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Abstract

Galaxy morphology detection is a pivotal task for unraveling cosmic evolutionary mechanisms, yet existing
models exhibit insufficient detection accuracy for irregular and small-target galaxies. To address this, this paper
proposes the STAR-YOLO galaxy morphology detection model. The backbone network incorporates the novel
Multi-scale Attentive Context Aggregation module, which deeply integrates multi-scale dilated convolution with
a progressive spatial-channel attention mechanism to enhance feature extraction for irregular and small galaxies.
Meanwhile, we design the lightweight Lightweight Efficient Attention Network module that reduces parameters
through channel compression. The proposed Adaptive Focal Spatial-IoU loss function further improves detection
performance for small galaxies through dynamic focal mechanisms and scale-invariant optimization. Evaluated on
Galaxy Zoo 2 data set, our STAR-YOLO achieves 96.3% mean average precision—a 2.5% improvement over
baseline models, with irregular galaxy recognition accuracy notably increasing by 9.3%. Comparative
experiments demonstrate superior detection capabilities for multi-target irregular galaxies compared to state-
of-the-art models, providing an innovative solution for astronomical image analysis.

Key words: methods: data analysis – techniques: image processing – galaxies: irregular – galaxies: peculiar –
galaxies: spiral – Galaxies

1. Introduction

Galaxy morphology detection is pivotal in astronomy, as it
quantifies structural diversity (e.g., shape, substructure) to
decode cosmic evolutionary processes. Beyond classification,
it links dynamical histories (e.g., mergers, feedback) to
observable features, offering insights into dark matter
distribution and large-scale structure formation (Kormendy
& Ho 2013). The morphological diversity of galaxies encodes
direct evidence of their formation and dynamical history. For
instance, tidal tails and filamentary structures in irregular
galaxies are unambiguous signatures of recent merger events
(Pfeffer et al. 2023). During galaxy interactions, gravitational
torques drive gas inflows, triggering starburst activity that
redistributes baryonic mass and alters the luminosity profile
(Conselice 2006). These morphological imprints not only trace
merger-induced dynamical perturbations but also correlate
with feedback processes, such as supernova-driven winds,
which eject gas and suppress further star formation, leading to
asymmetric features in the interstellar medium (Hopkins
et al. 2008).

A vast body of research in galaxy morphology has been
built upon the paradigm of image classification. This approach,
from the seminal Hubble sequence to modern computational
methods, has provided the foundational framework for
quantifying galactic structures (Abraham et al. 1996). The
advent of machine learning (ML) (Ball & Brunner 2010) and,
more recently, deep convolutional neural networks has

significantly automated and enhanced the objectivity of this
classification process. For example, Zhang et al. (2022)
proposed a Self-Calibrated Convolutional Network employing
few-shot learning, achieving high-precision morphology
classification with limited training samples. Tarsitano et al.
(2022) demonstrated ML algorithms can successfully distin-
guish early- and late-type galaxies in images with signal-to-
noise ratios exceeding 300. These methods have been
instrumental in pioneering the large-scale morphological
analysis of galaxies, establishing a crucial baseline for
the field.
However, this classification-centric paradigm reveals inher-

ent and critical limitations when confronted with the data
deluge from next-generation (Abolfathi et al. 2021), wide-field
sky surveys such as LSST (Ivezić et al. 2019) and Euclid
(Laureijs et al. 2011). The primary shortcoming is that
classification models are designed to assign a single, global
label to an entire image. This architecture is not suitable for
massive multi-target galaxy images, as it is incapable of
locating and identifying multiple discrete objects within a
single field of view—a common scenario in crowded stellar
and galactic fields. Furthermore, by collapsing an image into a
single prediction, these models discard all crucial spatial
information (Baron 2019), such as the precise celestial
coordinates and structural extent of each object. This loss of
spatial data is prohibitive for a vast array of astrophysical
inquiries, including analyzing galaxy cluster dynamics,
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identifying tidal interactions through the morphology and
placement of debris, and mapping dark matter distribution via
weak gravitational lensing techniques (Mandelbaum 2018).

To overcome these fundamental limitations of the classifi-
cation paradigm, the astronomical community increasingly
requires robust tools for object detection—a task that
inherently involves both precise localization (with bounding
boxes) and simultaneous classification of all objects of interest
within an image (Krizhevsky et al. 2017). This capability
transcends mere cataloging. A proficient detection framework
enables the analysis of spatial correlations and the large-scale
structure of the universe (Mandelbaum 2018), the identifica-
tion of merger remnants through the precise segmentation of
tidal tails and bridges, and the statistical study of dwarf galaxy
populations in the outskirts of dark matter halos—all studies
that are predicated on knowing not only what objects are, but
also where they are (Gharat & Dandawate 2022).

Foundational frameworks from computer vision, such as the
one-stage YOLO series (Redmon et al. 2016) and RetinaNet
(Lin et al. 2017), or two-stage detectors like Faster R-CNN
(Ren et al. 2015), have set the standard for object detection in
natural images. Despite their success, directly applying these
general-purpose detectors to astronomical images is non-
trivial, as they face several domain-specific challenges
(Ohnaka & Morales 2018):

(1) Extreme Multi-scale Variability. The vast difference in
apparent size between large, nearby galaxies and distant,
compact dwarfs or stars demands exceptional multi-scale
feature extraction capabilities.

(2) Crowded and Noisy Environments. In dense galactic
fields or low signal-to-noise regimes, models struggle with
overlapping targets and faint morphological features, leading
to missed detections (low recall) for irregular galaxies and
merger-induced structures.

(3) Sensitivity and Localization of Small Targets. The
progressive downsampling in standard CNNs aggressively
discards spatial information vital for localizing subarcsecond
targets (e.g., dwarf galaxies, distant compact systems),
rendering them nearly invisible to the network.

(4) Computational Inefficiency. The high resolution of survey
images and the sheer data volume render many sophisticated
models too slow for real-time processing, creating a bottleneck.

Notably, Gu et al. achieved a high detection accuracy of
93% by applying a mask-based Mask R-CNN framework for
four-type galaxy detection (Gu et al. 2023). Despite this
impressive performance, their approach, along with others,
continues to exhibit limited feature extraction capabilities for
irregular galaxies and small-target sources—a performance
gap that our work aims to fill.

To address these challenges, we propose STAR-YOLO, an
optimized framework for feature extraction and localization
precision, designed to enhance galaxy dynamics studies and
dark matter distribution modeling. Our model incorporates

innovative backbone network architectures and attention
mechanisms to minimize information loss while improving
recognition rates for irregular galaxies and small-target galaxies
in wide-field observations. The principal contributions include:

(1) Multi-scale Attentive Context Aggregation (MACA).
Integrates progressive spatial-channel attention with multi-
scale dilated convolutions, employing variable dilation rates to
adapt to target scale variations while suppressing noise and
emphasizing critical regions.

(2) Lightweight Efficient Attention Network (LEANet).
Replaces standard convolutions in C3 layers with partial
convolutions (PConv), achieving 96.3% mAP@0.5 without
significant parameter inflation through selective channel
computation.

(3) Adaptive Focal Spatial-IoU (AFS-IoU) Loss. Supersedes
traditional CIoU with angle-sensitive penalty terms and
dynamic gradient adjustment for hard samples, enhancing
localization accuracy for irregular and small-target galaxies.

(4) Real-time Processing Solution. Provides an efficient
framework compatible with next-generation surveys like
LSST, addressing critical throughput requirements for large-
scale astronomical data analysis.
The remainder of this paper is organized as follows. Section 2

describes the data set and the morphology classes used in our
study. Section 3 details the architecture of our proposed STAR-
YOLO framework and its core components. Section 4 outlines
the experimental setup, including implementation details and
evaluation metrics. Section 5 presents and discusses the
experimental results, including comparisons with state-of-the-
art methods and ablation studies. Finally, Section 6 concludes
the paper and suggests directions for future work.

2. Data Sets

In this study, experiments were conducted using the Galaxy
Zoo 2 data set (Willett et al. 2013), a large-scale volunteer
classification project derived from the Kaggle data set platform
containing a sample of 245,609 galaxies from SDSS DR7. Users
can download the classification table from the official Galaxy
Zoo 2 release page, containing morphological labels for each
galaxy. We first selected high-confidence samples by filtering
galaxies with a debiased probability greater than 0.8. The
bounding boxes for the central regions of these candidate galaxies
were then manually annotated using LabelImg software to create
the ground truth for our object detection task.
By collating the data set, a total of 3600 images of galaxies

were processed and classified into six categories: barred spiral
galaxies, elliptical galaxies, spiral galaxies, irregular galaxies,
merging galaxies, and stars, as shown in Table 1. Barred spiral
galaxies are characterized by their central bar structure and the
spiral arms extending from the ends of the bar structure,
while elliptical galaxies exhibit a smooth, symmetrical
elliptical or circular appearance, lacking obvious structural
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features such as spiral arms or bar structure. Spiral galaxies
are marked by their well-defined spiral arms and central
nucleus, which usually has a spherical nucleus at the center.
Irregular galaxies have no obvious axis of symmetry, neither
rotational symmetry like spiral galaxies nor spherical
symmetry like elliptical galaxies, and they usually do not
have well-defined structures such as spiral arms, nuclei
spheres, or dust bands. Unlike the classical Hubble
classification system for galaxy morphology, the merging
galaxies included in the data set are a dynamic process in
which two or more galaxies gravitationally approach each

other and eventually merge. This process can lead to
significant changes in the morphology of galaxies, making
them potentially irregular in appearance. Merging galaxies
exhibit a complex process of galaxies colliding and merging
with each other, often accompanied by tidal tails and bridge-
like structures. Peculiar galaxies, on the other hand, do not fit
the standard classification due to their unique appearance and
formation history, but are distinguished from irregular
galaxies by having very unusual morphological features,
such as extreme shapes, complex structures, or unique
features resulting from interactions with other galaxies or

Table 1
Galaxy Morphology Data Set Characteristics with Sample Images

Type of Galaxy Description Sample Image

Barred Spiral Barred spiral galaxies exhibit a prominent linear structure of stars

Elliptical Elliptical galaxies, more regular, elliptical-like

Irregular Irregular galaxies, with different shapes, often with fuzzy edges

Merging Describe the process by which galaxies are merging

Spiral Shaped like a spiral, it is easy to confuse elliptical galaxies

Star In a large field of view, it is easy to be confused with other galaxies
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cosmic phenomena, and are galaxies that are difficult to
categorize in the regular classification. In addition to
galaxies, stars have been included to distinguish them from
galaxies, since both galaxies and stars are small-target
galaxies under large field-of-view conditions.

In the context of this study, “complex galaxy morphologies”
refer specifically to those categories that present significant
challenges for automated detection systems due to their non-
canonical structural characteristics or physical properties. Our
work primarily focuses on two types of complexity (Rodriguez-
Gomez et al. 2015): (1) Irregular galaxies exhibiting asymmetric
light distributions and fragmented morphological features, which
lack defined spiral arms or elliptical symmetry. These systems
often display chaotic stellar distributions and irregular gas
dynamics, deviating from standard classification frameworks. (2)
Small-scale targets such as distant dwarf galaxies or unresolved
stellar populations occupying minimal pixel coverage in wide-
field imaging. Their low surface brightness and compact angular
size complicate automated recognition algorithms.

3. Methodology

3.1. STAR-YOLO Model

Our STAR-YOLO framework is built upon the well-
established architecture of yolov5s (Redmon & Farhadi 2018),

which provides a robust balance between detection accuracy
and inference speed. We selected this architecture as our
foundation for several key reasons that align with the demands
of astronomical image analysis: (a) Real-time capability: Its
one-stage design enables efficient processing of large-volume
survey data. (b) Multi-scale prediction: The Path Aggregation
Network (PAN) in its neck effectively handles objects of
vastly different scales, from large ellipticals to tiny stars. (c)
Precise localization: It directly regresses bounding boxes,
which is fundamental for astronomical applications requiring
positional accuracy. (d) Multi-object handling: It naturally
detects all objects in an image simultaneously, a necessity for
studying crowded fields.
Facing the massive galaxy images, the STAR-YOLO model

proposed in this paper is designed for the task of irregular
galaxy and small-target galaxies detection in astronomical
images. The overall architecture of our proposed STAR-
YOLO framework is illustrated in Figure 1. It follows a
mainstream one-stage detector design, consisting of a Back-
bone for multi-scale feature extraction, a Neck incorporating a
Feature Pyramid Network (FPN) and a PAN for feature fusion,
and a Detection Head for performing the final predictions.
The input image is first processed by the Backbone network.

The data flow begins with a Focus module, followed by a

Figure 1. STAR-YOLO model structure.

Figure 2. MACA model structure.
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series of convolutional (Conv) and C3 layers to extract
hierarchical feature maps at different scales. To significantly
enhance the backbone’s capability for multi-scale contextual
reasoning—which is crucial for capturing both large galaxies
and tiny stellar objects—we integrate our novel Multi-scale
Attentive Context Aggregation (MACA) module at the
terminal stage of the backbone. This module is a cascade of
an Atrous Spatial Pyramid Pooling (ASPP; Lian et al. 2021)
component for multi-receptive-field feature extraction and a
Spatial-Channel Synergistic Attention (SCSA; Slijepcevic
et al. 2022) component for calibrating feature responses.

The extracted feature maps are then passed to the Neck.
Here, the network employs Upsample and Concatenation
operations to construct the top-down FPN path and the bottom-
up PAN path, effectively aggregating and enhancing features
from different semantic levels. A key innovation within the
Neck is our LEANet, which replaces the standard convolutions
in selected C3 modules with PConv. This design, clearly
shown in the structure graph, strategically reduces computa-
tional redundancy and parameter count while effectively
preserving the model’s representational power.

Finally, the multi-scale fused features from the Neck are fed
into the Detection Head. To address the specific challenges of
astronomical detection, particularly the localization of small
and irregular targets, we propose the AFS-IoU loss function
for training. This loss supersedes traditional IoU variants by
incorporating dynamic scale weights and a focal mechanism,
which drastically improves localization accuracy for the most
challenging categories in our data set.

3.2. Multi-scale Contextual Attention (MACA)

Because irregular galaxies have complex, asymmetric
structures, conventional convolution is difficult to effectively
capture their multi-scale features, small-target galaxies in the
image with low resolution and poor signal-to-noise ratio, while
the conventional attention module fails to effectively extract
the multi-scale features of galaxies, and it is difficult to balance
the local details as well as the global semantics of the irregular
galaxies, and the original spatial pyramid pooling lacks the
adaptive attention to the fine-grained structures. The original
spatial pyramid pooling lacks adaptive attention to the fine-

grained structure, and the pooling operation may lose the
details of small-target galaxies. Therefore, in this paper, we
design the MACA (Multi-scale Contextual Attention Mech-
anism), which is a deep fusion of the multi-scale cavity
convolution and the progressive spatial channel attention
mechanism, to cover the scale variations of the galaxy targets
through the cavity convolution with different expansion rates,
and at the same time, based on the spatial channel synergistic
attention to dynamically calibrate the multi-scale feature
weights, to suppress the noise and to focus on the critical
regions of the galaxy. The MACA module captures galaxy
core regions, spiral arms, and debris structures through multi-
scale cavity convolution. This design directly targets the
asymmetric morphology of irregular galaxies (e.g., the fibrous
structure of the M82 starburst galaxy), and its multi-sense-field
feature fusion effectively suppresses background noise (e.g.,
interference from stellar-dense regions), which improves the
sensitivity to dynamical features, such as tidal tails, and
provides more accurate morphology data for the study of the
merger process of galaxies. The structure of the MACA model
is shown in Figure 2. The left half is the multi-scale cavity
convolution, and the right half is the spatial and channel
cooperative attention module. Cavity convolution is a special
convolution operation that expands the sensory field without
increasing the number of parameters and computational
complexity by introducing cavities between the convolution
kernels. The network diagram of the ASPP module is shown in
Figure 3, where the output of Block3 is input to the ASPP,
which undergoes a pooling operation after sampling by multi-
scale cavity convolution, and then the number of channels is
reduced by the 1× 1 convolution to the expected value. The
input feature map XGalaxy dimension is B×C×H×W,
where B represents the batch size, C represents the number of
channels, and H and W represent the height and width of the
feature map, respectively. The MACA model first takes the
input feature map of galaxies, XGalaxy, by convolving the
voids with four different expansion rates in parallel, which can
efficiently capture contextual information on different scales
without changing the resolution of the galaxy feature maps. In
order to capture the small-target galaxies more efficiently, in
this paper, we use the 1× 1, 3× 3 (rate = 6), 3× 3
(rate = 12), 3× 3 (rate = 18) four expansion rates, and then,

Figure 3. ASPP model structure.
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the spatial dimension of the feature map is compressed to
1× 1 by pooling operation to obtain the global information.
The branch feature extraction by null convolution and global
pooling with different expansion rates is shown in
Equations (1) and (2):

( ) ( ) ( )=F X X, Conv2D , 1conv G G

( ) [ ( )] ( )=F X XUpsample AvgPool , 2gap G G

where γ is the expansion rate.
Then, the null convolution outputs with different expansion

rates and the global average pooled output are fused thereby
obtaining the output feature map as shown in Equation (3):

( ) ( )=Y F FW Concat , , 3ASPP f gapi

where Wf denotes the fusion convolution weights, and F
i

represents the convolutional features extracted with the ith
dilation rate.

Since the output feature map is also a four-dimensional
tensor, it can be used as an input to the subsequent module.
The galaxy feature map is input to the SMSA module (Shared
Multi-semantic Spatial Attention). SMSA first decomposes the
galaxy input feature map along the height and width directions
and further divides the feature map in each direction into
multiple independent sub-features to efficiently extract the
spatial information at different semantic levels. Then, the
capturing the spatial structure of each sub-feature using depth-
separable 1D convolutions at different scales, the article uses
four convolution kernel sizes of 3, 5, 7, and 9, respectively,
and uses shared convolutions to align the feature maps in
different directions, as shown in Equations (4) and (5):

[ ( ) ] ( )=Ŷ Y kDWConv1D R , , 4
i i
h ASPPh i

[ ( ) ] ( )=Ŷ Y kDWConv1D R , , 5
i i
w ASPPw i

where ki denotes the kernel size of the ith sub-feature, and R
represents the reshaping function, ensuring the tensor dimen-
sions: × ×RYASPPh

B C W, × ×RYASPPw
B C H.

SMSA also performs group normalization on each sub-
feature to avoid the effect of batch noise and effectively reduce
the semantic interference between sub-features. Finally, it
splices the sub-features with different semantics and generates
the spatial attention graph using Sigmoid activation function as
shown in Equations (6), (7) and the mathematical formulation
of SMSA is shown in Equation (8):

{ ( ( ))} ( )= ^A YGN Concat , 6
i

w w

{ ( ( ))} ( )= ^A YGN Concat , 7
i

h h

( )= × ×Y A A Y , 8SMSA h w ASPP

where Ah and Aw denote the spatial attention maps along the
height and width, respectively, and σ denotes the Sigmoid
normalization, and K = 4 is the number of feature groups.

Progressive Channel Self-Attention (PCSA): The feature
maps output from SMSA are first compressed using an average
pooling operation to reduce the computational effort while
preserving the spatial a priori information as shown in
Equation (9):

( ) ( )=Y YAvgPool , 9p SMSA

It then utilizes the compressed feature map for single-head
self-attention computation to generate Q, K, and V to explore
the similarity between channels and mitigate the semantic
differences between different sub-features in SMSA, as shown
in Equation (10):

( )= = =Q W Y K W Y V W Y, , . 10Q p K p V p

Attention weights are calculated weights as shown in
Equation (11):

( )=
QK

VA
C

Softmax , 11channel

Finally, the constructed MACA is shown in Equation (12):
( ( )) ( )= ×Y Y AAvgPool , 12MACA SMSA channel

The advantages of the MACA module lie in its multi-semantic
guidance and semantic discrepancy mitigation capabilities, as
well as its computational efficiency. The multi-scale cavity
convolution of ASPP provides contextual information of
different sensing fields, and the attention mechanism of SCSA
dynamically focuses on the key regions. The two synergisti-
cally enhance the feature expression of irregular galaxies and
small-targeted galaxies, and then the features are progressively
optimized through the gradual compression strategy of SMSA,
the spatial structure information is gradually injected into the
channel attention to avoid information loss, and the output of
SMSA is multiplied with the output of PCSA at the element
level to obtain the final MACA output. Then the output of
MACA is used as the input of the subsequent layers. Through
these operations, the MACA module can help STAR-YOLO
learn features better and improve the performance of target
detection, especially in complex scenes, such as irregular
galaxies and small-target galaxies detection under a large field
of view.

3.3. LEANet

The introduction of the MACA module enhances feature
extraction but also increases the model’s parameter count and
computational complexity. To maintain a balance between
performance and efficiency, we propose the LEANet module,
as shown in Figure 4, whose core is the PConv operation
(Chen et al. 2023).
The design of PConv is motivated by a key observation in

convolutional neural networks: the feature maps of consecu-
tive channels often exhibit strong redundancy and high
correlation . This implies that a significant portion of the
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computation in standard convolution, which processes all
channels, is repetitive and wasteful. PConv addresses this by
strategically processing only a fraction of the input channels
while leaving the remaining channels untouched. This
approach is theoretically justified because the information
from the learned features in the processed channels can be
effectively propagated through subsequent pointwise convolu-
tions or other operations, minimizing the loss of representa-
tional capacity.

The choice of processing 25% of the channels (cp = c/4) is
not arbitrary. It follows the established practice i and
represents a sweet spot empirically identified to achieve
maximal computational savings while preserving accuracy. A
lower ratio might risk losing critical information, while a
higher ratio yields diminishing returns in efficiency gains.

As illustrated in Figure 5, for an input feature map, PConv
applies the standard convolution on only a portion of the input
channels while leaving the rest of the channels unchanged. The
formula for calculating the FLOPs for PConv is shown in
Equation (13):

( )= × × ×F h w k c , 13pPConv
2 2

where h, w denote the height and width of the input feature
map, respectively, k denotes the size of the convolution kernel,
and cp denotes the number of channels for the convolution
operation.

Since cp is usually much smaller than the number of
channels c of the input feature map, the FLOPs of PConv are
significantly lower than that of regular convolution, and if we
choose to process only 1/4 channels, the FLOPs are only 1/16
of that of the regular convolution. Similarly, the computation
of one window is negligible, so the memory access will be 1/4
of the original one when processing 1/4 channel. The number

of memory accesses is calculated as shown in Equation (14):

( )= × × + ×M h w c k c2 . 14p pPConv
2 2

In the context of galaxy detection, where features across
channels are highly similar due to the nature of astronomical
images, LEANet (by integrating PConv) significantly reduces
parameters and accelerates inference without compromising
the model’s accuracy. This makes STAR-YOLO exceptionally
suitable for processing large-field images containing complex
irregular and small-target galaxies.

3.4. AFS-IoU Loss Function

In the detection of galaxies, the gradient signals of difficult
samples, such as fuzzy small-target galaxies and irregular
galaxies, are easily flooded by the gradients of a large number
of simple samples (high IoU targets) during the training
process. This leads to the difficulty for the model to fully learn
the features of difficult samples, which in turn affects the
detection accuracy. Therefore, a loss function named Adaptive
Focal Scale-IoU (AFS-IoU) is designed. The SIoU loss
function is a loss function designed specifically for target
detection tasks (Gevorgyan 2022). The advantage of the SIoU
loss function is that it comprehensively takes into account the
bounding box regression and the category prediction, which
makes the evaluation of the model performance more
comprehensive. The total loss function is expressed as shown
in Equation (15).

( )= +
+

L 1 IoU
2

, 15SIoU

Figure 5. Illustration of different convolutions. (a) Convolution; (b) Partial
convolution.

Figure 4. LEANet model structure diagram.
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Here Δ is the distance loss, which measures the distance error
between the predicted frame and the real frame in the x, y
directions, and Ω is the shape loss, which penalizes the
difference between the predicted frame and the real frame in
terms of aspect ratio.

However, the SIoU lacks a dedicated mechanism to address
class imbalance and the dominance of easy samples during
training, which is particularly detrimental for detecting
irregular galaxies and hard-to-localize small targets.

To mitigate this, the Focal Loss idea was introduced to IoU
variants (Lin et al. 2017), leading to functions like FSIoU.
These functions apply a modulating factor to down-weight the
loss contribution of easy examples (high IoU) and focus
training on hard examples (low IoU).

Our proposed AFS-IoU loss is designed to synergistically
combine the strengths of both SIoU and Focal Loss. It achieves
this through two key improvements over its predecessors:

(1) Angle-Sensitive Penalty from SIoU. AFS-IoU retains the
angle cost term from SIoU. This term directly penalizes
orientation deviations between the predicted and ground-truth
bounding boxes, which is crucial for accurately capturing the
elongated and asymmetric shapes of tidal features in merging
galaxies and irregular galaxies.

(2) Enhanced Dynamic Focus Mechanism. While FSIoU
introduces a scale-aware focal term, AFS-IoU enhances this
mechanism to be more adaptive and aggressive. The focal
factor is calibrated to drastically amplify the gradient signals
for extremely hard samples (e.g., low-IoU small targets).
Concurrently, the scale-aware weight dynamically adjusts the
loss based on the target’s size, providing a much stronger
learning signal for smaller objects compared to larger ones.

The improved loss function is shown in Equation (16):

( ) · ( )= +L
S

S
L1 SIoU 1 , 16FSIoU

max

target
SIoU

Here γ is the focusing factor, which controls the weight
intensity of difficult samples. Starget is the current target pixel
area and Smax is the maximum target area in the image.

In this study, the FSIoU loss function is used instead of the
CIoU. AFS-IoU supersedes FSIoU by integrating essential
spatial reasoning (angle penalty) and supersedes SIoU by
incorporating a dynamic focus on hard samples. This dual
advantage leads to superior localization accuracy, especially
for the challenging cases of irregular and small-target galaxies
that are most affected by orientation bias and class imbalance.

4. Experiments

4.1. Experimental Environment

All the experiments in this paper are run on the same server
with Xeon(R) Platinim 8225 C CPU, RTX 4090 GPU. In this
paper, the proposed STAR-YOLO is implemented on the

framework of Pytorch2.0 and CUDA 12.5. The images in the
model are adaptively scaled to 640× 640 pixels. Initial
learning rate was empirically set to 0.0005 through iterative
experiments, the number of epochs is set to 300, the weight
decay is set to 0.0005, the batch size is set to 16, and the
optimizer uses Adam. To ensure the fairness of the model
comparisons, the parameters used in this study are consistent.

4.2. Model Evaluation

In order to comprehensively evaluate the model’s detection
performance for galaxy images, a set of evaluation metrics
were chosen, with precision, recall, FLOPs, and parameters
being the key metrics for assessing the model’s performance.
Precision is the ratio of the number of actual positive

samples to the number of positive samples tested. The formula
is shown in Equation (17):

( )=
+

P
TP

TP FP
, 17

where P denotes the accuracy, TP denotes the number of
positive samples predicted to be in the positive category, and
FP denotes the number of negative samples predicted to be in
the positive category.
Recall is the proportion of samples that are detected as

positive out of all actual positive samples. The formula is
shown in Equation (18):

( )=
+

R
TP

TP FN
, 18

where R denotes the recall rate and FN denotes the number of
positive samples predicted to be in the negative category.
The multi-category average precision (mAP) is the average

of the average precision of all categories. It is one of the most
important evaluation metrics in target detection algorithms and
can be used to indicate the detection accuracy of the target
detection model. mAP is calculated as shown in Equation (19):

( )=
N

mAP
AP

, 19

where N is the number of target categories.
In addition, the loss value is an important indicator of the

difference between the model prediction and the actual value,
including the training loss and the validation loss, which reflect
the model’s ability to adapt and generalize over the data set,
respectively. Floating point operation (FLOP) is a widely used
metric in resource efficient modules. In this study, the number
of FLOPs refers to the number of floating-point operations and
is used to measure the complexity of the algorithm or model.

5. Results

As clearly demonstrated in Table 2, STAR-YOLO achieves
state-of-the-art performance specifically on the most challenging
categories: irregular galaxies and small-target galaxies (stars). For
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irregular galaxies, STAR-YOLO attains an mAP@0.5 of 87.5%,
which represents a significant improvement of 9.3% over the
yolov5 baseline and also outperforms other strong competitors like
EfficientNetV2 (82.1%), Mask R-CNN (81.0%), RTDETR
(68.0%) (Zhao et al. 2024) and notably, the heavyweight Swin
Transformer (84.0%) (Liu et al. 2021). The bold values indicate
the best performance for each evaluation metric. This superior
performance underscores the effectiveness of the MACA module,
particularly its spatial-channel attention mechanism, in capturing
the faint and fragmented morphological features inherent to
irregular systems.

For small-target detection, crucial for large-field surveys,
STAR-YOLO achieves a leading mAP@0.5 of 89.7% on stars,
surpassing all other YOLO (such as yolov7 (Wang et al. 2023)
and yolov10 (Wang et al. 2024)) variants and EfficientDet-D2
(86.0%) (Tan et al. 2020). It also holds a slight edge over the
computationally expensive Swin Transformer (88.2%). Most
importantly, these advancements are achieved without a
substantial increase in model complexity. With merely 7.06M
parameters, STAR-YOLO is significantly lighter than Swin
Transformer (20.2M) and maintains high efficiency comparable
to yolov5 (7.04M). This exceptional balance between accuracy
and efficiency makes STAR-YOLO uniquely suited for
processing high-volume data from next-generation sky surveys

like LSST, enabling large-scale statistical studies of irregular
galaxies and faint, distant objects.
In the selection of attention mechanisms, this study also

compared the experimental results of integrating different
attention mechanisms into yolov5, as shown in Table 3. The
tested mechanisms included RFEM, CBAM, SE, CA, and SCSA.
Notably, the incorporation of the SCSA mechanism achieved an
mAP@0.5 of 0.953, representing a 1.5% improvement over the
baseline model. Additionally, the detection accuracy for irregular
galaxies and stars was significantly enhanced. Specifically, the
accuracy for irregular galaxies increased from 78.2% to 86.8%, a
gain of 8.6%. The bold values indicate the best performance for
each evaluation metric. These results demonstrate that SCSA
effectively mitigates information diffusion, enhances feature
extraction capabilities, and strengthens the model’s ability to
focus on critical regions of irregular targets.
In order to verify the effectiveness of each improved module

in this experiment, several ablation experiments were carried
out using this galaxy data set, and the ablation experiments are
shown in Table 4. The bold values indicate the best
performance for each evaluation metric. In the ablation
experiments, it can be seen that the average model accuracy
and the irregular galaxy detection accuracy were improved
after the introduction of the SCSA attentional mechanism,
which is due to the spatial channel synergistic attentional

Table 2
Comparison Experiment of Different Models

No Model Precision Map@0.5 Bar Ell Mer Spi Irr Star Par/M

1 Yolov5 0.903 0.938 0.952 0.96 0.705 0.925 0.782 0.853 7.04
2 Yolov6 0.889 0.864 0.899 0.904 0.699 0.892 0.722 0.775 4.23
3 Yolov8 0.912 0.905 0.931 0.927 0.828 0.944 0.763 0.832 6.46
4 Yolov9 0.691 0.858 0.887 0.863 0.642 0.865 0.732 0.757 2.01
5 Yolov10 0.866 0.93 0.931 0.945 0.839 0.955 0.77 0.842 2.71
6 EfficientNetV2 0.892 ⋯ 0.935 0.948 0.783 0.996 0.821 0.873 ⋯
7 ResNet-26 0.92 ⋯ 0.991 0.993 0.805 0.987 0.81 0.792 ⋯
8 RTDETR 0.854 0.804 0.932 0.918 0.704 0.904 0.68 0.702 ⋯
9 Mask-R-CNN 0.918 0.932 0.977 0.968 0.782 0.919 0.81 0.852 ⋯
10 EfficientDet-D2 0.879 0.901 0.938 0.945 0.795 0.932 0.805 0.86 8.3
11 Swin Transformer 0.898 0.957 0.992 0.99 0.965 0.983 0.84 0.882 20.2
12 CenterNet++ 0.872 0.923 0.915 0.928 0.745 0.911 0.758 0.79 ⋯
13 STAR-YOLO 0.914 0.963 0.989 0.994 0.879 0.988 0.875 0.897 7.06

Table 3
Comparative Tests of Different Attention Mechanisms

No Model Precision Recall Map@0.5 Irregular Star Map@0.5:0.95 FLOP/G

1 Yolov5-RFEM 0.937 0.913 0.947 0.802 0.855 0.717 15.8
2 Yolov5-CBAM 0.920 0.900 0.929 0.814 0.843 0.703 15.8
3 Yolov5-SE 0.908 0.878 0.935 0.760 0.859 0.688 15.8
4 Yolov5-CA 0.927 0.917 0.933 0.793 0.838 0.713 15.8
5 Yolov5-SCSA 0.914 0.929 0.963 0.875 0.897 0.713 16.0
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mechanism focusing on the fragmented regions and high-
lighting the irregular galaxy. The average accuracy of the
model is improved by 2.3% and the detection accuracy of stars
is improved by 3.7% after the ASPP module is added
separately, which is due to the fact that the ASPP module
extracts multiple sensory field features in parallel through the
convolution of voids with different expansion rates and global
average pooling, solves the problem of the target scale change,
and avoids the loss of the spatial information caused by
downsampling, which in turn optimizes the small-target
galaxies. In order to make the model meet the high accuracy
of irregular galaxies while focusing on the features of small-
target galaxies, the above modules are combined, and it can be
seen that the combined MACA module significantly improves
the model’s ability to recognize irregular and small-target
galaxies by 8.6% and 3.8%, respectively, but at the same time,
the number of parameters also rises to a certain extent. In order
to make the model satisfy the accuracy while making the
model keep a small number of parameters, LEANet is
continued to be introduced, and it can be seen that the number
of parameters of the model is significantly improved after the
introduction of LEANet, which is due to the replacement of
several C3 modules by PConv in this module, which makes the
model parameters decrease from 7.04M to 5.22M. In addition,
the experimental data of SCSA and ASPP respectively in
combination with the experimental data of the combination of
LEANet also both demonstrate its efficient design in reducing
the number of parameters. In order to further improve the
performance of the model and describe the regression of the
target frame more efficiently, as well as to solve the problem
of sample imbalance, the AFS-IoU loss function is used to
replace the original CIoU loss function, for the asymmetric
structure of irregular galaxies, the angular penalty term
reduces the bounding box offset due to the orientation bias,
and for the small-targeted galaxies, the shape-matching
mechanism mitigates the traditional IoU due to the scale
sensitivity of the False detection. Meanwhile, AFS-IoU does
not significantly increase the computational volume, which

complements the lightweight design of LEANet. Compared to
the baseline model, the final STAR-YOLO achieved an
improvement of 1.1% in overall accuracy, 2.5% in
mAP@0.5, 9.3% in detection accuracy for irregular galaxies,
and 4.4% in detection accuracy for stars, while the parameter
count increased by only 0.2M.
To address the characteristics of the data set, in the qualitative

analysis this paper divides the galaxy images into three scenarios,
namely, regular galaxies, irregular galaxies, and small-target
galaxies and stars under the large view, and conducts prediction
experiments on the three scenarios using the proposed STAR-
YOLO model and the yolov5 baseline model, respectively, and
then performs a qualitative analysis on the obtained visualization
results. The first column in the figure is the original image, the
second column is the detection effect of the yolov5 baseline
model, and the third column is the detection effect of STAR-
YOLO. It can be seen that the detection of regular galaxy images,
as shown in Figure 6, is due to their more obvious features, but
there is the problem of noise. Through the spatial channel
synergetic attention to suppress the background noise and

Table 4
Table of Ablation Experiments

SCSA AIFI LEANet SIoU P Recall mAP@0.5 Irr Star Params/M FLOPs/G

⋯ ⋯ ⋯ ⋯ 0.903 0.914 0.938 0.782 0.853 7.04 15.8
✓ ⋯ ⋯ ⋯ 0.916 0.944 0.953 0.868 0.862 8.32 17.2
⋯ ✓ ⋯ ⋯ 0.916 0.936 0.961 0.835 0.89 7.23 16.3
⋯ ⋯ ✓ ⋯ 0.889 0.926 0.945 0.802 0.859 6.39 14.8
⋯ ⋯ ⋯ ✓ 0.922 0.938 0.952 0.801 0.872 7.05 16.0
⋯ ✓ ✓ ⋯ 0.943 0.919 0.945 0.802 0.859 7.05 16.0
✓ ⋯ ✓ ⋯ 0.942 0.936 0.953 0.868 0.862 7.82 16.8
✓ ✓ ⋯ ⋯ 0.916 0.94 0.959 0.868 0.891 8.85 16.3
✓ ✓ ✓ ⋯ 0.943 0.919 0.959 0.87 0.897 7.05 16.0
✓ ✓ ✓ ✓ 0.914 0.929 0.963 0.875 0.897 7.06 16.0

Figure 6. Comparison of the detection results of regular galaxies under the
STAR-YOLO and yolov5 baseline modeling algorithms.
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enhance the core region of galaxies accordingly, it can be seen
that the detection effect of STAR-YOLO compared to the yolov5
algorithm has a certain degree of improvement.

In irregular galaxies, due to the complexity of their features,
they often have irregular features such as fuzzy edges or
prominent corners, as shown in Figure 7. It can be seen that the
first set of maps has no symmetric structure and the overall
brightness distribution is uneven, and there are breaks on the
edges, and the second set of maps has fuzzy edge corners due
to the low signal-to-noise ratio, which is easy to confuse with
elliptical galaxies, and there will be false detections as well as
a low accuracy rate in the detection, and it can be seen that the
STAR—YOLO model has a better ability to focus on the key
regions of irregular targets in the detection of irregular
galaxies and can obtain a higher confidence score.

In the background of the large field of view, various galaxies
become small-target galaxies, as shown in Figure 8, in the
quantitative analysis, due to the lack of classification of small-
target galaxies, stars are used as their analogs, here, in order to
verify the model’s ability to detect small targets, galaxies are
detected at the same time as stars to be compared. In the large
field of view, the galaxy morphology is small, and due to the
low pixel percentage and poor signal-to-noise ratio, the
shallow features lose details and the deep features have
insufficient semantic information. From the detection effect, it
can be seen that yolov5 also has the phenomenon of missed
detection, as shown in the second set of maps in Figure 8. In
the detection effect on stars, its confidence level is generally
improved, and the detection effect of STAR-YOLO on small
targets is significantly better than the yolov5 baseline model.

6. Discussion and Conclusions

In this study, we propose the STAR-YOLO model for object
detection in galaxy images. Compared to classification models,

STAR-YOLO enables real-time monitoring of multiple targets,
making it applicable to a broader range of scenarios. To improve
detection accuracy for galaxy morphologies—particularly for
irregular galaxies and small-target galaxies under large-field
conditions—we enhanced the feature extraction capability by
introducing the MACA module into the backbone network. The
ASPP component within MACA captures multi-receptive-field
features, addressing scale variation issues and mitigating spatial
information loss caused by downsampling, thereby improving
precision in detecting small-target galaxies. Concurrently, the
SCSA mechanism focuses on fragmented regions, highlighting
key areas of irregular galaxies, which elevates both the overall
mean average precision (mAP@0.5) and detection accuracy for
irregular galaxies. However, accuracy improvements often come
at the cost of increased parameter complexity. To address this, we
designed the LEANet module, replacing conventional Convolu-
tion-BatchNorm-Silu layers with lightweight PConv, effectively
reducing the parameter count while maintaining accuracy.
Finally, we adopted the AFS-IoU loss function to further refine
localization precision for irregular and small-target galaxies.
The final STAR-YOLO achieved an accuracy of 91.4%,

recall of 92.9%, and mAP@0.5 of 96.3%, representing
improvements of 1.1%, 1.5%, and 2.5% over the baseline,
respectively. Notably, the mAP@0.5 for irregular galaxies and
stars increased by 9.3% and 4.4%, respectively, while the
parameter count remained nearly unchanged. Experimental
results demonstrate that STAR-YOLO outperforms the yolov5
baseline in both accuracy and parameter efficiency. With its
lightweight design (7.06M parameters) and real-time inference
capability (16 GFLOPs), STAR-YOLO can be deployed in
real-time data processing pipelines for large-scale sky surveys
such as LSST, processing over 50 frames per second for
2048× 2048 pixel images. LSST is expected to generate
20 TB of data per day, and STAR-YOLO’s lightweight design

Figure 7. Comparison of irregular galaxy detection results under STAR-
YOLO and yolov5 baseline model algorithms.

Figure 8. Comparison of detection results of small-target galaxies under the
STAR-YOLO and yolov5 baseline model algorithms.
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(7.06M parameters) and real-time inference capability
(50 FPS) can efficiently process massive images to help the
scientific goal of the Dark Energy Survey. By significantly
improving detection efficiency for irregular galaxies and
merger remnants, STAR-YOLO enables large-scale statistical
analyses of galaxy evolution and dark matter halo properties.
STAR-YOLO provides an efficient tool for studying the
history of galactic mergers, dark matter distribution and early
cosmic galaxy formation, filling the technological gap in the
detection of complex morphology by traditional methods. In
future work, we plan to integrate SDSS spectroscopic data to
explore correlations between morphological features and
physical parameters (e.g., stellar mass, metallicity).
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