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Abstract

The in-flight calibration and performance of the Solar Disk Imager (SDI), which is a pivotal instrument of the Lyα
Solar Telescope onboard the Advanced Space-based Solar Observatory mission, suggested a much lower spatial
resolution than expected. In this paper, we developed the SDI point-spread function (PSF) and Image Bivariate
Optimization Algorithm (SPIBOA) to improve the quality of SDI images. The bivariate optimization method
smartly combines deep learning with optical system modeling. Despite the lack of information about the real image
taken by SDI and the optical system function, this algorithm effectively estimates the PSF of the SDI imaging
system directly from a large sample of observational data. We use the estimated PSF to conduct deconvolution
correction to observed SDI images, and the resulting images show that the spatial resolution after correction has
increased by a factor of more than three with respect to the observed ones. Meanwhile, our method also
significantly reduces the inherent noise in the observed SDI images. The SPIBOA has now been successfully
integrated into the routine SDI data processing, providing important support for the scientific studies based on the
data. The development and application of SPIBOA also paves new ways to identify astronomical telescope systems
and enhance observational image quality. Some essential factors and precautions in applying the SPIBOA method
are also discussed.
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1. Introduction

The Advanced Space-based Solar Observatory (ASO-S; Gan
et al. 2019, 2023), launched on 2022 October 9, is the first
comprehensive Chinese space observatory dedicated to obser-
vations of the Sun. The Lyα Solar Telescope (LST),
characterized by its unique observations in the Hydrogen
Lyα line (121.6 nm), the most intensive line in ultraviolet (UV)
band of solar spectrum, from disk center to inner corona up to
2.5 solar radii, is one of the three payloads onboard ASO-S
mission and was described in detail in Li et al. (2019) and Chen
et al. (2019). Here, we provide a brief introduction to the LST
payload, which is essential for readers to understand the study
in this paper.

The LST payload comprises three instruments:

1. White-light Solar Telescope (WST). With an aperture of
130 mm, the WST works in the 360.0 ± 1.9 nm wave
band to observe white-light flares on the Sun with a field
of view (FOV) up to 1.2 solar radii. The highest cadence
of WST is 1–2 s in the burst mode.

2. Dual-channel Solar Corona Imager (SCI). Featuring an
aperture of 60 mm, the SCI works in both the Hydrogen

Lyα (SCIUV: 122.2 ± 3.9 nm) and the visible (SCIWL:
704.1 ± 31.3 nm) wave bands to capture coronal mass
ejections (CMEs) and other activities within the inner
corona up to 2.5 solar radii.

3. Solar Disk Imager (SDI). The SDI has an aperture of 68
mm and works in the Lyα wave band similar to SCIUV
but with a slightly different central wavelength and width
(120.8 ± 4.5 nm). It is used to observe various activities
on the solar disk with the same FOV as the WST.

The in-flight calibration and performance of the LST have
been successfully completed and presented in Chen et al.
(2024). Readers are referred to it for detailed information.
SDI is proposed to image the Sun with a spatial resolution of

1.2 and a cadence of as high as 4 s in the burst mode and a
lower cadence (say 60 s) in a routine mode depending on the
available telemetry (Chen et al. 2019; Li et al. 2019). As
outlined in Chen et al. (2024), in-flight observations revealed a
much lower spatial resolution than expected, which is
measured to be approximately 9.5 based on first-light images
captured on 2022 October 26. One potential cause suggested is
wave front errors in the entrance Lyα filter, which could lead to
defocusing and subsequent image blurring. However, it is
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important to note that other factors can also contribute to such a
low measured spatial resolution, including, but not limited to,
aberrations imperfections in the optical components of the
instrument. To determine the exact causes of the lower
resolution is beyond the scope of this paper.

SDI images sometimes exhibit horseshoe-like bright struc-
tures, as illustrated in the white rectangular area of Figure 1.
These structures, together with the low spatial resolution,
significantly affect research efforts related to the scientific
objectives of LST, including the evolution and eruption of
filaments/prominences, the characteristics of flares and the
source regions of CMEs in the Lyα line, the parameters and
triggering mechanisms of solar flares, and potential wave
phenomena in the Lyα line on the solar disk (Feng et al. 2019;
Li et al. 2019). Therefore, it is crucial to mitigate or eliminate
these structures and enhance image quality (in terms of spatial
resolution, noise reduction, etc.) through various algorithms. A
comparison of SDI images with those captured by the
Atmospheric Imaging Assembly (AIA; Lemen et al. 2012) on
the Solar Dynamics Observatory (Pesnell et al. 2012) in the 304
and 1600Å channels, as shown in Figure 2, reveals that the
sharp, bright structures in the AIA images appear diffused and
blurred in the SDI images, further emphasizing the necessity to
improve the quality of SDI images.

One promising algorithm to enhance image quality relies on
deep learning techniques (LeCun et al. 2015), which have
experienced rapid advancements in recent years and had
widespread applications in astronomical adaptive optics. In this
paper, we leverage deep learning techniques and in-flight
observational data, taking into account the optical design of the
SDI, to estimate the wave front aberration of the SDI imaging
system, and subsequently apply the results to observational
data to improve image quality. The reconstructed images
exhibit significant quality improvement compared to the

original ones, demonstrating the feasibility of our proposed
method.
This paper is organized as follows. Section 2 introduces the

development and application of adaptive optics and wave front
sensing technologies based on deep learning. We describe our
basic methodology and estimate the point-spread function
(PSF) of the SDI imaging system in Section 3, and delineate
our experiment and analysis in Section 4. In Sections 5 and 6,
we present our discussions and conclusions, respectively.

2. Deep Learning for Adaptive Optics and Wave
Front Sensing

As a core technology of artificial intelligence, deep learning
has significant advances in many fields, including computer
vision, natural language processing, bioinformatics and drug
discovery (LeCun et al. 2015). Deep learning, powered by
artificial neural networks, is accomplished in processing
complicated data through its ability to learn sophisticated
multi-level representations and abstractions. These multiple
layers of nonlinear transformations, also known as deep neural
networks (DNNs), enable the extraction of intricate patterns
from data.
Improving the accuracy and sensitivity of wave front sensors

in adaptive optics systems through deep learning not only
represents a developmental trend in the field but also may
establish a novel domain within its applications. This is to
enhance wave front detection accuracy and expand the
capability of wave front sensors to handle complex scenarios.
Deep learning technology was first applied to astronomical

adaptive optics in the early 1990s, marking a significant
development in the field. Angel et al. (1990) successfully used
artificial neural networks to correct piston and tip/tilt
aberrations in the Multiple Mirror Telescope (MMT), mitigat-
ing the effects of turbulence and tilt between mirrors. Sandler
et al. (1991) further applied neural network wave front
detection on a 1.5 m single-mirror telescope at the Phillips
Laboratory of the United States Air Force. This technique was
later extended to the Hubble Space Telescope (Barrett &
Sandler 1993) for estimating static aberrations, demonstrating
its adaptability to complex applications and its emergence in a
novel application domain.
Recent advancements in deep learning adaptive optics have

led to significant breakthroughs, improving observation accur-
acy, extending range, enhancing cost-effectiveness, and broad-
ening applicability, ultimately strengthening astronomical
observations. Notably, Nishizaki et al. (2019) introduced a
machine learning based wave front sensor that streamlines
optical hardware and image processing, demonstrating the
ability to estimate Zernike coefficients directly from single
images using convolutional neural networks (CNNs). They also
demonstrated that the sensor could be trained to estimate wave
front distortions from both point and extended sources.

Figure 1. A cutout of SDI sample image showing “horseshoe” brightenings.
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Niu et al. (2020) explored deep learning algorithms for
interferometric wave front detection, accurately extracting
phase distribution and analyzing distortions under general
conditions. Their method has been experimentally validated for
higher measurement accuracy, faster computation, and excel-
lent performance in noisy conditions. A deep learning based
method was proposed by Wang et al. (2021) for wave front
sensing and aberration correction in atmospheric turbulence.
They successfully recovered the wave front distortion phase
from distorted images and corrected them using spatial light
modulators, significantly improving image quality and resolu-
tion, and providing a new solution for adaptive optical systems.
Furthermore, de Bruijne et al. (2024) investigated deep learning
wave front sensing for extended sources, integrating blind
deconvolution with deep learning to process Shack-Hartmann
sensor images, which enhance precision and reliability in
complicated application scenarios and wave front distortions.
Lastly, Ge et al. (2023) presented a target-independent dynamic
wave front sensing method, which employed a distorted grating
and deep learning to enable real-time detection and correction
of aberrations across various and dynamic environments.

Recent research in wave front sensing using deep learning,
as mentioned, has yielded significant achievements and wide-
range practical applications. These studies not only introduce
innovative methods and technologies but confirm their
practicality and efficacy through experimental validation as
well. These findings are pivotal for advancing astronomical
adaptive optics and wave front sensing technologies. Moreover,
they offer invaluable insights into our research to enhance the
quality of SDI observational images through wave front
aberration correction.

3. Instrumental Point-spread Function Estimate

This section outlines the fundamental approach and method
for applying deep learning techniques in our study, along with

the process for estimating the instrumental point-spread
function (psf ).
To mitigate the risk of unpredictable nonlinear distortions,

we chose to keep the SDI optical imaging system within the
linear convolution domain. By employing a structured
approach, we apply a bivariate optimization strategy to
simultaneously estimate both the true SDI image Iref and the
psf, which are unknowns in our calculations. We translated the
psf estimation into a wave front estimation of the imaging
system so as to effectively leverage the optical parameter
information from the SDI imaging system.
Unlike the deep learning based methods for imaging system

estimation reviewed in Section 2, we do not use CNN for direct
wave front prediction. Instead, we utilize CNN to apply
nonlinear transformations to high-quality observational images
with similar characteristics, such as those from AIA 304Å
channel, to generate ideal SDI reference images that comply
with the linear constraints of the optical system. The CNN used
in this study denoted with N(I304, ΘN) is a standard multi-layer
CNN with an input layer consisting of 1–64 convolutional
kernels, which transform the input image I304 into 64 feature
maps. N(I304, ΘN) contains 72 hidden layers with a width of 64.
The output layer uses 64–1 convolutional kernel to transform
the 64 feature maps into the output image Iref. The algorithmic
process for estimating the psf of the SDI imaging system is
illustrated in Figure 3.
The objective of the optimization is to iteratively refine the

parameter ΘN of the convolutional neural network N(I304, ΘN)
and the value of the wave front to minimize the error defined by
Equation (1), ensuring that the convolution of the ideal SDI
image Iref with the system's psf aligns with the actual
observational data ISDI, thereby enabling an accurate estimation
of the psf.

  ( )= - Ä
Q

e I I psfmin 1
,wavefront

SDI ref
2

N

Figure 2. Comparison of AIA 304 Å (left), SDI (middle) and AIA 1600 Å (right) images at 18:07 UT on 2023 March 19.
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The ideal SDI image Iref is output by the neural network
N(I304, ΘN) (Equation (2)).

( ) ( )Q=I N I , 2Nref 304

The system’s psf is calculated from the generalized pupil
function defined by Equation (3):

∣ ( )∣ ( )= ´ ´psf A e 3j wavefront 2

The ΘN in these equations denotes the parameters of the
CNN, while wave front refers to the wave front aberration,
identified as the variable to be optimized and highlighted in the
red square in Figure 3. The term A stands for the aperture
transmission, which equals 1 inside the aperture and 0 outside,
assuming uniform transmission. The function denotes the
Fourier transform, while the symbol ⊗ signifies the convolu-
tion operator.

Figure 3 depicts the processing steps of the SPIBOA (SDI
PSF and Image Bivariate Optimization Algorithm). The
algorithm's detailed procedure is as follows:

(1) Data Preprocessing: coalign the images of SDI and AIA,
and suppress noise in the SDI observational images.

(2) Initialize Iref with the AIA 304Å image I304 and the wave
front with the data gleaned from pre-launch (on-ground)
tests of the SDI flight model.

(3) Calculate the error

  ( )= - Äe I I psf 4SDI ref
2

(4) By propagating the error e backwards, the stochastic
optimization algorithm (Adam) algorithm (Kingma &
Ba 2014) is utilized to update the optimization targets,
namely Iref and wave front.

(5) If e is less than the predefined threshold, terminate the
iteration and output the psf. Otherwise, continue iterating
and return to step (4).

SPIBOA accepts SDI and AIA 304Å observational images
with aligned FOV and suppressed thermal noise as input. It
employs the Adam algorithm to jointly refine the wave front
aberration (wave front) and the parameters of the CNN (ΘN).
By minimizing the error defined in Equation (1), SPIBOA
derives an estimate of the ideal SDI image (Iref) and the wave
front aberration (wave front). Subsequently, it computes the psf
of the SDI observational system using Equation (3). This psf is
then utilized for the deconvolution of the observed SDI images
to enhance their quality.
Figure 4 depicts the intermediary results of the SPIBOA

training procedure. Panel (a) displays the ISDI from the training
dataset, while panel (b) shows the result of the convolution
between Iref and psf. Panel (c) presents the Iref generated by the

Figure 3. Flow chart of instrumental psf estimating process.

4

Research in Astronomy and Astrophysics, 25:025005 (10pp), 2025 February Liu et al.



CNN N(I304, ΘN), and panel (d) gives the initial value of Iref,
namely I304.

The resemblance between panels (b) and (a) suggests that
the optimal solution derived by SPIBOA aligns with the SDI
imaging model. Panels (e) and (f) present a test sample that
was excluded from the training phase, together with its
deconvolution outcomes, thereby implying the generalization
capability of SPIBOA. Panel (g) presents the wave front
optimized by SPIBOA, whereas panel (h) displays the psf
derived from this wave front based on Equation (3). This psf is
consistent with the anomalous ‘horseshoe’ structure depicted
in Figure 1, suggesting that the estimation of the psf is
reasonable.

4. Experiment and Analysis

We use the psf derived from SPIBOA to make deconvolution
corrections to actual SDI observational images utilizing the
Richardson-Lucy iteration algorithm (Richardson 1972), and
present the results in Figure 5. Panels (a) and (b) in Figure 5
show the full-disk images of the Sun before and after
correction, respectively, while panels (c) and (d) provide
comparisons of subareas (corresponding to the red-boxed
regions), revealing enhanced clarity and effective noise
reduction in the corrected images. Figure 5(e) displays the
psf estimated by SPIBOA, which closely matches the
distinctive “horseshoe” pattern observed in the SDI images,

indicating a reasonable and accurate estimation. Figure 5(f)
shows the power spectral density profiles of the images in
panels (c) and (d), which demonstrate a significant increase in
mid- to high-frequency energy in the corrected image
compared to the observed image, quantitatively validating the
improvements in clarity and contrast.
To quantitatively assess the effect of image correction, we

employed a series of flare images with varying intensities to
measure the resolution improvement after correction. We use
the Spatial Image Resolution Assessment by Fourier Analysis
(SIRAF) technique (Brostrom & Molhave 2022) to conduct the
resolution evaluation of SDI images. Our quantitative analysis
indicates an enhancement in spatial resolution by a factor of
more than three after correction, as outlined in Table 1. The
table provides basic information on four flares, including the
estimated spatial resolution before and after correction, as well
as the factor of improvement in spatial resolution.
Figures 6–8 present resolution comparisons of SDI images

before and after correction for the GOES X 1.0 flare of 2024
May 8 in Table 1. Figure 6 displays the full-disk images before
and after correction. In Figures 7 and 8, panel (a) shows the
windowed images of 800 by 800 pixels, starting at [1600,
1600] in image coordinates, which are used for resolution
estimations, and panel (b) the Fourier spectra of these
windowed images, whereas panel (c) displays the corresp-
onding spectral amplitude profiles. Following the SIRAF

Figure 4. Intermediate Results of SPIBOA Training Process. (a) SDI observational image for training; (b) Iref ⊗ psf; (c) Iref; (d) I304; (e) SDI observational image for
testing; (f) deconvolution of the test image with the obtained psf; (g) wave front generated by SPIBOA; (h) psf obtained from the wave front using Equation (3).
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guidelines, a Hanning window is applied to the windowed
images to effectively mitigate spectral leakage.

The corrected images, consistent with the results shown in
Figure 5, demonstrate a significant improvement in clarity and
contrast, which is due to the fact that the Fourier spectrum of
the images before correction was concentrated in the low
frequencies, while the mid- to high-frequency energy is
noticeably increased after correction. This change can be easily
seen by comparing panels (b) in Figures 7 and 8. The spectral
amplitude profiles presented in panels (c) of Figures 7 and 8
reveal that the normalized cutoff frequency, which was below
0.05 before correction, rises to approximately 0.15 after
correction. The substantial increase quantitatively confirms a
more than threefold improvement in spatial resolution.

Figure 9 compares the corrected SDI images with AIA 304Å
and AIA 1600Å images. The structural features in the areas
marked by squares and circles demonstrate that the spatial

resolution of the corrected images has significantly improved.
Moreover, these features are well consistent with those in the
AIA 304Å and AIA 1600Å images, further validating the
effectiveness and rationale of the SPIBOA method.

5. Discussion

As shown above, the SPIBOA procedure significantly improves
the quality of SDI images. In this section, we discuss some
important factors, tailored strategies, essential considerations, and
precautions for the practical application of the procedure.

5.1. The Essential Elements for the Implementation of
SPIBOA

1. Prior Constraints. Utilizing the design and manufactur-
ing parameters of the SDI optical system as fundamental
constraints, we determine the equivalent aperture of the

Figure 5. Deconvolution with PSF obtained by SPIBOA and power spectrum. (a) SDI observational image; (b) deconvolution image; images in panels (c) and (d)
correspond to the sub-region denoted by the red box in panels (a) and (b), respectively; (e) The psf obtained from SPIBOA; (f) The power spectral density profiles of
image in panel (c) (green) and panel (d) (red); the abscissa in (f) stands for normalized frequency while the ordinate for power density.

Table 1
Comparison of Spatial Resolution before and after Correction

Observation Date Time (UT) Flare Class Resolution Before (″) Resolution After (″) Improved by (×)

2023 May 9 03:58:15 M6.5 12.48 4.64 2.69
2023 Nov 24 09:33:34 M1.2 14.05 4.27 3.29
2024 Feb 22 22:35:43 X6.4 14.83 3.90 3.80
2024 May 8 21:41:28 X1.0 15.23 3.87 3.94
Average ... ... ... ... 3.43
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imaging system and then deduce the psf of the optical
system by refining the wave front aberration corresp-
onding to this aperture. This approach promotes the
efficiency of the optimization procedure and also
guarantees that the results more conform to the inherent
physical constraints of the optical system. More specifi-
cally, the SDI has an aperture of 68 mm and works in the
121.6 nm wave band, corresponding to a diffraction limit

of 0.183. The designed pixel resolution is approximately
0.5 with an FOV of 40 ¢ and an image dimension of
4608 × 4608 pixels. Such a configuration indicates that
the digital imaging process is undersampled. Therefore,
to accurately estimate the wave front aberration across the
entire aperture, it is imperative to magnify the observed
image by a factor of 2.73, equivalent to 0.5 divided
by 0.183.

Figure 6. Observed SDI image (left) and reconstructed one (right) taken at 21:41:28 UT on 2024 May 8.

Figure 7. Spatial resolution estimate with SIRAF of SDI image obtained on 2024 May 8. (a) selected region of SDI image filtered using a Hanning window; (b) FFT
transformed image in the frequency domain; (c) results of the fitting of the PSF function: its abscissa and ordinate indicate the normalized frequency (in unit length of
the reciprocal of image size) and amplitude, respectively. The blue line represents the amplitude spectrum, and the red dashed line represents the fitting curve.
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Figure 8. Same as Figure 7 but for the corresponding reconstructed image.

Figure 9. Comparison of (a) original and (b) reconstructed SDI images with (c) AIA 304 Å and (d) 1600 Å images.
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2. Initial Value Selection. The choice of initial values is
crucial for optimization problems. Taking into account
the structural similarity and comparable pixel resolution
between SDI and AIA 304Å images (AIA 304Å image
has a pixel resolution of 0.6, whereas the designed
resolution of SDI is 0.5), together with that they both
capture full-disk images of the Sun, we select AIA 304Å
images that are temporally close to the SDI observations
as the initial values for Iref. We subsequently utilize the
prowess of CNNs to generate ideal SDI images under
optimal imaging conditions. The advantage of this
method is its ability to exploit the sophisticated nonlinear
fitting capabilities of DNNs, thereby minimizing any
potential nonlinear discrepancies between AIA 304Å and
actual SDI images. The alignment is achieved through
linear constraints, which enables a more accurate
estimation of the psf. During the process, we utilize data
obtained from ground-based tests as the initial value of
the wave front.

3. Data Samples. An extensive and diverse dataset is
indispensable for training deep learning models. Over
the past two years, SDI has accumulated a vast cube of
observational data, from which we carefully crated a
balanced selection that encompasses data from various
solar features: the solar limb, quiet regions, active
regions and flare regions ranging from C to X class.
Each of these categories is paired with corresponding
AIA 304Å images. The balanced training dataset is
crucial for optimizing our model, which has a ratio of
1:1:1:2 for solar limb, quiet regions, active regions and
flare regions.

4. Preprocessing. For the purpose of improving the
accuracy of the optimization process and accelerating
the training phase, it is necessary to coalign the observed
SDI images with the AIA 304Å images within the same
FOV. Additionally, it is important to mitigate the adverse
effects of cosmic rays and thermal noise, which can
interfere with the image quality and accuracy of the
optimization.

5.2. Precautions in the Application of SPIBOA

1. Image correction is fundamentally a deconvolution
process in linear system theory, equivalent to inverse
filtering in the frequency domain. However, the so-
called “ringing” artifacts are often introduced due to
model inaccuracies and information loss. These artifacts
come from the loss of high-frequency image information
during degradation, which is particularly noticeable in
high-frequency image areas. Severe loss of image
information results in steep changes in the corresp-
onding inverse filter, which leads to oscillations of the
resulting image in areas with sharp intensity change.
Notably, ringing is especially prominent in regions of
SDI image with abrupt intensity changes, such as rapid
brightening or intense flares. Figure 10 compares the
flare region of the observed SDI image on 2024 May 8
with the corrected image. The corrected image (right
panel) exhibits typical ringing artifacts, characterized by
darker areas with intensity discontinuities within high
contrast regions.

2. The SPIBOA training program incorporates a wide
variety of image samples from a broad temporal range

Figure 10. Cutout of observed (left panel) and reconstructed (right panel) SDI image of 2024 May 8. The reconstructed image shows the ring artifacts around the
brightening area.
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and diverse locations on the Sun into a cohesive training
structure, so as to produce a psf that effectively captures
the average impact of linear distortions across the entire
FOV. However, the current version of SPIBOA does not
address the temporal variations or spatial inconsistencies
that are inherent in the SDI imaging system, which may
also introduce inaccuracy. This likely explains the
varying improvement factors in spatial resolution after
applying SPIBOA corrections to the flares listed in
Table 1, which occurred at different locations on the Sun.
Additionally, SPIBOA currently lacks the ability to
provide a precise, quantitative assessment of these
potential errors.

6. Conclusion

This paper concentrates on correcting LST/SDI observational
data to enhance image quality, with the specific goals of
estimating the psf of the SDI imaging system and performing
deconvolution corrections on observed SDI images, despite the
unknown real SDI image and optical system function. By
leveraging a large sample of observational data and employing
deep learning techniques, we introduce a bivariate optimization-
based imaging model estimation algorithm called SPIBOA.

The outcomes of our research are encouraging and
demonstrate a substantial enhancement in the spatial resolution
of corrected images. Analysis of sample data has shown an
average resolution improvement of over three times, accom-
panied by a notable decrease in noise levels. We have
successfully developed and implemented the SDI data correc-
tion software package based on the SPIBOA algorithm, which
is currently used to process routine SDI observational data.
Furthermore, it incorporates parallel algorithms, which enable
efficient and prompt processing of observational data on a
single computing node.

We plan to keep our efforts in the future to conduct
comprehensive long-term evaluations and enhancements related
to the topics discussed in Section 5.2. Additionally, we will be
attentive to addressing any emerging challenges. This ongoing
commitment will ensure strong support for the scientific
utilization of SDI observational data, promoting scientific
outputs and advancing reliability in our research endeavors.

The successful deployment of the SDI data correction software
package makes it feasible to extend this technique to the other
two instruments of the LST payload, namely the WST and SCI,
when required. It also pioneers innovative methods for

identifying and rectifying issues within the optical systems of
astronomical telescopes. Furthermore, it may pave the way for
improvements and refinements in astrophysical data and research.
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