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Abstract

Clock difference between the ensemble pulsar timescale (PT) and the International Atomic Time (TAI) PT-TAI
derived from the International Pulsar Timing Array (IPTA) data set indicates a very similar variation trend with the
Terrestrial Time TT(BIPMXXXX)-TAI but PT has larger measurement error. In this paper, we discuss the
smoothing method of PT using a combined smoothing filter and compare the results with that from other filters.
The clock difference sequence between PT-TAI and the first time derivative series of the TT(BIPMXXXX)-TAI
can be combined by a combined smoothing filter to yield two smooth curves tied by the constraints assuring that
the latter is the derivative of the former. The ensemble pulsar time IPTA2016 with respect to TAI published by
G. Hobbs et al. and first time derivative series of the TT(BIPM2017)-TAI with quadratic polynomial terms
removed are processed by combined smoothing filter in order to demonstrate the properties of the smoothed
results. How to correctly estimate two smoothing coefficients is described and the output results of the combined
smoothing filter are analyzed. The results show that the combined smoothing method efficiently removes high
frequency noises of two input data series and the smoothed data of the PT-TAI combine long term fractional
frequency stability of the pulsar time and frequency accuracy of the terrestrial time. Fractional frequency stability
analysis indicates that both short and medium time interval stability of the smoothed PT-TAI is improved while
keeping its original long term frequency stability level. The combined smoothing filter is more suitable for
smoothing observational pulsar timescale data than any filter that only performs smoothing of a single pulsar time
series. The smoothed pulsar time by combined smoothing filter is a pulsar atomic time combined timescale. This
kind of combined timescale can also be used as terrestrial time.
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1. Introduction

The rotation of millisecond pulsars is very stable, and within
a few years, the stability of rotation of such millisecond pulsars
rivals that of atomic clocks (Kaspi et al. 1994). It has been
proposed that pulsars should be used to establish a new
astronomical timescale, to which atomic time could be
compared. Earlier attempts to develop a pulsar timescale have
been made by Petit & Tavella (1996), Zhong & Yang (2007),
Rodin (2008). Since the Pulsar Timing Array (PTA) project
observing an ensemble of millisecond pulsars has been
initiated, more than 50 millisecond pulsars are now being
observed by the International Pulsar Timing Array (IPTA)
project. The long-term timing observation data of the IPTA are
available (Verbiest et al. 2016; Perera et al. 2019). The
algorithm of constructing an ensemble pulsar timescale (PT) is
developed and improved (Hobbs et al. 2012, 2020; Yang et al.
2022; Zhang et al. 2024). The ensemble pulsar time IPTA2016
published by Hobbs et al. (2020) includes two sets of results
obtained using generalized least squares and a Bayesian

algorithm. The algorithm of generalized least squares models
clock errors (PT signal) as a set of equally spaced samples with
an interpolation mechanism, and clock error model is included
in the timing model and fitted out (for details see Hobbs et al.
2012, 2020). The Bayesian algorithm models the power
spectrum of the signal of clock errors as a power law spectrum,
when the model parameters are determined by Bayesian
analysis, the waveform of clock errors is constructed by
generalized Wiener filtration (see Lee et al. 2014; Hobbs et al.
2020). Both algorithms emphasize the importance of timing
noise analysis and distinguish between noise and clock signal.
The difference between IPTA2016 and the International

Atomic Time (TAI) established by generalized least squares
algorithm (Hobbs et al. 2020) contains 37 data points with
sampling interval of 182.6 days, the average error of the data
points is 0.226 μs, and total time span of the data is 6574.5 days
(from MJD 49400 to MJD 55974.5).
On the basis of the TAI, the Bureau International des Poids

et Mesures (BIPM) further uses the primary frequency standard
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data to obtain the comprehensive atomic time TT(BIPMxxxx).
The TT(BIPMxxxx) is used as the coordinate time of the
International Terrestrial Reference System (ITRS), also known
as terrestrial time, and xxxx indicates the year of release. The
terrestrial time is available a year later than the TAI, and
updated annually. Figure 1 shows a comparison of the clock
difference IPTA2016-TAI (in the following text we refer to
IPTA2016 to as PT) with the difference TT(BIPM2017)-TAI
obtained by anonymous ftp from the BIPM. Compared to the
atomic time, the error bars of PT-TAI data points are larger,
indicating large measurement error, while TT(BIPM2017)-TAI
is much smoother. As shown in Figure 1, PT-TAI and
TT(BIPM2017)-TAI have basically similar trends, signifying
that the systematic error of the TAI is detected by PT. Several
early data points of PT-TAI deviate greatly from TT
(BIPM2017)-TAI mainly because the early available pulsar
observations are few and the timing observation error is
relatively large (Hobbs et al. 2020). At present, the published
PT research results, including the results of Bayesian algorithm
and Wiener filtration algorithm, can also detect systematic error
of the TAI (Hobbs et al. 2012, 2020; Yang et al. 2022). It
should be noted that because pulsar time does not contain linear
and quadratic terms, for the data involving TT(BIPM2017)-
TAI in Figure 1 and following text the linear and quadratic
terms are fitted and removed.

We use σz to compare the fractional frequency stability of
pulsar timescale with atomic timescale (Matsakis et al. 1997).

Defined in terms of third-order polynomials fitted to sequences
of measured time offsets, σz is sensitive to variations in the
frequency drift rate of the clock or pulsar. Figure 2 shows the
comparison of frequency stability curves for the clock
difference PT-TAI with the TT(BIPM2017)-TAI. Due to the
influence of measurement error, the frequency stability curve of
the PT-TAI shows an approximately linearly decreasing trend
with increasing time interval, and the stability of the maximum
time interval is close to that of the TT(BIPM2017)-TAI. As the
time series of PT extends, its long-term frequency stability has
the potential for further improvement. Contrary to the PT-TAI,
TT(BIPM2017)-TAI has better short-term frequency stability,
but the curve gradually rises with the time interval increasing.
In order to make full use of the long-term frequency stability

of the PT and improve its stability level on short- and medium-
time intervals, it is necessary to study the noise removal
method of PT. In the following text, PT-TAI and
TT(BIPM2017)-TAI data are used as a study and analysis
example of the PT noise removal method. Through analysis
and comparison by applying different noise removal methods
to the PT-TAI, we find that the combined smoothing method
(Vondrak & Cepek 2000) produces satisfactory results. The
method combines the clock difference series of PT-TAI data
with the first time derivative of TT(BIPM2017) -TAI data to
yield two smoothed curves such that one is smoothed PT-TAI
and the other is its first time derivative. Although PT-TAI has
good long-term frequency stability, the PT-TAI observation

Figure 1. Comparison between the clock differences PT-TAI (blue line) and the TT(BIPM2017)-TAI (black line). The red line is smoothed cure of the PT-TAI by
Fourier domain filtering.
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data points are sparsely sampled and their errors are relatively
large, hence it is difficult to provide information about short-
term variations of clock difference by the PT-TAI. On the
contrary, the TT(BIPM2017)-TAI with sampling interval
10 days has better frequency accuracy and short-term frequency
stability. Therefore, the TT(BIPM2017)-TAI can provide short-
term variation information on the clock difference, i.e.,
information on the first time derivative of the clock difference.
At the same time, the long-term fractional frequency stability of
the PT-TAI can constrain long-term variation of the first time
derivative of TT(BIPM2017)-TAI. The function of a simple
low-pass filter is to remove high frequency noise. The
combined smoothing method not only can remove high
frequency noise of PT-TAI, it can also combine the long-term
stability of pulsar time and frequency accuracy of the terrestrial
time. The smoothed PT-TAI, while maintaining its original
long-term frequency stability, significantly improves its level of
frequency stability at short- and medium-time intervals.

Liu et al. (2023) used a combined smoothing method, while
Zhu et al. (2024) employed a wavelet analysis method to
combine ensemble pulsar time and ensemble atomic time, but
they did not discuss the problem of combining pulsar time and
atomic frequency standards. We describe the role of frequency
standards in establishing timescale in Section 4.1.

In the paper, we will focus on the usage of the combined
smoothing method to combine the PT-TAI and the first time

derivative of TT(BIPM2017)-TAI data sets. In Section 2, some
noise removal methods of observational data, especially the
combined smoothing method, are briefly described; In
Section 3, the process and results of smoothing both PT-TAI
and first derivative of the TT(BIPM2017)-TAI using the
combined smoothing method are presented in detail; In
Section 4 some application of combined timescale produced
by combined smoothing filter is discussed; The final section
gives the preliminary conclusion.

2. Smoothing Method of Ensemble Pulsar Timescale

In order to compare simple low-pass filtering against the
combined smoothing filtering, in the following text both types
of filters are introduced and their smoothed results are
compared.

2.1. Fourier Domain Filtering

By a suitable filter to remove high frequency noise of the
observed data, we can extract low frequency signals of interest.
For example, using the Fourier domain filtering can remove the
high frequency noise components of the observed data. To
perform the Fourier transformation and compare the smoothed
result with atomic time, we interpolated the PT-TAI linearly
into a time series with 10 day spacing. Fourier transformation
of the interpolated PT-TAI is performed, then the series, after

Figure 2. Comparison of fractional frequency stability σz curves of the TT(BIPM2017)-TAI (black line) and the clock differences PT-TAI before (blue line) and after
(red line) smoothing by Fourier domain filtering.
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discarding the Fourier high frequency components and the
signal with period longer than 900 days, is transformed to the
time domain (Matsakis et al. 1997). The resulting smoothed
PT-TAI after removing the high frequency noise is shown in
the red line in Figure 1. The frequency stability σz curve in the
red line of the smoothed PT-TAI is presented in Figure 2.
Figure 2 clearly shows that the frequency stability of the
smoothed PT-TAI for some medium-time intervals has a higher
value than that for both shorter and maximum time intervals.

2.2. Combined Smoothing Method

The Vondrak smoothing method (Vondrak 1969, 1977) is
popularly used in many branches of astronomy. The smoothed
result of the PT-TAI using this method will be given in
Section 3.

On the basis of the Vondrak smoothing method of the
observational data, Vondrak & Cepek (2000) published the
combined smoothing method. The method smooths two sets of
observational data: In general, one with measured function
values of a certain quantity whose analytic expression is
unknown (Series 1) and the other with measured time
derivatives of the same quantity (Series 2). Both series are
measured independently or measured with different observa-
tion techniques and given at unequally spaced epochs that need
not be necessarily identical, and the individual observations are
given with different precision, defined by their formal
uncertainties. For example, in the International Earth Rotation
Service, measured polar motion and polar motion rate data are
processed by the combined smoothing method; universal time
UT1 obtained by VLBI observation and day length variation
data series measured by GPS are combined by combined
smoothing. The smoothed results of two series are defined at all
data points of the two input data sets, and two sets of output
series have the same number of data points. If the number of
data points in two sets of input data is respectively n1 and n2,
and observation epochs of the two sets of data are completely
independent (no epoch overlapping data points), then the
number of data points of each output data set of combined
smoothing filter will be N= n1+ n2. Otherwise, the number of
data points where the observation epoch overlaps between the
two sets of input data should be subtracted. In this case, there is
N< n1+ n2.

The basic idea of the combined smoothing method is to find
the suitable weighted compromise smoothing scheme that
satisfies the three different constraint conditions: smoothness of
the searched curve, its fidelity to the observed function values
and its fidelity to the observed first time derivatives. Let yi,
i= 1, 2,K,N, represent the value of the ith data point on a
smoothed curve of the observed function values to be searched.
Supposing that the mathematical expression for the smoothness
of the smoothed curve is S, the expression for the fidelity of the
smoothed curve to the observed data is F, and the expression

for the fidelity of the first derivative of the smoothed curve to
the input first time derivative data is F̄ , all three expressions
can be written in a functional form of yi. We are looking for the
smoothed yi values as a compromise among three different
conditions. The adjustment is then done by minimizing a
combination of the constraints above, i.e., the expression

¯ ( )= + ´ + ´ =Q S e F e F1 2 min, 1

and we have

( )=
dQ

dy
0. 2

i

In Equation (1), e1� 0, e2� 0, and these two parameters are
the coefficients of smoothing chosen for the combined
smoothing method. The degree of compromise among the
three conditions is achieved by choosing the values of two
parameters. From Equation (2) the system of N linear equations
with unknowns yi can be obtained, and the unknowns can be
solved by using the known observation data (including the
observed function values of the smoothed curve and its
observed first derivative values). Then using the derived
smoothed values yi the smoothed values of the first derivative
are calculated by formula (4–7) in Vondrak & Cepek (2000).
For details on the analytical expressions for S, F and F̄ in
Equation (1) and the expressions of partial derivatives for Q in
Equation (2), see Vondrak & Cepek (2000).
The two parameters e1 and e2 have respectively the

dimensions [time−6] and [time−4]. The larger their values are,
the larger weight we assign to the observed function values or
their first derivatives, and the closer to the observations are the
smoothed values. There is a close relation between the
coefficients of smoothing and the transfer function of the
combined smoothing filter (i.e., the ratio between the amplitude
of the smoothed curve and the observed amplitude of a periodic
function with frequency f ). The transfer function T for the
observed function values is analytically expressed by e1 and
frequency f as

( ) ( )
( )

p
=

+ -
T

e f

1

1 1 2
. 3

1 6

Similarly, the transfer function T̄ for the observed first
derivatives in terms e2 and frequency f can be expressed as

¯
( ) ( )

( )
p

=
+ -

T
e f

1

1 2 2
. 4

1 4

As for choosing a pair of smoothing coefficients, if the
frequency of the two sets of input data to be suppressed by the
filter is known in advance, the smoothing coefficients can be
calculated by Equations (3) and (4) respectively. Assuming that
half of the amplitude of a high frequency period needs to be
suppressed by the filter, the period is expressed as p0.5, and its
corresponding transfer function is ¯= =T T 0.5. A shorter
period than p0.5 is suppressed more strongly, and otherwise,
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suppressed weakly. Then we can calculate the corresponding
smoothing coefficients by using the following formulas

( ) ( ) ( )p p
= =e p

p
e p

p
1

2
, 2

2
. 50.5

0.5

6

0.5
0.5

4
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⎠
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⎞
⎠

If we want 99% of a periodic signal p0.99 to be passed by the
filter, its corresponding transfer function is ¯= =T T 0.99, then
the formulas for calculating the two smoothing coefficients can
be expressed as

( ) ( ) ( )p p
= =e p

p
e p

p
1 99

2
, 2 99

2
. 60.99

0.99

6
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Equation (6) is especially suitable for cases where more heavy
smoothing is required.

3. Data and Analysis

3.1. The Input Data for Combined Smoothing Filter

Data sequence of the difference between ensemble pulsar
time IPTA2016 in Hobbs et al. (2020) and TAI (as illustrated
by the blue line of Figure 1) was used. The clock difference
IPTA2016-TAI is referred to as PT-TAI in the following text.
The input data of clock difference series for combined
smoothing filter is the PT-TAI, Including the data point
sampling date MJD, clock difference values and their
corresponding weights used for the filter. The error of each
data point is different, and its weight is taken as the reciprocal
of square of the measurement error.

Another set of input data for the filter is first time derivative
(i.e., frequency difference) series derived by difference between
the terrestrial timescale and TAI. TT(BIPM2017)-TAI is used
for calculating first time derivative and should have approxi-
mately the same time span as the PT-TAI. Because the PT-TAI
does not contain linear or quadratic terms, the first time
derivative must be calculated using the TT(BIPM2017)-TAI
that eliminated the linear and quadratic terms. We use the
central difference method to calculate first time derivative of
each data point of the TT(BIPM2017)-TAI. That is to say, the
first order derivative of the middle clock difference data point is
computed using the corresponding clock difference values of
three adjacent data points. To calculate first derivative of the
clock difference data points at the head and tail endpoints, a
quadratic polynomial was fitted using the three data points
located at the endpoint, and then first derivative of the endpoint
is derived from the quadratic polynomial obtained by the
fitting. The calculated first derivative sequence has exactly the
same number of data points and sampling interval as the clock
difference TT(BIPM2017)-TAI sequence, containing 659 data
points, as traced by the blue line in Figure 3. Because errors of
all data points in the TT(BIPM2017)-TAI clock difference
sequence are similar, all data points in the first derivative
sequence have equal weight. The input data of the first time

derivative series for the filter include the data point sampling
date MJD, first order derivative values and their weights.

3.2. Estimation of Smoothing Coefficients

There are two possibilities for choosing the smoothing
coefficients e1 and e2, both requiring at least approximate
a priori knowledge of the observed process of the input data
sets; we should have a realistic estimation of either the
precision of the measurement, or the shortest period contained
in the signal (Vondrak & Cepek 2000). In our case, the
measurement error of the PT-TAI data points is much larger
than that of the TT(BIPM2017)-TAI data points. If the
smoothing coefficients of the combined smoothing method
filter are estimated according to the measurement errors of the
two sets of input data, the resulting e1 should be too small and
e2 should be too large, therefore the PT-TAI weight is too
small, and the weight of the first derivative of TT(BIPM2017)-
TAI is too large. As a result, the two sets of smoothed data
produced by the filter are very close to the TT(BIPM2017)-TAI
and its first time derivative respectively.
If the shortest period contained in the signal of the data is

known, it is recommended to choose the values e1 and e2 as
given by Equations (5) for p0.5 lying approximately between
one third and one half of the shortest known period contained
in the signal. Alternatively, it is also possible to calculate e1
and e2 from Equations (6), in which we put p0.99 equal to the
shortest known period of the signal. Any values of e1 and e2
lying in the vicinity of these yield approximately the same
acceptable results (Vondrak & Cepek 2000).
We assumed that the shortest period of the signal contained

in the data is about 3 yr and use p0.99= 3 yr to calculate the
coefficients of smoothing e1 and e2. The derived solution of
the filter indicates that the smoothed first time derivative
sequence significantly deviates from its input data. The large
deviation is caused by the noise of PT-TAI which is not
sufficiently smoothed. Then we decided to do grid searches to
find the shortest period of the signal p0.99 in the input data sets
that is best suited for calculating a pair of smoothing
coefficients.
Let p0.99= 0.1, 0.2,K,12 yr (12 yr is greater than half of the

PT-TAI time span), and substituting p0.99 into formula (6), we
obtain their corresponding e1 and e2 value sequences. Using e1
and e2 sequence values, the combined smoothing method filter
smooths out the PT-TAI series and first derivative series of the
TT(BIPM2017)-TAI and calculates standard deviation of the
weighted average of the respective residuals (differences
between the filter input values and the corresponding smoothed
values of the output) for both PT-TAI series and first derivative
series of the TT(BIPM2017)-TAI. Figure 4 shows the
relationship curve between p0.99 used to calculate smoothing
coefficients and the corresponding standard deviation. The
upper subplot is for e1 and lower is for e2 in Figure 4.
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Figure 3. First time derivative of the TT(BIPM2017)-TAI and its smoothed curves derived by the combined smoothing method using four pairs of smoothing
coefficients e1 and e2 respectively.

Figure 4. Relationship curve between residual standard deviation and period P0.99 used to calculate e1 (upper) and e2 (lower) for combined smoothing filter.
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The smaller the period value used for calculating smoothing
coefficient is, the larger is the value of smoothing coefficient
derived. The larger the value of smoothing coefficient used is,
the weaker is the smoothed degree of the corresponding input
data sequence. The upper subplot in Figure 4 shows that at
p0.99< 6 yr the residual standard deviation increases as the
period used to calculate e1 increases, and at p0.99� 6 yr the
curve of residual standard deviation gradually levels off for the
PT-TAI. On the contrary, in the lower subplot, at p0.99< 6 yr,
excluding the first data point, the residual standard deviation
decreases with increasing period p0.99 and at p0.99�6 yr the
curve of residual standard deviation gradually levels off for first
derivative data of the TT(BIPM2017)-TAI. This phenomenon
is caused by the incompatibility of the errors of two sets of data
(large error of PT-TAI versus small error of first derivative of
TT(BIPM2017)-TAI)). The larger measurement errors of PT-
TAI lead to a large fluctuation in their sampled data points. In
the weak smoothing case, the smoothed curve of first derivative
deviates greatly from its true value due to the PT-TAI error, so
that the standard deviation of the first derivative residuals is
larger. As the period value used for calculating smoothing
coefficients increases, the PT-TAI is progressively moderately
smoothed, bringing the smoothed curve of the first derivative
gradually closer to the correct one. An illustration of the
smoothed first derivative curves of combining two input data
sets using e1 and e2 with four different p0.99 values is given in
Figure 3. We see that in Figure 3 the first derivative smoothed
curve derived using smoothing coefficients with 4 yr period

clearly shows some deviation because of insufficiently
smoothed noise of the PT-TAI. When the p0.99 value used
gets larger, this kind of deviation is gradually suppressed and
removed.
According to Figure 3, it is recommended to carry out

combined smoothing for the PT-TAI and first derivative of the
TT(BIPM2017)-TAI using the calculated smoothing coeffi-
cients e1 and e2 with p0.99= 6 yr. Choosing the smoothing
coefficients with p0.99= 6 yr, the high frequency noise of PT-
TAI can be sufficiently smoothed and the interesting signal is
not suppressed. For the smoothing coefficients e1 and e2
calculated with 6 yr period, the corresponding transfer function
curves of the filter are shown in Figure 5 where the blue solid
and red dotted lines are respectively the transfer functions of
the PT-TAI clock difference and first derivative of the
TT(BIPM2017)-TAI. In Figure 5 the abscissa is the logarithm
of the signal period. As can be seen from Figure 5, the curves
of the transfer function of the two sets of data are similar, and
the first derivative transfer function is slightly shifted more
toward the short period end than the clock difference transfer
function. The transfer functions shown in Figure 5 yield better
smoothed results for both sets of data simultaneously. If
changing the value of e1 to shift the blue line to nearly overlap
the red dotted line, or changing the value of e2 to shift the red
dotted line to nearly overlap the blue line, in these two cases the
smoothed curve of the first derivative is obviously affected,
fluctuation of the curve becomes larger, and the residual
standard deviation becomes larger, whereas standard deviation

Figure 5. Transfer functions for the PT-TAI and first derivative of the TT(BIPM2017)-TAI (using 6 yr period to calculate e1 and e2).
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of the clock difference curve becomes smaller. In order to
balance smoothed results for both clock difference and first
derivative, the two smoothing coefficients of the filter should
be calculated using the same suitable p0.99 value. We finally
adopt the smoothed results for the two sets of data in the case
with p0.99= 6 yr.

3.3. Analysis of Smoothed Results

The smoothing coefficients e1 and e2 with p0.99= 6 yr are
used for the combined smoothing filter to smooth the PT-TAI
and first derivative series of the TT(BIPM2017)-TAI. Since
observation epochs of the two sets of data do not overlap, the
number of data points for each one of the two sets of data after
smoothing are equal to the sum of the data points of the two
sets of original data. Figure 6 shows the smoothed PT-TAI
curve (red line). To facilitate the comparison, Figure 6 again
presents the original PT-TAI data (blue line) and the terrestrial
time TT(BIPM2017)-TAI (black line). From Figure 6 we see
that the smoothed PT-TAI curve is more similar to that
representing TT(BIPM2017)-TAI than the original one.
Figure 3 shows the TT(BIPM2017)-TAI first derivative curve
(red line) after the smoothing and the original TT(BIPM2017)-
TAI first derivative (blue line). Figure 7 shows the residuals of
the two sets of data and their corresponding histograms. The
upper left subplot is the PT-TAI residuals. The subplot shows
that the large residuals appear in the early PT-TAI data where

the residual absolute value, especially for the second data point,
is greater than 1 μs. After that, the absolute value of residual of
each data point gradually decreases, indicating that the
accuracy of pulsar timing is constantly improving. The
standard deviation of residuals of the PT-TAI after filter
smoothing is 0.144 μs. Although the mean measurement error
of the original PT-TAI data is 0.226 μs, the weighted mean of
the measurement error is 0.164 μs which is close to the
standard deviation of residuals of the PT-TAI after smoothing.
The upper right subplot is the residual curve of the
TT(BIPM2017)-TAI first derivative after filter smoothing,
and the standard deviation of the first derivative residuals is
0.000155 μs/d. To further investigate the residual distribution
of the two sets of smoothed data, we present the histograms of
the respective residuals in Figure 7. In Figure 7, the lower left
subplot is the histogram of distribution of PT-TAI residuals,
and the lower right subplot is the histogram of distribution of
TT(BIPM2017)-TAI first derivative residuals. Both histograms
are very close to a Gaussian distribution, demonstrating that the
smoothed results by computing e1 and e2 with p0.99= 6 yr
efficiently eliminate the high frequency noise in the two sets of
data, correctly extracting the signal of PT-TAI. The first time
derivative of the smoothed PT-TAI is equal to the smoothed
first time derivative of TT(BIPM2017)-TAI, in other words,
both smoothed PT-TAI and TT(BIPM2017)-TAI have the same
frequency difference.

Figure 6. Comparison of the PT-TAI before (blue line) and after (red line) combined smoothing using e1 and e2 with 6 yr period. The TT(BIPM2017)-TAI is
displayed in a black line. The green line is the smoothed PT-TAI using e1 with 6 yr period and e2 = 0. The behavior of the green curve is similar to that of the
smoothed PT-TAI by Fourier domain filtering in Figure 1.

8

Research in Astronomy and Astrophysics, 25:025009 (13pp), 2025 February Yang et al.



We also calculated the smoothed curve of PT-TAI using
coefficient e1 with p0.99= 6 yr and setting e2= 0. In this case,
the problem reduces to original smoothing (Vondrak 1969,
1977), and the first derivative of the TT(BIPM2017)-TAI is
simply ignored. The smoothed curve of PT-TAI obtained in
this way is shown with the green line in Figure 6.

We analyze fractional frequency stability σz of the PT-TAI
before and after combined smoothing and compare it with that
of the TT(BIPM2017)-TAI. Figure 8 shows the σz curve (red
line) of the PT-TAI after smoothing using e1 and e2 with
p0.99= 6 yr. The σz curve of the smoothed PT-TAI using e1
with 6 yr period and e2= 0 is also shown in the green line. For
easy comparison, in Figure 8, σz curves of the original data,
PT-TAI (blue line), and the TT(BIPM2017)-TAI (black line)
are presented again. As can be seen from Figure 8, the σz curve
of the smoothed result by the filter using the calculated e1 and
e2 with p0.99= 6 yr shown with the red line improves both the
short- and medium-time interval frequency stability levels
compared to the blue line. Although the green line significantly
improves the PT-TAI short-term frequency stability, its σz for
some medium-time intervals indicates a higher value than that

of the red line. The behavior of the green line is similar to that
of the smoothed result by Fourier domain filtering in Figure 2.
Figure 8 indicates that the smoothed PT-TAI by combined
smoothing filter has the best short time stability and its long-
term stability is comparable with that of TT(BIPM2017)-TAI.
We can understand the result from another point of view.

Figure 9 depicts the power spectral density of both
TT(BIPM2017)-TAI and smoothed PT-TAI obtained using e1
and e2 with p0.99= 6 yr. As Figure 9 shows, both curves
indicate the significant low frequency signal, but the low
frequency signal of the smoothed PT-TAI is stronger than that
of TT(BIPM2017)-TAI. As the frequency increases, the
smoothed PT-TAI signal becomes weaker than
TT(BIPM2017)-TAI, so that in the high frequency band, the
power spectral curve is completely below that of
TT(BIPM2017)-TAI. This also signifies that TT(BIPM2017)-
TAI still contains some high frequency noise, which is
indirectly demonstrated by the high frequency noise of the
first time derivative curve (see Figure 3). Incidentally, the
smoothed PT-TAI power spectral curve (red line) as shown in
Figure 9 is different from the power spectrum of the PT-TAI

Figure 7. Residuals of PT-TAI series (upper left) and distribution histogram (lower left); Residuals of first derivative series of TT(BIPM2017)-TAI (upper right) and
distribution histogram (lower right). The coefficients e1 and e2 with 6 yr period are used for the combined smoothing filter.
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Figure 8. σz curves of timescales with respect to TAI.

Figure 9. Power spectral density curves of the smoothed PT-TAI (red line) and of TT(BIPM2017)-TAI (blue line).

10

Research in Astronomy and Astrophysics, 25:025009 (13pp), 2025 February Yang et al.



smoothed by Fourier domain filtering as shown in the red line
of Figure 1. The spectral intensity in the high frequency band
of the former gradually decreases with increasing frequency,
whereas the high frequency band spectral intensity of the latter
is mutated to 0 from the cutoff frequency.

4. Application for Pulsar Atomic Clock Combined
Timescale

4.1. Using as Terrestrial Time

The ideal timescale for the coordinate time of ITRS should
have good frequency stability and frequency accuracy. The
accuracy means the scale interval (unit) is based on SI second.
TAI gets its stability from some 400 atomic clocks kept in
some 80 laboratories worldwide and its accuracy from a small
number of primary frequency standards (PFS) developed by a
few metrology laboratories through frequency steering correc-
tion. Because TAI is computed in quasi-real-time every month
and has operational constraints (e.g., no re-computation on a
given time interval even if new data become available), it does
not provide an optimal realization of terrestrial time. The BIPM
therefore computes another realization TT(BIPMxxxx) in post-
processing. TT(BIPMxxxx) has better stability and accuracy
than TAI.

Although pulsar time PT derived from PTA data set exhibits
good long-term stability, its measurement error is much larger
than atomic time and frequency accuracy is not guaranteed to
conform with an SI second. Figure 6 shows that the green curve
(smoothed PT-TAI using e1 with 6 yr period and e2= 0) is
very different from the red curve (smoothed PT-TAI by
combined smoothing using e1 and e2 with 6 yr period),
correspondingly their first derivative (frequency difference)
curves should be very different, i.e., the unit (second) of the
original PT is very different from an SI second. The smoothed
PT by combined smoothing filter combines long-term stability
of PT and accuracy of TT(BIPMxxxx) and removes high
frequency noise of original PT, so in essence smoothed PT is a
combined timescale with TT(BIPMxxxx); hereafter we refer it
to as combined pulsar atomic time (CPA). Because both
frequency stability and accuracy of CPA are comparable to
those of TT(BIPMxxxx), CPA can also be taken as terrestrial
time. In this work TT(BIPM2017) is used as the frequency
standard to compute frequency difference of TT(BIPM2017)-
TAI used for combined smoothing filter. In the future, PFS
instead of TT(BIPMxxxx) should be utilized to compute the
frequency difference of clock difference between PFS and TAI.
In this way, we will combine long-term stability of the original
PT with frequency accuracy of PFS. Producing CPA using PT
and PFS has an advantage compared to TT(BIPMxxxx). In the
future, ensemble pulsar time with respect to TAI may be
produced in quasi-real-time every month, using PFS as the
frequency standard to realize SI second, then CPA timescale
can be derived utilizing a combined smoothing filter in quasi-

real-time every month, whereas TT(BIPMxxxx) will be
available a year later. Since both PT and PFS will continue
to develop, in the future, CPA may be further improved.

4.2. Steering Atomic Clock

A quasi-real-time timescale with high quality can be used as
a reference standard for steering some clock. For example, a
hydrogen maser shows very good short time (within a month)
frequency stability, but its stability gradually decreases with
increased time interval, though steering a hydrogen maser to a
timescale with a high quality hydrogen maser can supply, in
real-time to a user, a time signal with high stability and
accuracy in a needed long time interval. CPA can be used as a
reference standard to steer a clock.
As an example of a clock steering experiment, we choose the

local atomic time kept by the United States Naval Observatory,
TA(USNO), as a timescale to be steered. Like a hydrogen
maser, TA(USNO) has good short-term frequency stability, but
its long-term stability gradually becomes worse. Data for clock
difference TAI-TA(USNO) are taken from the BIPM website.
To be consistent with time span of the TAI-TA(USNO)
available, a data series after MJD 50678 for the CPA-TAI
shown in Figure 6 (red curve) is used. From TAI-TA(USNO)
and CPA-TAI data sets, we derived clock difference series
CPA-TA(USNO) with regular sampling.
We assume clock difference, frequency difference and

frequency drift for TA(USNO) with respect to reference
standard CPA at moment k respectively to be ak,bk and ck. If
ak, bk and ck are known, the clock difference ak+1 at moment
k + 1 can be derived by

( )= + D + D ++ +a a b t c t n
1

2
, 7k k k k k1

2
1

whereΔt is the sampling interval and nk+1 is the noise term. We
use a Kalman filter (Kalman 1960, Brown & Hwang 1983, Pìriz
et al. 2019) to determine ak, bk and ck. For the Kalman filter, the
input data series is CPA-TA(USNO), and the output is ak, bk and
ck for each step of the filter. When ak, bk and ck are determined
by the filter then clock difference CPA-TA(USNO) is corrected
according to Equation (7). In this way TA(USNO) is steered to
the reference standard CPA. The differences between CPA and
steered TA(USNO), i.e., residuals of steering TA(USNO) to
CPA, are shown in panel (b) of Figure 10. For comparison,
TT(BIPM2017)-TA(USNO) is processed by the Kalman filter in
the same way as CPA-TA(USNO), and residuals after steering
TA(USNO) to TT(BIPM2017) are displayed in panel (c) of
Figure 10. In order to steer TA(USNO) to the not smoothed
original PT with sparse sampling we linearly interpolate PT-TAI
data and then get the PT-TA(USNO) series with the same
sampling as the CPA-TA(USNO). The residuals after steering
TA(USNO) to raw PT are given in panel (a) of Figure 10. The
residuals in three subplots are the results after the Kalman filter
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converged. We see that residuals of panel (b) and (c) show
similar behavior with standard deviations 2.4 ns and 2.7 ns
respectively. Dispersion of the residuals in panel (a) is obviously
larger than both (b) and (c), because reference standard PT has

large measurement error. The standard deviation of the residuals
in panel (a) is 7.4 ns.
In Figure 11 we compare frequency stability curves for the

residuals after steering TA(USNO) to the raw PT (black line),

Figure 10. Residuals after steering TA(USNO) to raw PT (panel (a)), CPA (panel (b)) and TT(BIPM2017) (panel (c)).

Figure 11. σz curves of residuals after steering TA(USNO) to different reference standards. Black, blue and red curves are for residuals of steering TA(USNO)
respectively to raw PT, TT(BIPM2017) and CPA data. For comparison, the σz curve of TT(BIPM2017)-TA(USNO) is shown as a green line.
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TT(BIPM2017) (blue line) and CPA (red line). In Figure 11,
the stability curve for TT(BIPM2017)-TA(USNO) series is also
shown as a green line. Although the green line indicates better
short-term stability, its long-term stability becomes worse.
After frequency steering, both blue and red curves obviously
improved medium and long-term frequency stability compared
with the green curve. The black curve shows worse frequency
stability than both blue and red curves at any time interval. The
results of the frequency steering experiment also demonstrate
that the property of timescale CPA is comparable with
TT(BIPMxxxx), and both are better than the original PT for
application.

5. Conclusion

Usually, developed ensemble pulsar time PT raw data
possess sparser data points with larger error than the atomic
timescale. Through correctly choosing two smoothing coeffi-
cients of a combined smoothing filter, the high frequency noise
contained in both the original clock difference of PT-TAI and
first derivative of TT(BIPM2017)-TAI can be efficiently
removed by the filter. Data points of the PT-TAI smoothed
by the filter are denser than the original data and smoothed PT-
TAI takes on advantages of both long-term frequency stability
from PT and frequency accuracy from the terrestrial timescale.

The smoothed PT-TAI series by combined smoothing filter
can improve short and medium-time interval stability when
keeping its original long-term frequency stability. Any
smoothing filter that only smooths single PT-TAI data can
improve short-term stability but cannot improve stability level
of medium-time intervals of the smoothed curve as the
combined smoothing filter does.

The primary frequency standards are used to realize SI
second on which the timescale should be based. The frequency
accuracy of the terrestrial timescale is determined by primary
frequency standards (Guinot 1988). In the future, we can
produce combined smoothing using PT-TAI raw data series
and frequency difference series of the primary frequency
standards with respect to TAI instead of TT(BIPMxxxx)-TAI.

Here the frequency difference of primary frequency standards
with respect to TAI refers to the first derivative of the
corresponding clock difference from which quadratic poly-
nomial terms are removed. By the combined smoothing filter
we produce a combined timescale CPA which takes on long-
term stability of PT and accuracy of primary frequency
standards. The properties of stability and accuracy for CPA
are comparable with those for the terrestrial time
TT(BIPMxxxx). CPA can also be used as terrestrial time.
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