recently, it has been proved that
Rényi and Tsallis generalized entropies generate suitable
models for the current universe. This motivated us to adopt
these formalisms to analyze our scenario of the HDE. Many
studies proposed a correspondence between thermodynamics
and gravity, so generalizing one of the entropy or gravity
concepts, as the black hole event horizon entropy idea, will
change the other one. In previous work (Abd Elrashied et al.
2019; Aly et al. 2020) the non-interacting ordinary holographic
model and Tsallis holographic dark energy (THDE) model
have been considered with the LTB inhomogeneous DE
universe. The evolution of some cosmological parameters
against redshift was acceptable in comparison to some of the
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Type la supernova observational data and was comparable with
some other models of DE (Li et al. 2012; Jawad et al. 2018;
Aditya et al. 2019). The THDE model has been investigated
with many other cosmological models and the results compared
with the predictions of the ACDM model and with various
types of observations. Rényi holographic dark energy (RHDE)
model is also studied with many cosmological scenarios. For
example, the RHDE model has been explored with IR cutoff as
the future and particle event horizons (Davis et al. 2003). The
spatially homogeneous and anisotropic Bianchi VI universe
filled with RHDE with Granda-Oliveros and Hubble horizons
as the IR cutoff have also been studied in the context of general
relativity (Shekh 2023). It has been investigated with some
other cosmological models (Komatsu 2017; Moradpour et al.
2018, 2017; Chunlen & Rangdee 2020) and the results are
compared with the predictions of the ACDM model and with
the observations. In another work under progress, we study the
interacting RHDE model of DE to describe the evolution of the
inhomogeneous LTB model, derive its cosmological para-
meters and check its viability to explain the recent observa-
tions. In this work we go further in studying the interacting
RHDE model in the LTB universe. The various features and
conditions of stability have been investigated. The same
analysis of stability is done for the interacting THDE model
in the LTB universe. The results of both models are compared
continuously. In Section 2 we present the basic equations
which represent the interacting RHDE and THDE models in
the LTB universe. Specific LTB models have been chosen and
their free parameters are specified based on our previous work
on the same models in Aly et al. (2020), Abd Elrashied et al.
(2019). In Section 3 the four energy conditions are investigated
for both holographic models. The violation of these energy
conditions in recent and near future times is analyzed and
plotted against the redshift. The physical meanings of these
results are also discussed.

In Section 4, the thermodynamic stability of these models is
analyzed by studying the evolution of the entropy function and
its first and second derivatives against the redshift. In Section 5,
the dynamical stability of these models is discussed by defining
the critical points of the evolution of these models at different
time epochs. The phase space portrait is figured for these
models and its dynamical behavior around the critical points
and stability are discussed in detail. In Section 6, the evolution
of the sound speed squared parameter is studied to obtain
further investigation of the stability of these holographic
models in recent and near future times. In the last section, some
concluding remarks are given.

2. Basic Equations

We consider the interacting scenario between the considered
HDE and CDM. Thus the energy conservation equation is
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given by (Jawad et al. 2018)
P+ 3Hp, = =0, ey
and
pp + 3H(pp + Pp) = 0, 2

where Q is the interaction term which represents the coupling
between dark sectors. If Q is positive this means the energy
transfers from the dark matter sector to the DE sector while it
means the opposite if Q is negative. The evolution of the
cosmological models including the interaction of the dark
sector has been extensively studied for different HDE models
(Som & Sil 2014; Nayak 2020; Landim 2022; Saha et al. 2023;
Rodriguez-Benites et al. 2024). Many estimations are con-
sidered for the interaction term of the dark sector. We will
adopt here a simple interaction function that can be given by

Q = 3H¢pp, 3)

where ¢ is the coupling parameter of the interaction. The late-
time constraints on interacting DE that were investigated in
Benisty et al. (2024) revealed that the accepted values of & lay
in £e[—0.33, 1].

2.1. Interacting Rényi Holographic Dark Energy in the
LTB Universe

The quantum aspects of gravity motivated generalized
definitions of entropy. These generalized definitions introduced
some new concepts to the entropy such as non-additivity and
non-extensivity. Rényi entropy is among those generalized
entropy measures that was investigated widely in different
cosmological setups and led to acceptable results. We consider
the interacting RHDE model in the case of the LTB
inhomogeneous universe and are interested in studying its
stability conditions. The Rényi entropy is given by

S = %mZP}—Q 4)
i=1

where ¢ is the non-additivity parameter. The RHDE density is
given by
3c2H?
pp=—r—— 5)
sr(1+ %)

where ¢® is a dimensionless constant and the IR cutoff is
considered to be reciprocal of the Hubble Horizon, 1/H. The
energy conservation expressions, Equations (1) and (2), for the

interacting HDE can be written for the LTB models as (Grande
& Perivolaropoulos 2011)

P + 2H(1 - g)pm = -0, (6)

r

ob + 2H(1 - %)pD ~ o, ™

7
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where P, and P, are the transverse and the radial components of
the DE pressure respectively in the case of the LTB
inhomogeneous universe. From Equations (3), (5), and (7)
we can get

P, 3 H o
L=+ =2-64+ ——]| 8
(P, ) 2£+H2[ +H2+(57r] ®

Using Equation (11) in Grande & Perivolaropoulos (2011)

(g — 1) can be expressed as

P, H 3  XQ,
L l|==4+ " 9
(P, ) H?> 220, + D ©)

Substituting (9) in (8), we can write % as

X - )

B 3¢ wa—oprop
H 2 | (10)
6_1_H2+57T

where A = %, R = R(r, ) is a function of space and time which
plays the same role as the scale factor of the FRLW model of
an isotropic and homogeneous universe and Ry = R(r, 0). The
time derivative of Equation (5) for the HDE density gives

o b

O0p = 2 -6+ ——|pp. 11
Pp H[ +H2+67T]pD (11)

Combining this equation with Op = dQp/dInR = Qp/H
we get

; —2H> | H
Qp =1-204+4 - ——— | =W, 12
P [ H? + 6 ] H " (12
which can be combined with Equation (5) to get
3(1 —
O =-3|¢— A = ) Qp. (13)
X - Qp) + QD

2.2. Interacting Tsallis Holographic Dark Energy in the
LTB Upniverse

Another statistical generalization of the holographic entropy
in which we are interested is the THDE. This model has been
studied for specific LTB models by Abd Elrashied et al. (2019)
where acceptable results obtained for some cosmological
parameters are found to be comparable with some of the late
universe observations. In this work we are interested in
studying the stability conditions of the interacting THDE
model in the LTB universe and comparing its stability features
with those of the RHDE model. To do that we have to derive an
evolution equation for the interacting Tsallis fractional DE
density similar to Equation (13). We can start with the THDE
density which is given by

pp = BH2"*4, (14)
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where B is a parameter which can be written as
= 3c¢ZmpH* -2, and mp is the Planck mass. Now we can

write
F
o =&+ —[2-6 15
(B)lefoon s
By combining this equation with Equation (9) we can write
H 3 X1 -9
£ £-— ( D) . (16)
H 206 — 1) X1 —Qp) + QD
By taking the derivative of Equation (14) we can write
H
Q=4 - 26)EQD. 17)
From Equations (16) and (17) we can write
_ 3(1 —
=322 = A = Q) Qp. (18)
6—1 N1 = Qp) + QD

2.3. Models of the Scale Function Ratio \

In this work we consider the same LTB models that have
been studied in Abd Elrashied et al. (2019) and Aly et al.
(2020) which are given by choosing the scale function R(r, 7).
Since our main interest is in the case of the on-center observer,
i.e., the observer who is arbitrarily close to the center of the
assumed void region with DE overdense in the LTB universe as
proposed in Grande & Perivolaropoulos (2011), the scale
function can only be chosen as follows

R(r, 1) = (t + B + nyra)*/3. (19)

The range of values of the parameters is given as 3 € [0.5, 4],
g = 0.65], and 1y = 50 (Ribeiro 2008; Wang et al. 2000). The
general formula of Hubble parameter as a function of the
distance r from the center of the DE overdensity and time ¢ for
the inhomogeneous LTB universe is given by (Enqvist 2008;
Aly et al. 2020)

H(r, 1) = Hoy X Qn + O, (20)

where Hy = H(r, 0) and it can be expressed as a function of €2,
as

T = O] — [ + VD))
310 ‘

Ho(r) =

1)

3. Energy Conditions

Energy conditions have a crucial role in explaining many
aspects of the universe such as its accelerated expansion and
the occurrence of singularities in the cosmological models.
Energy conditions are used to indicate the stability of the model
over different cosmological phases and it is vital in the
derivation of the black hole laws of thermodynamics. Energy
conditions state the fact that the energy density in a specific
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region of the universe should be positive and in general
expressing the limitation of the energy-momentum tensor 7,,.

3.1. Strong Energy Condition SEC

378, )u'u > 0 forall
time-like four vectors u”. For the perfect fluid, it can relate the
fluid density and its pressure as

p+ 3P > 0. (22)

The SEC can be expressed as ( w

The SEC is satisfied for matter and radiation in every phase
of the universe. However, it is violated for DE because its anti-
gravity property gives it negative pressure which does not
satisfy this energy condition. This implies that the SEC has to
be violated in the late accelerated of the universe. SEC is
violated in other scenarios as well, and cosmological inflation
is one among them.

3.2. Weak Energy Condition WEC

This condition is a mathematical expression of the fact that
the observed matter-energy density should be positive when
measured by any observer. This condition states that the

energy-momentum tensor obeys the inequality 7,,u"u”>0
which is simply written as
p>0. (23)

This condition is thought to be satisfied by all cosmic
components at any phase of the evolution of the universe. It can
be observed that both the RHDE and THDE models satisfy this
condition at 6 = {3.5, 4.5, 5.5} in the LTB universe as shown
in Figures 1 and 2 respectively.

3.3. Dominant Energy Condition DEC

The DEC energy condition can be expressed as the
inequality 7, u"u"”> 0. It is also stated that 7,,u" is always
a non-spacelike vector. So, the DEC condition guarantees that
the energy density is positive and the causality is satisfied as
the energy density cannot flow in spacetime with a speed faster
than the speed of light (Hawking & Ellis 2023). The DEC can

be expressed for the perfect fluid case as
p—IP|>0. (24)

Although the DEC is satisfied by the standard cosmological
model ACDM, it is found to be violated at the present time in
the two cases of the interacting RHDE and THDE in the
inhomogeneous LTB universe, as shown in Figure 3 for
6 =4.5. It is interesting to note that the two holographic models
have the same evolutionary behavior with z for all the chosen
values of the ¢ parameter. In the near cosmic future, the DEC
will be also violated for the two holographic models, however,
at z< —0.3, DEC is satisfied by the interacting THDE model in
the case of £ = —0.209 where the energy is flowing from the
DE sector to the dark matter sector.
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Figure 1. The evolution of the DE density of the RHDE model with z for (a)
£ = —0.209 and (b) £ = 0.290.

3.4. Null Energy Condition NEC

NEC has a crucial role since its violation means the violation
of WEC and SEC. This condition is vital in deriving the black
hole laws of thermodynamics. This condition is stated as
T,.k"k” > 0 for every null vector k" and for the perfect fluid
case it can be expressed as

p+P=0. 25)

To check the NEC for both holographic models, the
evolution of p + P with redshift is plotted in Figure 4. It can
be observed that the NEC is violated by the two interacting
cases of the RHDE model. In the case of the interacting THDE
model, the NEC is violated for £ = 0.290 while at z< —0.3, it is
satisfied when ¢ = —0.209. This leads to the SEC being
violated for both holographic interacting models in recent times
and the near future since the inequality (Equation (22)) is also
violated as shown in Figure 5. Further, we can observe that the
WEC is violated within the same range of cosmic time and
redshift for the RHDE model because of the violation of the
inequality (Equation (25)) as shown in Figures 1 and 2. The
WEC is still violated for the interacting THDE model except at
z< —0.3 for the case of £ = —0.209 where it would be satisfied.
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Figure 2. The evolution of the DE density of the THDE model with z for (a)
&= —-0.209 and (b) £ = 0.290.
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Figure 3. Violation of the DEC for (a) interacting RHDE model and (b)
interacting THDE model in the inhomogeneous LTB universe at 6 = 4.5.

This violation of the NEC implies phantom-like behavior of
these interacting HDE models in the LTB inhomogeneous
universe. This behavior manifests itself again in the other
perspectives of analyzing the stability that is studied later in
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Figure 4. The evolution of p + P with the redshift for (a) interacting RHDE
model and (b) interacting THDE model in the inhomogeneous LTB universe
at 6 = 4.5.

this work where the equation of state (EoS) parameter and the
sound speed squared parameters have negative values in the
present cosmic times and the near future.

4. Thermodynamics of RHDE and THDE Models

In this section, the thermal evolution of the holographic
models in the LTB inhomogeneous case is analyzed. This is
done by considering the generalized second law of thermo-
dynamics, analyzing the evolution of the horizon entropy of the
models, and investigating its maximization in the near cosmic
future times.

4.1. Entropy

The second law of thermodynamics states that the entropy of
any closed system should always increase. This should also be
true for the systems with cosmological scales and the whole
universe. Any system that has evolved boundaries has the
entropy of its boundaries added to the entropy of its contents.
The Hubble horizon is thought to be the thermodynamical
boundary of the observable universe (Davis et al. 2003; John
et al. 2023). So, the total entropy of the observable universe can
be considered as the summation of its horizon entropy Sy and
the entropy of its matter and energy content S,. The
generalized second law of thermodynamics can be written as

D (S + Su) > 0. 26)
dt
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Figure 5. The evolution of p + 3P with the redshift for (a) interacting RHDE
model and (b) interacting THDE model in the inhomogeneous LTB universe
at 6 = 4.5.

Since the horizon entropy is several orders of magnitude
larger than the matter entropy, the total entropy can be
approximated as the horizon entropy (Egan & Lineweaver
2010). The cosmological horizon entropy is given in a similar
form as the black hole event horizon entropy which is defined
by the Bekenstien law as (Bekenstein 1973)

_ Apkg

Su = , 27
"= 27)

where Ay = 4r,3 is the horizon surface area, kg is Boltzmann
constant and [p is the Planck length. For the observable
universe which is locally flat, the horizon radius is ry = ¢/H
and the horizon entropy is given by

kg
Sy = , 28
= e (28)

where # is the reduced Planck constant and G is the
gravitational constant. In natural units the horizon entropy
can be simply expressed as

1

(29)

By substituting the Hubble parameter given in Equation (20),
the evolution of the horizon entropy, and hence the total entropy,
with the redshift for the two holographic models can be studied.
The evolution of total entropy is plotted for the two holographic
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Figure 6. The evolution of the cosmological total entropy of the interacting
RHDE model for the interacting case: (a) { = —0.209 and (b) £ = 0.290.

models in Figures 6 and 7. In Figure 6 the cosmological entropy
of the RHDE model increases with time in such a way that
satisfies the generalized second law of thermodynamics. However,
in the future, it evolves until reaching a maximum value at z then
it decreases with time and violates thermodynamics. In Figure 7
the entropy of the THDE model is increasing with the evolution of
the universe. Although the THDE entropy will reach a maximum
value at nearly z = —1, at later times it will increase again. This
means that the THDE model will be thermodynamically more
stable in the future. To understand further the thermodynamical
stability of the two holographic models in the future, the first and
second derivatives of the entropy with the scale factor have been
investigated.

The first derivative shows the stationary points of entropy
where it has a zero first derivative with any convenient
cosmological variable or S’ = 0. The second derivative
investigates whether the entropy function has a convex point
of maximization where the second derivative of the entropy
satisfies §7< 0. Any natural system should have this convexity
in the long time range of evolution to eventually satisfy the
second law of thermodynamics and be thermally stable. For
example, the ACDM cosmological model is found to satisfy
this condition at the end of its de Sitter time (Krishna &
Mathew 2017). The entropy derivatives for the two holographic
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Figure 7. The evolution of the cosmological total entropy of the interacting
THDE model for the interacting case: (a) £ = —0.209 and (b) £ = 0.290.

models are shown in Figures 8 and 9. In Figure 8(a) and (b), we
can observe that for the RHDE model, the entropy has a
stationary point in the future times at z = —1 for £ = —0.209
and £ = 0.290. This point corresponds to the maximum values
of the entropy that are shown in Figure 7. At the later times of
the far future at z < —1, the entropy first derivative has to be
increasing then decreasing again until reaching zero. This
means that after reaching its maximum value, entropy
decreases again until vanishing. This behavior in the far future
is showing itself again in investigating the evolutionary
behavior of the entropy second derivatives, displayed in
Figure 8(c) and (d) where the second derivatives will take
positive values for z > —2 and hence there is no convexity of
the entropy function in the far future. This violates the
generalized second law of thermodynamics and shows the
thermal instability of the RHDE model in the future times of
the inhomogeneous LTB universe.

Figure 9 shows the stationary points of the THDE entropy
function in plots in Figure 9(a) and (b) and the evolutionary
behavior of its second derivatives in Figure 9(c) and (d). We
can observe that entropy does not satisfy the convexity
condition in the long run of evolution, i.e., far in the future,
and hence does not satisfy the second law of thermodynamics.
So, we can say in general that both HDE models have no
bounded entropy and no ultimate thermal stability in the future.
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Figure 8. The evolution of the total entropy derivatives

RHDE model for £ = —0.209 and £ = 0.290.

of the interacting
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This result is more consistent with that one obtained in the
previous section about the phantom-like behavior of both
models in the far future times. The thermal instabilities of these
HDE models also may cause dynamic instabilities in the future
evolution of the inhomogeneous LTB universe (John et al.
2023). This claim can be analyzed in more detail in the next
section.

5. Dynamical Stability and Phase Space Analysis

The thermal analysis that has been discussed in the previous
section reveals that the two interacting holographic models
contradict the conventional thermodynamics in the long run of
evolution with time. To investigate the reflections of this on the
dynamical behavior of the LTB universe in the future, the
evolution of some relevant dynamical variables could be done
to understand exactly the behavior of the L'TB universe in the
asymptotic limits.

We can adopt the convenient choice of the dynamical
variables given in Mathew et al. (2022) where

— P — p_D

3H?’ 3H?

From Equation (20) of the Hubble parameter the two

dynamical variables given above satisfy u + v = 1. By defining

x = InR(r, t), where R(r,t) = (¢t + B + nyr?)*/3, the con-

servation Equations (1) and (2) of the interacting HDE models
with dark matter can be written as follows

(30)

dp, 0
m _ _3 - =, 31
dx Pm =y G
dpp Q
— = -3 + + —=. 32
T (1 + wp)pp I (32)

Using these equations with Equation (3), the coupled
differential equations for # and v can written as,

du

X
% — 3(1 + wp)v + 360 + 3v[u + (1 + wp)v]
X
=g, v). (34)

It is interesting to notice that these equations are always true
for any interacting HDE model. Now, the task is to find the
equilibrium (critical) points of these differential equations
which can reveal the dynamical properties of the evolving LTB
inhomogeneous universe with an interacting dark sector at
different epochs of its history. These critical points are the key
elements in constructing and analyzing the phase space of the
relevant dynamical systems. The critical points are essentially
obtained by setting f (u, v) = 0 and g(u, v) = 0. The resulting

“p

set of critical points is (u., v.) = {(0, 0), (1, 0), (i, _*5)}_
wp wp
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Figure 9. The evolution of the total entropy derivatives of the interacting
THDE model for £ = —0.209 and £ = 0.290.
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Figure 10. The evolution of the EoS parameter of the interacting RHDE model
for £ = —0.209 and £ = 0.290.

The first point (0, 0) is a trivial critical point which corresponds
to an empty universe with no DE or dark matter. The second
critical point (1, 0) represents a matter dominated universe
which is very close to the state of the very early universe. The

wp —

third point (f, ”—f) is the most relevant one. It can give us
wn’ o

Wp
an understanding of the dynamical evolutionary behavior at

any time epoch of the universe depending on the values of the
parameter ¢ and the EoS parameter of DE wp. This critical
point is specifically useful in investigating the dynamical state
of the universal system in the later times of the future (Usman
& Jawad 2023). This is obvious when we consider the non-
interacting holographic models, where £ = 0. This point will
become (0, 1) which is the later de Sitter state of the DE
dominated universe. The evolution of wp for both interacting
holographic models is plotted against the redshift in Figures 10
and 11.

To study the stability behavior relevant to the last two critical
points, the method of linear perturbation has to be considered.
Here the dynamical variables are expressed around their critical
values as u — u' = u, + éu and v — v/ = v. + v, where éu
and év are the infinitesimal deviations of the dynamical
variables from their critical values. By linearizing the coupled
differential Equations (33) and (34) using this linear perturba-
tion, one can obtain a matrix form for the perturbative
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Figure 11. The evolution of the EoS parameter of the interacting THDE model
for £ = —0.209 and £ = 0.290.

differential equations,

2 [6
Tl e

Ou ov

(35)

o]

The 2 x 2 Jacobian matrix on the right-hand side is given for
the interacting holographic models by,

-3+ 6u—+3(1 +wp)v =3¢+ 3(1 +wpu
3y 36+ 3u+ (1 +wp)6v — )|
(36)

By diagonalizing this matrix we can find the two eigenvalues
(A1, A2) corresponding to each critical point. Stability of the
model is depending on the sign of its corresponding
eigenvalues. If both eigenvalues are negative, the system is
dynamically stable and the critical point represents a sink point
to which the phase space trajectories converge. If both
eigenvalues are positive, the critical point represents a source
point in the phase space and the system is dynamically
unstable. If one of the two eigenvalues is positive while the
other one is negative, the critical point is a saddle point and the
system will need further analysis to investigate its stability. To
investigate the stability of the LTB universe with interacting
RHDE and THDE models we have to find their eigenvalues
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which correspond to the two nontrivial critical points of
interacting systems.

5.1. Dynamical Stability of RHDE Model

The first nontrivial critical point (1, 0) has the eigenvalues
(3, 3(¢ — wp)). In the case of the RHDE model the EoS
parameter wp, is always negative in the range of redshift values
illustrated in Figure 10. In the case of negative coupling
constant £ = —0.209 in Figure 10(a), the values of wp, always
satisfy the relation [wp| > 0.209 and hence the corresponding
eigenvalues are always positive. In the case of the positive
coupling constant £ = 0.290 in Figure 10(b), the eigenvalues
are always positive for all the corresponding values of wp. So,
we can say that the critical point (1, 0) of the LTB universe
with the RHDE model of DE represents a dynamically unstable
point. This point is represented by the black dot in Figure 12
which is a source point from which all the phase space
trajectories diverge. This is reasonable as this point represents
the matter dominant state of the early universe which cannot be

considered as a stable state of the observable universe.
¢

The second critical point (w—, “J“w—fg) has eigenvalues that
D D

can be analyzed using the Mathematical Wolfram program.
These eigenvalues can be used to study the asymptotic
dynamical behavior in the future times when the wp parameter
has almost converged to the negative value —1.3. In this case
the critical point will degenerate to two critical points and there
will be two sets of eigenvalues depending on the value of the
coupling constant &. In the case of negative coupling constant
& = —0.209, the critical point will be (0.16, 0.84) which has the
eigenvalues (—0.79, 4.01). This is a saddle point in the phase
space. In the case of positive coupling constant £ = 0.290, the
critical point will be (—0.22, 1.22) which has the eigenvalues
(—0.57, 3.571). This is again a saddle point in the phase space.
These saddle points are represented by the red dots in
Figure 12. The phase space trajectories converge to a line
passing these critical points. A stable critical point should have
the phase space trajectories converge to that point but this
feature is not strictly obeyed here. So, we cannot ensure that
these critical points are stable points. However, in an
infinitesimally small region around these points the phase
space can be considered converging.

5.2. Dynamical Stability of THDE Model

The same analysis that has been done in the previous section
can be repeated here with the LTB inhomogeneous universe
with the interacting THDE model of DE. The evolution of wp,
parameter of the THDE model is shown in Figure 11. It can be
noticed that the evolved wp will pass the value of wp, = —1
which is the de Sitter asymptotic state of the non-interacting
holographic model and it is the same value as the one in the
ACDM standard model of DE. So, we can investigate the
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Figure 12. The phase space of the interacting RHDE model in the LTB
universe for (a) £ = —0.209 and (b) £ = 0.290 where wp = —1.3.

dynamical stability of the THDE model around that value in the
future times.

The first critical point (1, 0) can be investigated as we did
before. It is noticed in Figure 11 that wp has negative values
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Figure 13. The phase space of the interacting THDE model in the LTB
universe for (a) £ = —0.209 and (b) £ = 0.290 where wp = —1.

and satisfying |wp| > 0.209 almost in the whole range of
redshift of interest here. This again indicates an unstable matter
dominated state of the LTB universe with the THDE model of
DE. So, in Figure 13 the critical point (1, 0) is represented by
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the source point (black dot) in the phase space of THDE model
from which all the phase trajectories are diverging.
The second critical p01nt( 5 5) can also be investigated

as we did before. In the case of f —D—O 209 the wp parameter is
almost saturated at the value wp = —1 in the future times, i.e.,
z> —2. In this case the critical point will be (0.26, 0.74) and
has the eigenvalues (—0.43, 3.43) which mean that the critical
point is a saddle point. In Figure 13(a) we can observe that the
phase space trajectories locally diverge in an infinitesimal
region around the critical point (0.26, 0.74) which is
represented by a red dot. However, this in general does not a
guarantee that this point is unstable but at least locally it seems
to be a point of dynamical instability.

In the case of the positive coupling constant £ = 0.290 we
notice that the evolved wy, converges to wp = —1 at a later time
when z &= —4. In this case the critical point will be (0.29, 1.29)
and has complex eigenvalues (1.5 + 1.06i, 1.5 — 1.06i).
Because the two eigenvalues are complex conjugates and have
equal positive real parts, the phase portrait of the phase space
trajectories around the critical point will be a growing spiral
that rotates counterclockwise as shown in Figure 13(b). So, this
model of the LTB universe will pass the point wp then it will
leave it very rapidly to less negative values of wp. This
indicates that this state is not dynamically stable.

The explicit dynamical instability of the LTB universe with
the THDE model in future times seems very reasonable and
predictive. This result is very consistent with that obtained in
the previous section in which the model did not have a bounded
entropy and was not thermodynamically stable. This is also
agrees with the result obtained in Section 3 in that this model
will converge to be phantom like and violate the all energy
conditions.

However, this is not the case with the scenario of the LTB
universe with RHDE model of DE. The dynamical stability
analysis of this scenario shows that it is at least locally stable.
So, we have the situation that the critical point (i, “J‘L—;g) is
dynamically stable at least locally but it is thermodynamically
unstable. To go further in the stability analysis trying to clarify
this paradoxical situation with the RHDE in the LTB universe,
we can investigate the evolutionary behavior of the sound
speed squared parameter in the next section.

6. Sound Speed Squared Parameter

The stability of the cosmological models can be investigated
by studying the evolutionary behavior of the sound speed
squared parameter V2. The real sound speed applies to the
regular mode of propagation for density perturbations in the
cosmic fluid and hence the stability of that system. The
imaginary sound speed applies to the irregular mode of density
perturbation propagation and hence classical instability. The
physical values of V2 have to be between 0 and 1. Any values
out this range will indicate a tachyonic instability or
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Figure 14. The evolution of sound speed squared of the interacting RHDE
model in the LTB universe for (a) & = —0.209 and (b) £ = 0.290
where wp = —1.

superluminal propagation instability (Vagnozzi et al. 2020).
The sound speed squared parameter is given by

VZZ@:M+WD, (37)
dpp Pp
where Pp, = ppwp is the DE pressure. Using pp from

Equations (5) and (14), the sound speed squared parameter is
plotted for the two interacting holographic models in
Figures 14 and 15.

As we can observe from these figures the V* parameter has
only negative values in the recent and far future times of the
universe. This means that these holographic models have
instabilities in the perturbation level. They have irregular
modes of superluminal propagation in which the density
perturbations have an exponential growth (Myung 2007; Kim
et al. 2008; Sharma & Dubey 2022).

This result is predictable for the THDE model since all
previous methods of investigating stability have shown that this
model is not stable in both recent and future times. However, in
the previous section, when we analyzed the dynamical stability
condition at the critical point (j “b_ 5) the model is found to
be at least stable locally. HowevDer 1ts thermal stability analysis
stated that it is unstable at the same time epochs. Now, by
considering the last result derived from investigating the sound
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Figure 15. The evolution of sound speed squared of the interacting THDE
model in the LTB universe for (a) £ = —0.209 and (b) ¢ = 0.290

where wp = —1.

speed analysis for the RHDE model, we can conclude that this
model of DE is also unstable whenever we consider the
scenario of the LTB inhomogeneous universe.

7. Conclusion

In this work, we consider the interacting Rényi and Tsallis
holographic models. These models are statistical general-
izations of the entropy formula of a black hole which were
introduced at first by Bekenstein and Hawking. These have
been investigated in the case of the generalized LTB model of
the inhomogeneous universe which was studied previously in
Abd Elrashied et al. (2019), Aly et al. (2020), Grande &
Perivolaropoulos (2011). The main target of our study is
investigating the stability conditions of the inhomogeneous
LTB universe in which a DE component is represented by the
interacting RHDE and THDE holographic models. The
significant interaction here is assumed to be between dark
sectors only. We analyzed the stability of both models by
examining their thermodynamic evolution and dynamical
behavior in recent and future times.

In the beginning, we examined how well the gravitational
energy conditions are satisfied, which have many applications
in understanding gravitational and cosmological systems. We
observed that both holographic models almost violate all
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energy conditions. The violation of the SEC as shown in
Figure 5 is a well-known theme of the systems containing DE
because of its characteristic negative pressure. The violation of
the NEC as shown in Figure 4 suggests that the DE density is
evolving in such a way that makes these models unstable. The
violation of the WEC refers to the phantom-like behavior
(Pasqua et al. 2014) which is true as both models have almost
negative values of the EoS parameter less than —1 as shown in
Figures 10 and 11.

The analysis of thermodynamic stability had shown that both
models are unstable in the far future, however, they seem stable
in the near future. However, the THDE entropy is evolving in
that it is always increasing with time as shown in Figure 7, and
the entropy of the RHDE is increasing then rapidly decreasing
at z = —1 as shown in Figure 6. So, the two models do not have
a convexity condition in their entropy functions, i.e., S”< 0, in
the future for both values of the coupling constant £. However,
both interacting holographic models have a temporary stability
at the near future times, i.e., S”> 0 at nearly z<< —1.5 as shown
in panels (c) and (d) of Figures 8 and 9. They eventually will
lose this stability and their second derivative of entropy will
turn to be positive in the later times.

The dynamical stability of both models has been investigated
by analyzing the phase space and critical points for the two
holographic models as shown in Figures 12 and 13. The
analysis has affirmed that the THDE has an explicit dynamical
instability at all of its critical points, while the RHDE model
has a local stability at one critical point in its phase space. This
motivated us to go further in the examination of stability and
investigate the evolution of the sound squared parameter, V2,
for both models. The later analysis revealed that the two
holographic models have negative values of their evolving V>
parameter as shown in Figures 14 and 15. This confirms the
phantom-like behavior, and hence the instability of both
holographic models in the recent and even near future times.

Accordingly, we can in general conclude that the LTB
universe scenarios with interacting RHDE and THDE models
of DE are not all promising. This is because of their explicit
phantom-like behavior and their thermodynamic instability in
the future which seems far from any promising candidate
model that can explain the recent behavior of the universe and
provide reasonable predictions about its future.
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