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Abstract

This study investigates the gravitational waves (GWs) generated by the emergence of magnetic flux tubes in the
solar convection zone. We focus on the upward buoyancy of magnetic flux tubes, which leads to significant
magnetic activity and the formation of active region sunspots. This study adopts parameters representative of a
moderate-sized solar active region to estimate the GWs generated by the emergence of magnetic flux tubes. Our
results indicate that the GW strain amplitude, achievable through signal superposition and detection at close
proximity (e.g., approximately one solar radius from the solar surface), may reach ∼10−29. The characteristic GW
frequency is estimated at ∼10−5 Hz, placing it at the high-frequency end of the sensitivity band of Pulsar Timing
Array (PTA) methods. However, the estimated strain amplitudes remain orders of magnitude below the sensitivity
thresholds of current and foreseeable GW detectors. Notably, reducing the cadence Δt of PTA observations to
approximately 2 hr (Δt = 2 hr) would raise the maximum detectable frequency to about 5.8 × 10−5 Hz, thereby
encompassing the dominant spectral component of solar activity-related GWs predicted in this study, offering a
potential pathway for future detection. Successful detection in the future may help to predict the super solar active
region emergence in space weather forecasting.
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1. Introduction

The solar convection zone governs the Sun’s magnetic
activity, significantly influencing space weather and stellar
physics. Gizon & Birch (2005) challenge traditional buoyant
flux tube models by demonstrating how toroidal fields rise to
form active regions, underscoring the need to probe magnetic
dynamics in this critical layer. This research emphasizes the
importance of studying the solar structure and the role of
magnetic fields in solar activity, highlighting the need for
continued investigation into the solar convection zone’s
magnetic dynamics. To probe these complex dynamics deep
within the Sun, researchers have historically relied on two
primary methods: the historical exploration of the Sun’s
interior has primarily utilized helioseismology and solar
neutrino observations. Helioseismology, through the analysis
of solar oscillations, has been instrumental in mapping the
Sun’s interior structure (Fan 2021). Solar neutrinos, detected
through various experiments, have provided direct evidence of
the nuclear reactions occurring within the Sun’s core (Bahcall
1989). These methods have significantly contributed to our
understanding of the internal dynamics of the Sun.
The quest to understand the formation of sunspots on the

Sun has been a significant endeavor in solar physics.
Historically, scientists have been attempting to predict the

appearance of sunspots by tracking the rise of magnetic fields
from the Sun’s interior (Babcock 1961). Despite these efforts,
accurately forecasting sunspot emergence has proven elusive.
In a breakthrough, Ilonidis et al. (2011) have detected
magnetic fields forming deep within the Sun by helioseismol-
ogy, approximately 60,000 km beneath the surface, only one to
two days before sunspots appear. Researchers detected a
marked increase in the emergence rate of magnetic flux, which
can cause a noticeable acceleration in the travel time of sound
waves which serves as an indicator of an impending sunspot
emergence. While this study offers a promising lead for space
weather prediction and enhances our grasp of solar magnetic
field dynamics, the precise timing and intensity of solar
eruptions associated with sunspots still remain an open
question.
Gravitational waves (GWs), as predicted by Einstein’s

theory of general relativity, were first detected in 2015 by the
LIGO Scientific Collaboration and the Virgo Collaboration,
marking a significant milestone in physics (Abbott et al. 2016).
This direct observation confirmed a key prediction of general
relativity and launched a new era of astronomical observation.
GWs, unlike electromagnetic radiation, do not experience
significant scattering or absorption as they propagate through
the solar interior, making them an attractive tool for probing
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the internal structure of the Sun. This unique property allows
for the potential detection of previously inaccessible regions
within the solar convection zone and tacholine. GWs,
unimpeded by solar plasma, offer a novel probe: solar
magnetic flux emergence generates GWs via quadrupole
moments, which could provide a new avenue for fundamental
research into solar dynamics. Kokkotas & Schmidt (1999)
pointed out that the detection of GWs produced by solar
oscillations or magnetic activity, if detected, could provide
valuable information about the Sun’s interior structure and
dynamics. The potential of GWs for solar interior probing has
been highlighted in several theoretical frameworks (Hanasoge
et al. 2012). The propagation of GWs in the solar medium has
been extensively studied, with recent advancements in
numerical simulations providing insights into the behavior of
these waves within the context of solar dynamics (Brdar et al.
2019). Takahashi et al. (2023) propose leveraging lensed GWs
from pulsars to probe solar density, bypassing limitations of
intrinsic solar GW detection and traditional methods. Garcia-
Cely & Ringwald (2025) calculate the complete GW spectrum
generated by solar interior plasma, encompassing both
microscopic (particle collisions) and macroscopic (hydrody-
namic fluctuations) mechanisms. It assesses their detectability
and contribution to the high-frequency GW background. These
studies suggest that GWs could offer a novel perspective
on the deep interior of the Sun, complementing traditional
helioseismic methods.
Note that asymmetric magnetic flux emergence produces a

non-zero gravitational quadrupole moment, generating detect-
able GWs. The Sun’s proximity offers a unique detection
opportunity, yet quantitative GW estimates from emerging flux
tubes are scarce—particularly for predicting super active
regions vital to space weather (Wang et al. 2009). This study
aims to fill this theoretical gap by providing a first-order model
and estimate, which is valuable for understanding the
energetics of solar active regions. In this study, we model
flux tubes as catenary curves—a geometry motivated by force
equilibrium by using observational parameters of emerging
solar active regions in solar cycle 23–24. We estimate the
intensity of GWs generated during magnetic flux emergence
and explore the potential for detection by GW observatories. In
Section 2, we introduce the single-source oscillation model,
adopting the catenary model to simplify the shape of magnetic
flux tubes. Through quasi-static and magnetic flux conserva-
tion assumptions, we derive an equivalent density. The results
are then discretized and incorporated into the single-source
oscillation GW model, ultimately obtaining the amplitude–
frequency relationship of GWs. In Section 3, we discuss the
detectability of estimated GWs by detectors at different
locations based on the estimated GW strength, and also
consider the detectability after signal superposition.

2. Modeling and Results

2.1. Single-source GW Model

Within the framework of general relativity, the generation of
GW requires that the second order derivative of the mass
quadrupole moment Qij must be non-zero. The emergence
process of magnetic flux tubes in the solar interior perfectly
satisfies these conditions—the upward motion of flux tubes
from the convection zone (approximately 0.75R⊙) to
the photosphere exhibits significant spatial asymmetry,
while the acceleration driven by magnetic buoyancy
( ( )/ /d r dt B r42 2 2 2 ) produces strongly time-varying quad-
rupole moments. Moreover, radial density gradients (∇ρ) in
the plasma further amplify quadrupole variations. The
quadrupole moment holds central importance in GW detection:
the wave amplitude ( )/h Q c rij

4 directly depends on the
quadrupole change rate, representing the dominant non-zero
multipole order for gravitational radiation and carrying crucial
information about the source’s internal dynamics.
The theoretical foundation of GW generation lies in the

quadrupole formula, which relates wave amplitude to the
second time derivative of the mass quadrupole moment. For
GWs propagating through spacetime, the transverse-traceless
(TT) gauge amplitude is expressed as:

( ) ( ) ( ) ( )/= ^x nh t
r

G

c
Q t r c,

1 2
1ij ij kl kl

TT
4 ,

in which r denotes the source-observer distance; G and c
represent the gravitational constant and speed of light
respectively; Λij,kl is the projection tensor enforcing TT
conditions; Qkl signifies the second time derivative of the
reduced quadrupole moment:

( ) ( )= xQ x x r d x
1

3
. 2ij i j ij2 3

This fundamental relationship connects the dynamics of mass-
energy distributions with spacetime curvature perturbations.
The GW polarization amplitudes h+ and h× are derived

from the second time derivative of the reduced quadrupole
moment Qij (defined in Equation (2)). However, in practical
calculations, it is often convenient to work with the second
mass moment Mij:

( )= xM x x d x.ij i j 3

The reduced quadrupole moment Qij is related to Mij by:

=Q M M
1

3
,ij ij ij

k
k

where ( )=M MTrk
k is the trace of the mass moment tensor.

For GW generation, only the trace-free part of Mij contributes
to radiation, which is exactly Qij.
GWs manifest through two polarization modes, h+ and h×,

whose amplitudes depend on the wave propagation direction
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relative to the source orientation. For propagation along the
z-axis ( =^ ^n z ), the polarization components simplify to:

( ) ( )=+h
r

G

c
M M

1
, 3

4 11 22

( )=×h
r

G

c
M

2
. 4

4 12

For arbitrary propagation directions
( )=n̂ sin cos , sin sin , cos , the complete angular

dependence is described by:

( ) [ ( )

( )
( )

] ( )

=

+
+

+ +

+h t
G

c r
M

M

M M

M M

; , cos sin cos

sin cos cos

sin sin 2 1 cos

sin sin 2 cos sin 2 , 5

4 11
2 2 2

22
2 2 2

33
2

12
2

13 23

( ) [( )

] ( )

=

+
+

×h t
G

c r
M M

M

M M

; , sin 2 cos

2 cos 2 cos

2 cos sin 2 sin sin . 6

4 11 22

12

13 23

These expressions fully characterize the wave’s angular
dependence and polarization states for arbitrary source
configurations.
Following Hanasoge (2008)’s formulation of convective

elements as vertically oscillating mass sources, we similarly
model emerging magnetic flux tubes as point masses under-
going acceleration along the radial direction. This approach
reduces complex magnetohydrodynamic processes to an
analytically tractable quadrupole moment Qzz (in Hanasoge’s
notation) or Q33 (in our notation), enabling efficient amplitude
estimation. To model GWs from emerging solar magnetic flux
tubes, we approximate a flux tube element as a point mass
oscillating along the y-axis. The density distribution is
described by:

( ) ( ) ( ) ( ) ( ( )) ( )µ=xt t x z y y t, , 70

where μ(t) represents the effective mass and y0(t) is its time-
dependent position. This simplification preserves essential
dynamics while rendering the quadrupole moment tractable.
The resulting mass moment is:

( ) ( ) ( )µ=M t y t . 8ij i j
0
2 3 3

Substitution into polarization equations produces axisym-
metric waveforms:

( )=+h
r

G

c
M

1
sin , 9

4 33
2

( )=×h 0. 10

The amplitude scaling /h M r33 reveals two critical
aspects for detection: (1) the requirement for strong accelera-
tions in dense plasma regions, and (2) the advantage of
proximity to the source. These insights guide our subsequent

analysis of solar GW detectability. Figure 1 illustrates the
physical configuration and resulting wave pattern. The
axisymmetric nature originates from cylindrical symmetry in
the quadrupole moment generated by motion along a single
axis. This simplified model establishes the foundation for
estimating GWs from solar magnetic flux emergence, where
complex dynamics are reduced to an effective vertical
oscillation.
After introducing the single-source GW model in this study,

Figure 2 illustrates the logical flow of our estimation approach.
First, we build the physical model, in which the upward
movement of solar magnetic flux tubes is simplified as a
cluster of catenary curves with fixed endpoints. The geometric
parameters are determined by the intersection coordinates of
the catenary equation with the solar surface, and the equivalent
density at different heights is derived using the principle of
conservation of magnetic energy. Second, we present the
numerical calculation process. The ascent of the emerging
magnetic flux tube is discretized into several time steps,
assuming the center point undergoes uniformly accelerated
linear motion to obtain the displacement–time relationship.
Finally, the result and analysis are presented. According to the
single-source oscillation model used in this study, cubic spline

Figure 1. GW model for single-source: the source oscillating along the y-axis
(double arrow), and the transverse stretching—compressing mode of the GW
in the direction of =

2
(schematic of field lines), a represents the amplitude.

Source: Maggiore (2008).

Figure 2. Flowchart of the gravitational wave estimation framework.
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interpolation is used to smooth the data, and the central
difference method is applied to calculate the second derivative
of the mass quadrupole moment, thereby obtaining the
spatiotemporal distribution of GW amplitude. This whole
above process transforms complex magnetohydrodynamic
processes into a computable quadrupole radiation model
through catenary geometry, magnetic energy conservation,
and motion discretization.
In the following subsection, Section 2.2 shows that how we

adopt a catenary curve model to capture the quasi-static ascent of
magnetic flux tubes. Section 2.3 is to derive the equivalent
density profile by following the geometric setup. Sections 2.4 and
2.5 describe how to apply the motion discretize and compute the
quadrupole moment. Section 2.6 shows the results of estimated
GW amplitude and the time–frequency spectrograph.

2.2. Catenary Model of Flux Geometry

The adoption of the catenary geometry and the subsequent
simplification of the flux tube motion to a uniformly
accelerated ascent rely on two key physical assumptions: the
quasi-static nature of the rise and the dominance of magnetic
forces leading to nearly constant acceleration. These approx-
imations are justified within the context of solar interior
conditions and are supported by established magnetohydro-
dynamic (MHD) principles.
The rise of magnetic flux tubes through the solar convective

zone is characterized by an extremely high magnetic Reynolds
number (Rm ∼ 1011), a dimensionless parameter that quantifies
the dominance of magnetic convection over diffusion. This
condition indicates that the magnetic field is perfectly “frozen”
into the highly conductive plasma on the emergence timescales
considered in this study, satisfying Alfvén’s frozen-in theorem.
This physical regime justifies the treatment of the ascent
within the framework of a quasi-static assumption. The core of
this approximation lies in the clear separation of timescales.
The characteristic rise time (τrise ∼ days) is significantly
longer than the Alfvén time (τA = L/vA ∼ hours), the
timescale required for the flux tube to establish mechanical
equilibrium internally and with its surroundings:

( ). 11rise A

This disparity implies that the flux tube evolves through a
series of near-equilibrium states, rendering the inertial term
(ρDv/Dt) in the momentum equation negligible. Conse-
quently, the dynamics are governed by a sequential static
force balance at each point in the ascent:

( ) ( )+ × × +B B gp0
1

4
. 12eff

This system of equations, coupled with the induction equation
under the frozen-in flux condition, defines the quasi-static rise
path of the flux tube. It is this foundational equilibrium that

validates the use of a static catenary geometry to model the
flux tube’s shape at each instance during its ascent in our
analysis. The catenary geometry provides a mathematically
tractable framework for flux tube ascent. In this study, the
process of solar magnetic flux emergence is simplified to the
emergence of a single catenary from the solar convection zone
(at a depth of 0.75R⊙) to the solar surface (at the solar radius).
The analysis is confined to a two-dimensional scenario,
considering only the x and y axes, to examine the behavior
of a single magnetic flux tube within a solar active region over
a period of 30 days to emerge (Fan et al. 1993). In this paper,
the emerging magnetic flux tubes in two-dimensional coordi-
nates are simplified as a cluster of infinitely many catenary
curves as Figure 3. The core of the catenary model lies in the
exact mathematical correspondence between its differential
equation form and the equilibrium equations of magnetic flux
tubes. The classical catenary equation describes the static
equilibrium of a flexible chain in a uniform gravitational field:

( )= +
d y

dx a

dy

dx

1
1 , 13

2

2

2

in which a represents the ratio of tension to linear density. The
catenary model of magnetic flux tube in the Sun is shown in
Figure 4. The process of magnetic flux emergence from the
solar convection zone to the photosphere is approximated as
the vertical rise of a single catenary from the bottom of solar
convective zone to the solar surface. The vertex of the
catenary, where it intersects the y-axis, is determined based on
the average height of sunspots above the photosphere, which is
estimated to be at a position (0, 1.125R⊙), where R⊙ is the
solar radius. The standard catenary equation involves two

Figure 3. The figure illustrates a cluster of downward-opening catenary
curves, sharing coincident x-axis intersections, as an approximation to the two-
dimensional magnetic flux tube model.
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unknowns:

( ) ( ) ( )
( ) ( )

=
+

+y a t
e e

b t
2

, 14
x

a t
x

a t

thus necessitating an additional condition for its full
determination.
This condition is provided by the arc length between two

points, (0, R) and K: (p, q), on the catenary. The arc length is
inferred from the radius of the active region and is
approximated to be about AL0 (Antiochos &McClymont 1982)

( )=R x dx AL . 15
p

0

2 2
0

With these parameters, we can derive the abscissa of K, then
we substitute it into the equation of the solar surface, can we
get the exact point K. Then the equation of the catenary at the
vertex can be resolved, providing a mathematical description
of the magnetic flux tube’s shape as it emerges into the solar
atmosphere.

2.3. Density Derivation

Under the above catenary geometry setup, we then need to
estimate the density in the magnetic flux tube to further
calculate the density derivation. First, we put forward the
assumption of energy conservation, and its verification is as
follows: The magnetic Reynolds number Rm, as a dimension-
less parameter characterizing the coupling strength between

the magnetic field and fluid motion, is defined as the ratio of
magnetic convection effect to diffusion effect: UL , where

U ∼ 103 m s−1 represents the typical convective velocity;
L ∼ 108 m represents the characteristic length of the magnetic
flux tube (comparable to the active region scale); =

µ
1

0

1m2 s−1 represents the magnetic diffusivity in the solar
convective zone. In the solar convective zone (R ≈ 0.7R⊙),
Rm ∼ 1011, and the magnetic field is “frozen” into the plasma,
satisfying the Alfvén’s frozen-in theorem:

( ) ( )= × ×
B

v B
t

. 16

In this case, the magnetic flux through any material surface
is conserved. Although the classical diffusivity ηturb is
negligible, turbulent motions in the solar convective zone
may introduce an effective magnetic diffusion effect. Using
mixing-length theory to estimate the turbulent diffusivity:
ηturb ≈ 0.1vturblturb ∼ 10−3 m2 s−1, and the corresponding
magnetic flux decay time is much longer than the flux tube rise
time. This order-of-magnitude difference confirms that in
single flux tube emergence events, the destruction of magnetic
flux conservation by turbulent diffusion can be regarded
as a higher-order small quantity. If magnetic reconnection
events are considered, when the magnetic field gradient
∇B > 0.1 T m–1, current sheet formation leads to local
reconnection with a magnetic flux loss rate of approximately
5%. In this paper, this point is neglected, and it is still
considered that the magnetic flux is approximately conserved
during the rise of magnetic flux tubes in the solar interior. By
invoking the assumption of conservation of magnetic energy in
the vertical direction, we acknowledge that the magnetic
energy present in the photosphere is:

· · ( )
µ

=E S L
B

2
2

, 17s
H0

spots pho
pho
2

0

in which Sspots is the area of a hemisphere of a sunspot activity
region, which can also be written as πp2 (in which, p
represents the radius of the sunspot. Here we adopt 5000 km as
the sunspot radius for moderately active regions.),
μ0 = 4π × 10−7 N A–2, L H

pho is the semidiameter of the

catenary at the solar photospheric level, and
µ

B

2
pho
2

0

is the

magnetic energy density within the photosphere. Second, we
acknowledge that the magnetic energy present in any time is:

( ) · · ( )
µ

=E L t
B

2
2

, 18s
H

d
E0 2
2

0

in which d
2 is the area defined by the radii corresponding to

the x-coordinates of the intersection points of each catenary
with a circle, LH(t) is the semidiameter of the catenary at any
given time t, and

µ
B

2
E
2

0

is the magnetic energy density of the

Figure 4. Catenary model. Here the red line represents bottom of convection
zone, the green line represents the most marginal catenary, and the blue line
represents the solar surface.
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corresponding time. Solving the two aforementioned magnetic
energy equations simultaneously yields:

· ·
( ) ·

( )=B
p B

L t

580
. 19E H

d

2
2

pho
2

2

According to mass energy equation: = =E mc2

· · ·=
µ

V c V B2
2

E
2

0
, we can yield:

( )
µ

=
B

c2
. 20E

2

0
2

Let us substitute BE
2 into the equation above:

· ·
( ) · ·

( )
µ

=
p B

L t c

580

2
. 21

H
d

2
pho
2

2
0

2

2.4. Motion Discretization

In this section, we discretize the entire emerging motion
cycle of the magnetic flux tubes. To simplify the calculations,
we further consider the rise of the magnetic flux tube as a
uniform accelerated straight-line motion, thereby obtaining the
displacement–time relationship s(t) for the center point of the
magnetic flux tube. A time interval of 1000 s was selected to
discretize the total duration of 30 days: k = 3600 ×
24 × 30 = 2.592 × 106 s, resulting in 2592 distinct time
steps. Consequently, there are 2592 instances of the catenary
equation that need to be solved. As illustrated in Figure 4, all
2592 catenaries share the same endpoints, denoted as M and N,
with the caveat that points M and N are symmetric with respect
to the y-axis, thus constituting a single boundary condition. It
is essential to determine the coordinates of the intersection of
each catenary with the y-axis.
Referring to the literature by Fan (2021), the motion of

magnetic flux tubes is governed by the magnetohydrodynamic
(MHD) equations, which account for the combined effects of
magnetic fields, plasma, and gravity. Assuming radial motion
of the flux tube and axisymmetry ( = 0), the equation
simplifies to:

( )

( ) ( )

= +

+

d r

dt

p

r

B

r

rB

r

g
r r

r

4
1 . 22rr

2

2

eff

Here, Bf is the azimuthal magnetic field component, ρ is the
plasma density, r is the radial position of the flux tube. This
system incorporates contributions from the internal pressure
gradient, magnetic field effects, and external effective gravity.
Under magnetically dominant conditions, the pressure gradient
and viscous terms become negligible, reducing the equation to:
d r

dt

B

r4

2

2

2

2 . If the azimuthal magnetic field Bf varies slowly

with radius ( 0
B

r
), the acceleration a approaches a constant

value, supporting the uniform acceleration hypothesis. Then
the ascent of the catenary’s central point is simplified to
uniformly accelerated linear motion. The continuous motion
equation of the catenary’s midpoint can be derived from the
duration of motion and the distance traveled as follows

( ) [ ]

· ( ) ( )

=

+ +

s t
R

k
k e t

R

k
et e R

2
0.5

2
0.75 0.5 . 23

k t
k

2
2 2

Our approach involves further discretizing this motion into
2592 discrete points. This discretization also provides the
second condition necessary for ascertaining the catenary
equations. Thus we can discretize the catenary that rises along
the y-axis as Equation (7) in which y0(t) is the 2592 interval
time of s(t). Besides, it is obvious that in the process of the
magnetic flux tube rising, only the “half-stroke” of the motion
along the positive direction of the y-axis is considered in
Figure 1.
Finally, we can get ρ of 2592 time intervals based on

Equation (8). Construct a cubic polynomial function to
approximate the unknown function between the data points,
ensuring that the interpolation results are smooth and the
derivatives are continuous in the adjacent intervals, which is
achieved by using the cubic spline interpolation method.
Figure 5 shows the temporal evolution of the equivalent
density ρ during flux tube ascent.
Subsequently, we use the model in Section 2.1 to calculate

the GW quadrupole moment for a single source oscillating
along the y-axis in three-dimensional space (Maggiore 2008).

0 0.5 1 1.5 2 2.5 3

t/s 106

0

0.5

1

1.5

2

2.5

3

3.5
10-7

raw data
cubic interpolation

Figure 5. Temporal evolution of the equivalent density ρ during flux tube
ascent. The orange curve is the cubic interpolation fitting curve based on the
original data, and the 2591 black dots represent raw data points.
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2.5. Quadrupole Moment Computation

The second mass moment is:

( )

( )

( ) ( )
( ) ( ) ( )

µ

µ

=

=

=

=

M t x x x d x

t x x x d x

t y t

y s t

,

,

. 24

ij i j

i j

i j

i j

3

3

0
2 3 3

2 3 3

Based on the symmetry relations, i.e., the geometric relation, it
is obvious that there is only M33 left: ( ) ( )µ= =M t y t33

0 0
2

( ) · ( ) ( ) · ( ) · ·µ =y y t y y t H W
0
2

0
2

2592 2592
tot tot in which, Htot repre-

sents for the total height of the ascending process:
(1.125–0.75)R, Wtot represents for the total width of the
ascending process

( ) · ( ) · ( ) ·

( ) · ·

( )

·

=

= + +

= × ×

M t y t
R m

y t
R

k
k e t

R

k
ke t

e
R

k

1.125 0.75

2592

2

1000
,

2

1

2 2

3

4 2
,

30 3600 24.
25

k t
k

33
0
2

0 2
2 2

2

In numerical analysis, the second-order difference is used to
approximate the second derivative of a function. It is an
important tool in the discretization of differential equations
and signal processing. Given a set of discrete points with equal
step sizes fi = f (xi), where xi = x0 + ih, the Taylor expansions
of f (xi+1)) and f (xi−1) are as follows:

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

= + +

+ +

= +

+

+f x f x hf x
h

f x

h
f x O h

f x f x hf x
h

f x

h
f x O h

2

6

2

6
. 26

i i i i

i

i i i i

i

1

2

3
4

1

2

3
4

Add the two equations in equation to eliminate the first-order
derivative terms

( ) ( ) ( ) ( ) ( ) ( )+ = + ++f x f x f x h f x O h2 . 27i i i i1 1
2 4

We can then obtain f ″(xi). That is, using the 2592 sample
points M33 obtained from Equation (25), we substitute them
into Equation (27) and use the central difference method to
obtain 2591 values of the second derivative of mass moment
M33. Figure 6 shows the temporal evolution of M33.
In addition, Table 1 presents the symbols used and their

interpretations in this section.

2.6. Results

Once M33 is given in last subsection, we are easily able to
compute the angular distribution of the quadrupole radiation:

( )

( ) ( )

( )
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=

=

+h t
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G a
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; ,
1

sin

2
sin cos 2 , 28

t

s
s
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33 ret 2

2 2

4
2

ret

( ) ( )=×h t; , 0. 29

Here, r denotes the distance between the detector and the wave
source, G is the gravitational constant, G = 6.67430 ×
10−11 m3 kg−1 s−2.
Based on GW strain signal Equation (28), we perform a

Short-Time Fourier Transform (STFT) to obtain the time–
frequency spectrogram in Figure 7. It intuitively displays the
dynamic evolution of frequency components in GW signals
over time. As shown in Figure 7, the frequency range is lower
than 3 × 10−5 Hz, which is close to the Pulsar Timing Array
(PTA) band (Bustamante-Rosell et al. 2022).
By integrating these profiles into our theoretical framework

and assuming a detector at

( )=r 1 au, 30

we derive a GW strain amplitude of

( )h 10 . 3142

This value is far below the detectability range of existing GW
observatories. Notably, the characteristic frequency of GWs
generated by solar emerging magnetic flux tubes—estimated
herein to be 10−5 Hz (as the dominant component in Figure 7)
—exhibits striking consistency with the sensitive frequency

0 0.5 1 1.5 2 2.5 3

t/s 106

-6

-5

-4

-3

-2

-1

0
1014

cubic interpolation

Figure 6. Temporal evolution of the second derivative of mass moment M33.
The blue curve is the cubic interpolation fitting curve based on the
original data.
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band of the Cassini spacecraft, a landmark low-frequency GW
detector. According to Armstrong (2006), Cassini conducted
systematic GW observations via precision Doppler tracking
during its 2001–2003 solar opposition campaigns, covering a
frequency range of 10−6–10−3 Hz. This frequency alignment is
not coincidental. Cassini’s 10−6–10−3 Hz band was strategi-
cally designed to detect low-frequency GWs from astrophy-
sical sources with spatial scales comparable to the Earth-
spacecraft separation (1–10 au), which aligns with the physical
scale of solar magnetic flux tube emergence (from solar radius
to au-scale). Importantly, this consistency does not imply that
Cassini directly detected GWs from solar flux tubes; rather, it
confirms that our theoretically derived frequency falls within
the validated range of mature low-frequency GW detection
technologies, providing indirect observational support for the
plausibility of our model—where GW generation is driven by

the buoyancy of magnetic flux tubes. The superposition of
signals from multiple flux tubes could potentially approach
the detectability threshold for future high-precision GW
observatories.

3. Discussion

To properly contextualize the significance of our estimated
signal, it is essential to compare it not only in amplitude but also
in character to the dominant sources of the stochastic gravitational
wave background (GWB) in the nanohertz to microhertz regime
(Xu et al. 2023; Agazie et al. 2023). The GWB in this frequency
band is expected to be dominated by: (i) a cosmological
component from processes such as inflation or phase transitions
in the early universe, and (ii) an astrophysical component from
the unresolved population of supermassive black hole binaries
(SMBHBs; Sesana 2016).
The key distinction lies in their temporal properties. Both

the cosmological and SMBHB backgrounds are modeled as
stationary, Gaussian, and isotropic random processes. Their
timescales are cosmological or galactic, spanning from years
to the age of the universe (∼107–1017 s), making them
effectively constant over any realistic observational cadence
(Amaro-Seoane et al. 2017; Maggiore 2018).
In stark contrast, the GW signal from solar magnetic flux

emergence, as predicted by our model, is intrinsically transient
and non-stationary. It is tied to discrete emergence events with
a characteristic duration on the order of days. Crucially, its
dominant oscillatory component has a period of ∼1 day
(∼105 s), as determined by the buoyant rise time.
This fundamental difference in timescales—cosmological

(∼1017 s)/stellar-orbit (∼107 s) versus solar-dynamic (∼105 s)—
is the key to distinguishing a potential solar contribution. It implies

Figure 7. The time–frequency spectrogram obtained through STFT method, in
which colors are used to represent the logarithmic power spectral density of
the GW strain signal across time and frequency, illustrating the distribution of
signal intensity.

Table 1
Symbol Interpretation Table

Symbol Explanation

R⊙ solar radius

k total duration of single emergence cycle

t time

s(t) displacement–time relationship of the center point

e nature exponential

Sspots area of a hemisphere of a sunspot activity region

Es
0 magnetic energy present in the photosphere

L H
pho semi-diameter of the catenary at the photosphere

μ0 permeability of vacuum

Bpho magnetic field intensity of photosphere

LH(t) semi-diameter of the catenary of time t

ωd radii corresponding to x-coordinates of intersection points of each
catenary with a circle

BE magnetic field density of corresponding time

c speed of light

ρ density

m mass

Mij second mass moment

Htot total height of ascending process

Wtot total width of ascending process

h+ polarization component of + mode

h× polarization component of cross mode

AL0 arc length
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that the solar signal would be localized in time and manifest as a
non-Gaussian, intermittent component superimposed on the
smooth, stationary background. Advanced data analysis techni-
ques, such as time-domain searches for transients or cross-
correlation with solar activity proxies, could, in principle, leverage
this timescale disparity to isolate the solar signature (Hanasoge
et al. 2012; Bustamante-Rosell et al. 2022).
Therefore, while the solar GW strain is indeed weak, its

unique and well-defined temporal signature means its contrib-
ution cannot be dismissed merely on the basis of amplitude.
Our work provides a first physical prediction of this specific
timescale and waveform, which is a necessary precursor to
developing such targeted data analysis strategies.
Regarding the detectability of GWs, current ground-based

detectors such as LIGO, Virgo, and KAGRA (Page et al. 2021)
achieve their optimal strain sensitivity of approximately 10−23

in the frequency band of 50–300 Hz, where seismic noise and
thermal noise are minimized. However, the value of 10−42

calculated in Section 2 is evidently insufficient for detection,
indicating that the GW signals generated by the processes
under consideration are too weak to be detected by existing
ground-based detectors.
First, let us discuss the impact of detector location on the

possibility of detection. In the previous section, we assumed
that the detector is placed at a distance of one au from the Sun.
Under this assumption, a single magnetic flux tube would
generate GWs with an amplitude of 10−42 during a solar
activity cycle. The Parker Solar Probe (PSP; Raouafi et al.
2023) can reach as close as 0.04 au to the Sun. If a future solar
magnetic emergence GW detector could also reach such a
close position, the GWs generated by a single magnetic flux
tube over the entire solar activity cycle would have an
amplitude of 10−40.
Second, let us consider the effect of signal superposition.

The detector will simultaneously detect the superimposed GW
signals from all active regions and all magnetic flux tubes
during a solar cycle. In a comprehensive review by Schmidt
(1999), it is suggested that a moderate active region (AR) may
contain on the order of N ∼ 103 flux tubes, while a large,
complex active region can host as many as N ∼ 105. This
disparity is attributed to the greater magnetic complexity and
area of larger ARs, which can support a higher number of flux
tubes. The combined strain amplitude from N independent
sources scales as ·h h Ntotal single . According to data from
the Huairou Solar Observing Station, the average number of
sunspots for 2024 August was 215, indicating a moderate level
of solar activity. In the context of this study, the GW amplitude
associated with the emergence of magnetic flux from the solar
convection zone is estimated to be around 10−28 if the detector
is located at around 0.04 au from the Sun simply like PSP
(Raouafi et al. 2023). This estimation pertains to a single active
region and a segment of the flux tube’s emergence cycle.

Despite this significant amplification through both super-
position and proximity, the resulting strain amplitudes must be
contextualized against the sensitivity of relevant detectors. The
current best sensitivity for PTAs in the nanohertz band is
approximately (hc ∼ 10−15). Even the most optimistic estimate
above remains 12 orders of magnitude below this threshold.
Notwithstanding this immense sensitivity gap, the unique
frequency and directional nature of the signal warrant a
discussion of the theoretical requirements for its detection via
advanced methods such as PTAs or Gravitational Wave
Timing Arrays (GWTAs). Therefore, we explicitly conclude
that the detection of GWs from solar magnetic flux emergence,
even under optimistic assumptions of signal superposition and
advanced detector placement, presents an immense challenge
that lies beyond the reach of current or near-future technology.
The estimated GW frequency of ∼10−5 Hz places the signal at
the high-frequency end of the PTA band and within the
sensitivity range of GWTA concepts (Bustamante-Rosell et al.
2022). To robustly assess the detection challenge, it is crucial
to evaluate the uncertainties inherent in our model, which arise
primarily from three sources: (i) the photospheric magnetic
field strength Bpho, (ii) the number of flux tubes N within an
active region, and (iii) magnetic flux loss during ascent. In
contrast to the previous simplified treatment, we now
incorporate observational statistics to better capture the
probabilistic nature of these parameters. We model the
variability in Bpho using a truncated normal distribution
centered at 4000 G with a standard deviation of 1000 G,
reflecting the typical range of observed sunspot field strengths
(Toriumi & Takasao 2017). Since the strain amplitude scales
as h Bpho

2 , this introduces a factor of ∼2 uncertainty in
amplitude. The number of flux tubes N per active region is
highly variable. Based on solar active region classifications,
we assign a probability distribution to N: small ARs
(N ∼ 102–103) occur with probability 0.6, moderate ARs
(N ∼ 103–104) with probability 0.3, and large/complex ARs
(N ∼ 104–106) with probability 0.1 (Schüssler & Vögler 2008).
This reflects the observed rarity of very large active regions.
Since the combined strain scales as h Ntotal , this
contributes a variability spanning two orders of magnitude.
Magnetic flux loss due to reconnection and turbulent
dissipation is parameterized by an efficiency factor ηB, which
we model as a uniform distribution between 0.8 and 0.95,
leading to a further scaling of h B

2 (a factor of 0.64–0.90).
Propagating these uncertainties jointly through a Monte Carlo
analysis (105 samples), we find that the overall strain
amplitude (for a detector at 0.04 au) spans a 95% confidence
interval of:

h 10 to 10 .total
31 27

This range remains 12 to 16 orders of magnitude below current
PTA sensitivities (hc ∼ 10−15), underscoring the profound
challenge of detection. Our refined analysis highlights the
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importance of incorporating solar active region statistics into
future estimates and provides a more realistic uncertainty
quantification for this emission mechanism. According to the
fundamental principle of PTA detection, (Guo, Lu & Yu 2022).
The observable frequency range is intrinsically determined by
the observational cadence. The maximum detectable frequency
fmax satisfies the Nyquist criterion: f

tmax
1

2
, where Δt is the

cadence, which means time interval between successive
observations. Conventional PTA observations typically employ
cadences of weeks to months, which limits their sensitive band
to the nanohertz regime. However, the GW signals from solar
magnetic flux emergence are predicted to peak near 10−5 Hz. To
access this higher frequency band, the observational cadence
must be significantly shortened. Reducing the sampling interval
from the typical two-week cadence to approximately two hours
(Δt = 2 hr) would raise the maximum detectable frequency to
about 5.8 × 10−5 Hz, thereby encompassing the dominant
spectral component of solar activity-related GWs. This high-
cadence strategy would not only improve the frequency
coverage but also enhance the capability to resolve the temporal
evolution of these transient signals, potentially facilitating their
separation from the stationary stochastic background. For a
detection via PTA, the signal-to-noise ratio scales as:

( )/h N TfSNR , 32p t

where h ∼ 10−28 is the strain amplitude after superposition, Np

is the number of pulsars, T is the integration time, f is the GW
frequency, and σt is the timing precision. A detectable SNR ≳
5 would require timing precisions at the level of 100 fs or
better, achievable with future facilities like the Square
Kilometre Array, along with a network of ∼50–200 milli-
second pulsars sampled at hourly cadence over 6 months to
2 yr. For GWTA, which leverages phase modulation of
Galactic binary signals observed by LISA, the weak modula-
tion amplitude ΔΦ ∼ 10−26 rad per source necessitates
stacking ∼103–104 sources over 5–10 yr to reach a detectable
collective signal. These requirements are consistent with
projected capabilities of next-generation detectors, under-
scoring the feasibility of both methods in principle, though
formidable practical challenges remain. The primary value of
this estimate is not to claim detectability but to provide a first-
order quantitative benchmark for this specific solar GW
emission mechanism. It establishes an upper bound and
informs future theoretical studies on the contribution of stellar
activity to the millihertz gravitational-wave foreground.
The implications of these findings may be profound. The

detection and measurement of GWs from solar activity can
provide invaluable insights into the dynamics of the solar
interior and the processes that drive solar magnetism.
Furthermore, our study invites speculation about a long-term
scientific vision: understanding the radiation mechanism of
solar GWs may ultimately provide a novel, independent

physical probe for studying the accumulation and release of
magnetic energy within the Sun. However, it is crucial to
emphasize that this would only become possible if a
profoundly deep understanding of the physical connection
between magnetic flux tube emergence and solar surface
activity (e.g., flares, coronal mass ejections) is achieved, and
routine, real-time detection of its GW signal is realized. Even
then, it could only potentially provide valuable, complemen-
tary input for space weather models. The core value of the
current work lies in establishing the theoretical foundation and
providing quantitative estimates, paving the way for this
distant possibility in the future. As our detection capabilities
improve, we can expect to gain a clearer picture of the
complex dance of magnetic fields within our Sun.
It should be noted that these estimates are based on current

models and observations. Future observations and advance-
ments in observational technology may provide more precise
data, which could further refine our understanding of solar
interior structure.
In addition, in practical detection, it is necessary to pay

attention to the influence of solar background GWs, flares, and
other factors. The shape of the magnetic flux tube is also not in
a standard linear form. These limitations require rigorous
corrections in future studies. In the future, three-dimensional
numerical simulations will be used to conduct rigorous
estimates of GWs from solar internal magnetic emergence.
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