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Abstract

The Gnevyshev–Ohl (G-O) rule, or even-odd effect, is an important observational phenomenon in solar cycles,
originally suggesting that even-numbered cycles are typically followed by stronger odd-numbered ones. However,
subsequent studies have reported varied forms and often conflicting manifestations of this rule, along with diverse
interpretations of its physical origin. Using an observation-based iterative map, we investigate these different
forms of the G-O rule and propose a more general underlying rule: statistically, a given solar cycle is more likely
to be followed by a stronger one, regardless of even-odd numbering. This transition asymmetry arises from the
map’s inherent asymmetry relative to the diagonal. Over timescales comparable to historical observations, both
the G-O rule and its reversal can arise randomly, without a consistent preference. The short-term behavior of the
rule is sensitive to the initial cycle, the selected time interval, and the parameters of the recursion function. These
findings reconcile previously conflicting reports and point to a general generation mechanism: G-O-like behavior
arises naturally from nonlinear stochastic dynamics. While different recursion parameters may lead to varying
short-term patterns and statistical strengths, the emergence of G-O-like features appears to be a generic property
of such systems.
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1. Introduction

Since the discovery of the magnetism in sunspots and its
alternating sign across adjacent 11 yr solar activity cycles by
Hale et al. (1919), the 22 yr Hale cycle has been one of the
most important topics in solar physics. A critical observation
phenomenon associated with the Hale cycle is the Gnevyshev–
Ohl (G-O) rule, also known as the even–odd effect. As
originally identified by Gnevyshev & Ohl (1948), when solar
cycles are paired by index, the following odd cycle is stronger
than the previous even cycle, a pattern observed for all cycle
pairs starting from the 18th century, with the exception of
cycles 4 and 5. Hereafter we refer to this as the cycle strength
definition of the G-O rule. Gnevyshev & Ohl (1948) also found
that the correlation between even cycles and their following
odd ones is significantly higher than that between even cycles
and their preceding odd cycles, which we will hereafter
referred to as the correlation definition of the G-O rule.
Besides the original definitions by Gnevyshev & Ohl (1948),
cycle alternation, which describes that the cycle amplitudes
tend to form a strong-weak alternating pattern (Charbonneau
et al. 2007; Petrovay 2024), is also a phenomenon highly
related to the G-O rule, and is sometimes considered a
definition of the G-O rule as well. The G-O rule seemingly

shows that the Hale cycle is a fundamental component of the
evolution of solar cycles, and raises the important question
about its physical origin.
With advancements in observational data and analytical

methods, interpretations of the G-O rule have diverged in both
methodology and results. A factor contributing to these
discrepancies is the different representations of cycle strength.
It can be represented either by the total sunspot number, as
originally defined by Gnevyshev & Ohl (1948), or by the
maximum sunspot number, i.e., the cycle amplitude (e.g.,
Charbonneau 2005; Javaraiah 2012). The latter representation
leads to more violations of the G-O rule (Hathaway 2015), and
reduces the statistical significance of the correlation definition
(Nagovitsyn et al. 2024). Another point of divergence concerns
whether solar cycles should be paired starting with an even or
odd cycle. Turner (1925) proposed that cycles should be paired
starting with the stronger odd cycle, whereas Zolotova &
Ponyavin (2015) argued that combination of solar cycles in
pairs according to their numbers lacks a physical basis. The
temporal range over which the G-O rule holds is also debated.
Mursula et al. (2001) showed that the G-O rule is in reversed
phase between the Maunder and Dalton minima in the cycle
strength definition. Usoskin et al. (2001) and Usoskin et al.
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(2009) suggested that a lost cycle in late 18th century caused
the reversal of the G-O rule, while Tlatov (2013) suggested
that the G-O rule may periodically change between larger even
or larger odd cycles. On longer time scales, the validity of the
G-O rule remains uncertain. Similä & Usoskin (2023) found
no strong statistical evidence for the G-O rule in a millennium-
long solar cycle series reconstructed from cosmogenic radio-
isotopes, possibly due to the significant uncertainty in the
reconstructed cycles as explained by the authors. Thus, a
comprehensive and definitive description of the G-O rule’s
form and validity remains elusive.

The physical origin of the G-O rule is closely related to the
origin of the solar magnetic field. The formation and evolution of
solar large-scale magnetic field are explained by solar global
dynamo theories, in which the large-scale field arises from
mutually generating poloidal and toroidal fields (Parker 1955;
Charbonneau 2020). Early explanations for the origin of the G-O
rule often attributed it to the interaction between a non-alternating
fossil field and the alternating dynamo field (Mursula et al. 2001).
However, Charbonneau et al. (2005) argued that as there are
possibly reversals of the G-O rule, fossil field explanation is not
favored. Instead, they proposed that the G-O rule can be present
in a nonlinear and stochastic dynamo process, independent of
fossil fields. In framework of the solar Babcock–Leighton (B-L)
type dynamo models (Babcock 1961; Leighton 1969), the
generation of toroidal field from poloidal field represented by
the polar field at cycle minimum is generally linear (Schatten
et al. 1978; Ohl & Ohl 1979; Jiang et al. 2007), while the
generation of poloidal field from toroidal field is intrinsically
nonlinear and also stochastic (Jiang et al. 2013; Jiang 2020;
Karak 2020). Charbonneau et al. (2005) demonstrated that the
nonlinear and stochastic mechanisms introduced in a B-L
dynamo can generate a G-O rule consistent with the cycle
strength definition. Charbonneau et al. (2005) further shows how
cycle alternation can happen from various ranges of nonlinearity,
perturbed by stochasticity. Tlatov (2013) conducted simulations
with an αΩ dynamo including nonlinearity and stochastic effects,
and found that it also generates properties consistent with the
G-O rule. Despite these advancements, the varying interpretations
of the G-O rule’s form cause ongoing debate on its origin.

When analyzing the dynamo origin of the G-O rule, it is
efficient and physically accurate to reduce the dynamo
equations into an iterative map of solar cycle strength
(May 1976), as long as the properties of the dynamo are well
quantified. Durney (2000), Charbonneau (2001), Charbonneau
et al. (2005, 2007) pioneered the use of iterative maps for solar
cycle analysis and applied them to study the G-O rule and
other properties of solar cycles. With recent advancements in
solar B-L dynamo research, the iterative map can be revisited
and applied to analyze and understand the G-O rule.

In the first article of the series (Wang et al. 2025), we have
constructed an iterative map for solar cycles based on observed
nonlinearity and stochasticity in the B-L dynamo. The basic

component of the iterative map is the mutual generation of
poloidal and toroidal fields, generic to solar dynamos. The
specific form of poloidal field generation originates from
observation based B-L dynamo nonlinearity and stochasticity
in previous works such as Li et al. (2003), Solanki et al.
(2008), Dasi-Espuig et al. (2010), Jiao et al. (2021). By
analyzing the properties of the iterative map and the generated
solar cycle series, we have shown that stochasticity is
necessarily the primary source of cycle variability for solar
dynamo models where the generation of poloidal field from
toroidal field follows a growth-and-saturation form. This
conclusion holds regardless of specific parameter choices.
However, the exact distribution of cycle amplitudes is
influenced by the detailed functional form and parameter
values of the model.
In this sequel, we continue to utilize the iterative map to

analyze the the G-O rule and its relationship to the nonlinearity
and stochasticity of solar dynamo. We give a comprehensive
and definitive description of the G-O rule’s various forms and
investigate the G-O rule of the generated solar cycles under
these forms. We provide a more general form of the G-O rule,
and explain how it is generated from nonlinearity and
stochasticity. The results provide implications for theoretical
and observational studies on solar dynamo and cycle
prediction.
The article is organized as follows. In Section 2 we review

the iterative map that we use to analyze the G-O rule. In
Section 3 we examine the quantified results of the G-O rule in
varied forms in the iterative map. In Section 4 we explain the
nature of the G-O rule. We discuss and conclude in Section 5.

2. Reviewing the Observation-based Iterative Map of
Solar Cycles

The B-L dynamo implies an iterative map of cycle strength,
in which the strength of a cycle is determined by the strength
of its previous cycle. We have produced an observational
based iterative map in the prequel to this article (Wang et al.
2025), and we review the important points of it briefly here.
Durney (2000) and Charbonneau (2001) first constructed

iterative maps of solar cycles by quantifying the mutual
generation of poloidal and toroidal fields in the B-L dynamo.
The poloidal field at the beginning of a cycle can be
represented by the strength of polar field as well as the global
axial dipole field. The poloidal field generates the toroidal field
by the Ω-effect, which is considered to be mostly linear
(Schatten et al. 1978; Ohl & Ohl 1979; Jiang et al. 2007). The
toroidal field emerges to form active regions, hence the
strength of toroidal field can be represented by the strength of
solar cycle. The active regions usually have bipoles tilted
against the east–west direction, and contribute net flux to the
poles of opposite polarities, which is referred to as the B-L
mechanism serving as the means of poloidal field generation
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from toroidal field. In the original iterative map of Durney
(2000) and Charbonneau (2001), the newly generated poloidal
field from toroidal field directly becomes the poloidal field at
the beginning of the next cycle, but as we know that, in the
B-L mechanism, the newly generated poloidal field should
cancel out the old poloidal field first before building up that at
the beginning of the next cycle. This represents one of the key
differences between our iterative map and earlier versions.

A significant advancement in understanding the solar cycle
over the past decade is the quantification of intrinsic nonlinearity
and stochasticity in the B-L mechanism for poloidal field
generation, based on direct observations. The tilt angles of active
regions during a stronger solar cycle tend to be smaller (Dasi-
Espuig et al. 2010; Jiao et al. 2021), while the latitudes tend to be
higher (Li et al. 2003; Solanki et al. 2008). These effects, referred
to as tilt quenching and latitude quenching, respectively, limit the
production of poloidal field from toroidal field, and serve as
nonlinearity that confines cycle amplitudes in the B-L dynamo
(Jiang 2020; Karak 2020; Talafha et al. 2022). The stochasticity
of the B-L dynamo comes from the turbulent convection
affecting the rise and emergence of active region field (Weber
et al. 2013), resulting in the large scatter of the latitude and tilt of
active regions (Jiang et al. 2011, 2014). We use the quantification
and parameterization of Jiang (2020), hereafter J20, to construct
the iterative map. The observation-based quantification of
nonlinearity and stochasticity represents another key difference
between our iterative map and earlier versions.

With the linear poloidal to toroidal process and the
nonlinear and stochastic toroidal to poloidal process, we
finally create a recursion function of solar cycles, describing
the relationship between the amplitude of cycle n+1, denoted
as SN(n + 1), and the amplitude of cycle n, denoted as SN(n).
The recursion function is as follows

( ) ( ) ( ) ( )

( )

+ = + ×n k k
n

X nSN 1 erf
SN

quench
1 stoch SN ,

1

0 1

in which k0 is the correlation between the axial dipole moment
at cycle minimum and the next cycle’s amplitude, k1 and
quench are parameters controlling nonlinearity, erf is the error
function, X is a normally distributed random variable, and
stoch is a parameter setting the standard deviation of
stochasticity. The recursion function is illustrated in
Figure 1. While the Gaussian scatter can extend below 0, we
limit the values of cycle amplitudes above 0, by employing a
reflecting boundary at SN(n)=0. Whenever a negative value of
SN(n) occurs, we use its absolute value, reflecting the cycle
amplitude back to positive, so that the iterative map can
continue.

The recursion function Equation (1) has two terms on the right-
hand side. The first term is the poloidal field generation from
toroidal field. Considering the property of error function, it first

increases as the cycle amplitude SN(n) increases, then saturates
after SN(n) is large enough. The parameter k1 is the maximum
amount of poloidal field that active regions can generate during a
solar cycle in total, while quench controls how fast the poloidal
field generation would saturate in terms of SN(n). The random
part ( )+ × X1 stoch is multiplicative to the error function,
implying that the actual scatter becomes larger when the poloidal
field generation is stronger—characteristic of multiplicative
noise. The scatter of poloidal field generation arises inherently
from the stochastic nature of active region emergence, with active
regions that have large tilt angles and low latitudes contributing
most significantly (Jiang et al. 2014, 2015; Whitbread et al. 2018;
Nagy et al. 2020; Yeates et al. 2025). Its exact form reflects a
combination of stochasticity in emergence rate, latitude, area, and
tilt of active region emergence. In this study, we adopt the
formulation from Jiang (2020), in which the noise is explicitly
multiplicative. While alternative noise formulations may be
explored in future studies with more accurate sunspot records, the
specific form of the noise does not significantly affect the
existence of the G-O rule, as will be discussed in Section 4. The
first term of Equation (1) is subtracted by the second term,
indicating that the generated poloidal field should cancel out the
old poloidal field. Hence, the form of the recursion function is a
representation of general dynamo processes, and the specific form
is determined by observation-based studies.
The parameters of nonlinearity and stochasticity have

uncertainty because of observational limitations. Here, we
adopt the parameters of J20 as the standard set of parameters,
with polar precursor coefficient k0 being 58.7, maximum
dipole moment k1 being 6.94, quench being 75.85, and stoch

0 100 200 300
0

100

200

300

400

400
Cycle n amplitude

C
yl

cl
e 

n+
1 

am
pl

itu
de

SN(n+
1) 

> S
N(n)

SN(n+
1) 

< S
N(n)

Figure 1. Diagram showing the relationship between cycle amplitude of
cycles n+1 (SN(n + 1)) and n (SN(n)) as described by Equation (1). The gray
shaded region represents the distribution of probability density, with darker
areas indicating higher likelihood. The diagonal line divides the plot into two
regions: SN(n + 1) > SN(n) (upper-left) and SN(n + 1) < SN(n) (bottom-
right).
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being 0.17, in the following analysis. We also consider a
considerable range of different parameters, evaluating the
effect to the G-O rule. Besides uncertainty of parameters, the
form of nonlinearity and stochasticity we adopt from J20 is
subject to future refinements as well.

The recursion function, along with an initial cycle amplitude,
can be used to produce a large series of solar cycle amplitudes
efficiently for the analysis of the G-O rule. We note that, the
aforementioned quantification of nonlinearity and stochasticity is
based on cycle amplitude (maximum value of the 13 months
smoothed monthly sunspot number over a cycle in sunspot
Number Version 2). Hence, we use the current recursion function
in the following analysis.

3. Quantification of the G-O Rule in Different Forms
in the Iterative Map

3.1. Exploring the G-O Rule in Varied Forms Using the
Iterative Map

Using the recursion function, i.e., Equation (1), we generate
a large series of solar cycle amplitudes. We first focus on the
cycle strength definition of the G-O rule, so we pair the cycles
accordingly. We label the initial cycle as cycle 0, and then pair

the cycles sequentially: 0–1, 2–3, 4–5, and so on. Each pair
consists of an even cycle with the following odd cycle, which
we refer to as G-O pairs. With these pairs, we can evaluate
various forms of the quantification of the G-O rule, which are
summarized in Table 1.
We first examine the proportion of pairs where the even

cycle amplitude is larger than that of the following odd cycle.
This is quantified by calculating the ratio of pairs with a larger
even cycle to the total number of pairs, which we refer to as
the E-to-A ratio. We generate 1,000,000 cycles, pair them, and
calculate the E-to-A ratio, which is found to be
0.4555 ± 0.0003, with the 1σ uncertainty being the standard
error derived from ten separate E-to-A ratio calculations. This
result indicates that there are more pairs with the odd cycle
larger than the even cycle. Interestingly, the initial cycle
amplitude does not influence the ratio, whether the initial cycle
is weak or strong. Furthermore, the starting index for pairing
does not affect the outcome: if we label the first cycle as cycle
1, the cycle pairings are reversed, but the result remains the
same. Regardless of the pairing method, the latter cycle in each
pair consistently has a higher probability of being stronger
than the former.

Table 1
A Summary of Varied Forms of the G-O Rule

Concept Definition Role in the G-O Rule

Even cycle cycle with even number (e.g., 0,2,4,...) The leading cycle in a cycle pair

Odd cycle cycle with odd number (e.g., 1,3,5,...) The following cycle in a cycle pair

G-O pair a pair consisting of an even cycle and following odd
(e.g., 0–1, 2–3, ...)

⋯

G-O rule (cycle strength definition) during a time range, more even cycles are weaker
than their following odd cycles

The original form

Reversed G-O rule (cycle strength
definition)

during a time range, more even cycles are stronger
than their following odd cycles

⋯

E-to-A ratio ratio of number of even–odd cycle pairs with larger
even cycles to number of all even–odd cycle pairs

A value smaller than 0.5 indicates G-O rule while larger than 0.5
indicates reversed G-O rule

G-O block a series of continuous cycle pairs with larger even (or
odd) cycles

An exponential distribution would indicate that the variation of the
G-O rule is stochastic

ΔSN = SN(2n + 1) − SN(2n) difference of cycle amplitude within an even–odd
cycle pair

The asymmetricity and the median of its distribution imply the
G-O rule

ΔSN = SN(n + 1) − SN(n) difference of cycle amplitude between 2 arbitrary
adjacent cycles

Similar to above but without cycle pairing, suggesting that cycles
are more likely to be followed by a stronger cycle in general

E-O correlation Pearson’s correlation between even cycles and fol-
lowing odd cycles

The correlation definition

O-E correlation Pearson’s correlation between odd cycles and fol-
lowing even cycles

The correlation definition suggests the E-O correlation tends to be
larger than the O-E correlation for a certain time range

Cycle alternation a tendency of cycle amplitudes following an alter-
native weak-strong pattern

It is often considered highly related to the original definition of the
G-O rule
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Having established that the latter cycles in the G-O pairs
tend to be stronger, we now aim to quantify how much
stronger they actually are. To do this, we analyze the
difference between the two cycles in each pair, denoted as
ΔSN = SN(2n + 1) − SN(2n). This is similar to the analysis
of Similä & Usoskin (2023). The probability density function
(PDF) of ΔSN is shown in Figure 2, which indicates that ΔSN
follows an asymmetric distribution. The mean of ΔSN is
nearly 0, while the median is larger than 0, at 19. The standard
deviation is large, at 157. This indicates that, in the half of the
distribution where ΔSN > 0, the population is larger, but the
values of ΔSN are smaller. In contrast, for the half where
ΔSN < 0, the population is smaller, but the values are larger.
Therefore, although the latter cycle is more likely to be larger
than the former cycle, the expectation of the difference
between the cycle strength within the G-O pairs is actually 0.
Hence, there is no long-term trend of increasing cycle
amplitude. At exactly ΔSN = 0, the distribution is not
continuous, but this is not an artifact. Instead, the reason is that
different parts of the recursion function are taken into account
when we move ΔSN from less (below the diagonal line of
Figure 1) to greater (above the diagonal line of Figure 1) than
0. More details of ΔSN will be explained in Section 4.

The aforementioned values of the E-to-A ratio and the PDF
of ΔSN both have demonstrated the G-O rule holds. This rule
likely arises from the nonlinearity and stochasticity inherent in
the iterative map, as will be demonstrated in the following two
subsections. We then examine the variations in the G-O rule.
As reviewed in the introduction, some observations suggest
that the G-O rule exhibits long term variations and reversal:
some periods follow the G-O rule, while some periods follow a
reversed G-O rule. To evaluate this, we define G-O blocks as
continuous sequences of G-O pairs in which all pairs have
larger even cycles or larger odd cycles, with opposite pairs
before and after the block. We obtain the PDF of the block
lengths based on the series of 1,000,000 cycles. As shown in
Figure 3(a), the length of G-O blocks follows an exponential

distribution, which is a natural consequence of the stochastic
process. Theoretically, if an event happens independently at a
constant rate, the time interval between two such events will
follow an exponential distribution. In our model, the
probability of the pairs switching between even and odd is
constant, meaning that the “reversal” of the G-O rule is not
periodic, but rather random in our model.
Besides the cycle strength definition, the G-O rule is also

defined by the correlation definition in observations, which
suggests that the E-O correlation is significantly positive,
while the O-E correlation is less significantly statistically.
However, this is not the case for the 1,000,000 cycles in our
model. Both E-O and O-E correlations are negative, with a
value of −0.42, the difference between them being insignif-
icant. This result is consistent with the fact that the E-to-A
ratio does not change if the definition of even or odd is
changed. In fact, the correlations are the same as the
correlation between cycle n and n+1, in which n is an
arbitrary cycle regardless of even or odd. Since our recursion
function only considers the relationship between cycle n and n
+1, without long term memory, “even” and “odd” cycles are
equivalent in the long term. However, this does not mean that
our model is unrealistic, as the observations of the G-O rule
are based on a limited number of solar cycles. Before we
evaluate and explain the effect of the limited number of solar
cycles on the behavior of the G-O rule in detail in Section 3.3,
we first investigate the impact of nonlinearity and stochasticity
in the following subsection.
Furthermore, the negative correlation between cycles

indicates a tendency toward cycle amplitude alternation. While
cycle alternation exhibits different statistical significance from
the original formulation of the G-O rule (Nagovitsyn et al.
2024), it is often regarded as closely related. Therefore, we
also analyze it with our model. Unlike Charbonneau et al.
(2007) and Petrovay (2024), who used running means with
window widths of three or five cycles to evaluate cycle
alternation, we identify the zigzag pattern directly from the
actual cycle amplitudes. This approach is appropriate because
our model lacks long-term memory beyond one cycle, as
presented in the first paper of this series, making only
comparisons between adjacent cycles meaningful. We define
a cycle alternation block as a sequence of alternating high and
low amplitude cycles that continues until the zigzag pattern is
broken. The resulting block lengths are shown in Figure 3(c).
Similar to the G-O blocks, the alternation blocks follow an
exponential distribution, reflecting the system’s stochastic
nature. For comparison, we also analyze a synthetic series of
completely random cycles, similar to the approach of
Charbonneau et al. (2007). These random cycles follow the
same PDF of cycle amplitudes from the iterative map, but do
not follow any recursion relations. As shown in blue in
Figure 3(c), the alternation blocks in the random series also
follow an exponential distribution. However, the iterative map
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Figure 2. Probability density function (PDF) of the difference between the two
solar cycles in each pair, derived from the 1,000,000 cycles generated using
the recursion function, i.e., Equation (1). The physical origin of the
discontinuity at ΔSN = 0 is presented in the main text.
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yields significantly more long alternation blocks. This result
indicates that cycle alternation is a statistically significant
feature of the cycle variability produced by the iterative map.

3.2. Impact of Nonlinearity and Stochasticity on the
Behavior of the G-O Rule

The key components of the iterative map are the B-L
nonlinearity and stochasticity, so they should play a certain role
in the G-O rule. In order to know how nonlinearity and
stochasticity affects the G-O rule, we use different parameters,
and observe how the E-to-A ratio and ΔSN of the G-O rule are
affected. This is also meaningful due to the fact that the
parameters themselves are of uncertainty. Based on the standard
set of parameters, we consider a ±25% variation of k1, quench,
and stoch, changing one parameter at a time while keeping others
unchanged. In total, six cases are considered: 0.75 × k1,
1.25 × k1, 0.75 × quench, 1.25 × quench, 0.75 × stoch, and
1.25 × stoch. We also include an optimized set of parameters
from our prequel paper, which is k1 = 6.94 × 0.9, quench =
75.85 × 1.5, and stoch = 0.17 × 0.75. This set of parameters
produces a PDF of cycle amplitude, which is closer to the normal
cycles component in Usoskin et al. (2014) compared to the
standard set, but it is not guaranteed to be the best fit to
observations.

We first calculate different E-to-A ratios for the aforemen-
tioned six parameter sets, shown in Table 2. The uncertainty of
each E-to-A ratio is obtained from the standard error of ten
individual solar cycle series generated by the method. All
produce a ratio below 0.5, confirming the validity of the G-O
rule. Meanwhile, the E-to-A ratio reacts to parameter changes
differently. Larger maximum dipole moment k1 makes the
ratio closer to 0.5, so the two types of pairs would be more
similar, which means that the G-O rule is weaker. Larger
quench or stoch decreases the ratio, enlarging the difference
between the two types of pairs, indicating a stronger presence
of the G-O rule. The optimized set also produces a smaller
E-to-A ratio compared to the standard set, which indicates that
the G-O rule might be stronger in observations.
We also calculate the different ΔSN values. We have

explained in Section 3.1 that the mean of ΔSN is 0 for the
reason that the cycle strength needs to be confined, so here we
show the medians of ΔSN, as we did above. As shown in
Table 2, all cases produce medians larger than 0, with varied
values. While larger median of ΔSN can be regarded as
stronger G-O rule, this is not necessarily the case, as larger k1
produces weaker G-O rule from the perspective of E-to-A
ratio, but produces larger median of ΔSN. This is because the
median of ΔSN is not only related to how many ΔSN values
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Figure 3. Statistical properties of the G-O pairs and cycle alternation of cycles. (a) The PDF of G-O block length with y axis in logarithmic scale. (b) A zoom-in of
panel (a) in order to compare with the results of Usoskin et al. (2021) covering cycles from 971 to 1900 (indicated by black diamond symbols), and with the results
for cycles 1–24 (indicated by red diamond symbols). The unit of the G-O block length is 1 pair of cycles. (c) The PDF of the cycle alternation block length, with the
black curve representing the result of the iterative map, and the blue curve representing the result of a series of fully random cycles. (d) Same as panel (b), but for the
cycle alternation block length. The unit of the cycle alternation block length is 1 cycle.
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are larger or smaller than 0, but also related to the shape of the
distribution. Different forms of the G-O rule may act
differently when the parameters change.

Usually, the G-O rule, particularly its manifestation as cycle
alternation, is explained by nonlinearity (e.g., Charbonneau
et al. 2007), which produces a strong cycle after a weak cycle
and vice versa, thus forming a semi-regular pattern, while
stochasticity is often considered to be destructive to semi-
regular behavior. Our analysis actually shows that while the
form of nonlinearity affects the G-O rule, the stochasticity is
constructive to the G-O rule as well, under the original
definition of the G-O rule. The form and parameters of
nonlinearity and stochasticity are both important to the
G-O rule.

3.3. Impact of a Limited Number of Solar Cycles on the
Behavior of the G-O Rule

The aforementioned results on the G-O rule are valid when
the number of cycles is sufficiently large. However, real-world
observations are based on a limited number of well-resolved
solar cycles, which necessitates understanding how the G-O
rule behaves with fewer cycles. We consider two time ranges
for solar cycles. The first spans 100 cycles, i.e., 50 G-O pairs,
comparable to the millennial analysis of Similä & Usoskin
(2023) based on radioisotopes. The second covers 24 cycles,
corresponding to the era of directly observed sunspot records.
By analyzing a large set of such cycle series, we aim to derive
the properties of the G-O rule when the number of cycles is
limited.

We first examine whether there are more pairs in which the
former cycle is larger than the latter cycle. We generate
100,000 sequences, each consisting of 100 cycles, and
compute the E-to-A ratio for each sequence. The resulting
100,000 E-to-A ratios are used to construct the PDF shown in
Figure 4(a). Although the mean of the PDF is slightly below
0.5, it lies within 1σ of 0.5. This indicates a weak tendency for
the cycles to follow the G-O rule, but not at a statistically
significant level. When we decrease the total number of cycles

to 24, the distribution becomes broader, while the mean value
remains unaffected, as shown in Figure 4(c). This helps
explain the inconsistent manifestation of the G-O rule across
different segments of observed solar cycles. Based on ISN
version 2.0, for solar cycles 2–25, corresponding to a random
realization of 24-cycle series, its E-to-A ratio is 0.25, which
lies slightly outside the 1σ range of the 100,000 realizations.
We also examine ΔSN under limited cycle numbers. As

stated in Section 3.1, the median of ΔSN is larger than 0,
indicating that more cycles are followed by stronger, rather
than weaker, ones. Hence, here we produce the PDF of the
median of ΔSN, shown in Figure 4(b) for the time range of
100 cycles. Again, the median of ΔSN is larger than 0, but still
not larger than the 1σ range, which again implies that the G-O
rule is not statistically significant. This also supports the result
of Similä & Usoskin (2023), who argued that for the
reconstructed solar cycles, the invalidity of the G-O rule
cannot be regarded as an evidence of its insufficient accuracy.
It could reflect the inherently weak statistical significance of
the G-O rule over the considered time period. Similar to the
E-to-A ratio, the distribution of the median of ΔSN also
broadens when we limit the cycle number to 24, as shown in
Figure 4(d). For cycles 2–25, the median ΔSN is 45.7 based
on ISN version 2.0, a value that remains well within the
expected distribution. Compared to the behavior of the E-to-A
ratio, this result further explains the conflicting manifestations
of the G-O rule reported in earlier studies, which often relied
on different formulations of the rule.
Now, we compare the results of the G-O block with those

from observed limited cycles. We compare the PDF of the G-O
block shown in Figure 3(a) with the results obtained from
pairing cycles between 971 and 1900 reconstructed by Usoskin
et al. (2021) shown in Figure 3(b). We choose all cycles from
their Table 1, excluding the grand minima cycles, and pair up
the rest, and obtain the length of each G-O block. We note that
this is a brief comparison, and the varied data qualities in
Usoskin et al. (2021) are not considered. We also include the
blocks during cycle 1–25, marked in red. Overall, the PDF
follows the reconstructed cycle data. However, the relatively
small number of observed solar cycles and their uncertainty
limit the ability of observational data to effectively constrain
our model, making this a preliminary comparison.
Similarly, we compare the results of cycle alternation with

those from observed limited cycles. Again, the results from
Usoskin et al. (2021) and the results of cycles 1–25 are used.
As shown in Figure 3(d), both are roughly comparable to the
results of the iterative map, but the probabilities are in general
larger than the iterative map. The total number of observed
cycle alternation blocks is small. In contrast, the iterative map
generates 1,000,000 cycles, which even includes blocks longer
than 10, albeit rarely. The deviation between the observed and
the results from the iterative map likely arises from the limited

Table 2
Impact of the Parameters in Nonlinearity and Stochasticity on the Behavior of

the G-O Rule Based on the Iterative Map

Parameter Set E-to-A Ratio Median of ΔSN

Standard set 0.4555 ± 0.0003 19.1 ± 0.1
0.75 × k1 0.4371 ± 0.0002 16.26 ± 0.07
1.25 × k1 0.4653 ± 0.0002 20.97 ± 0.09
0.75 × quench 0.4672 ± 0.0005 16.4 ± 0.1
1.25 × quench 0.4414 ± 0.0002 21.49 ± 0.08
0.75 × stoch 0.4754 ± 0.0002 10.7 ± 0.1
1.25 × stoch 0.4425 ± 0.0003 24.8 ± 0.1
Optimized set 0.4492 ± 0.0002 11.23 ± 0.06
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number of observed cycles, representing only a short segment
of a random realization.

We continue to examine the correlation definition of the
G-O rule with a limited number of solar cycles. As we have
shown, in the long run, the relationship between adjacent
cycles will certainly follow Equation (1), regardless of even or
odd, so we expect that the correlation definition is only
applicable when cycle numbers are limited. We speculate that
the initial amplitude of the limited cycle series is important. To
test this, we let all 100,000 sets of 100 cycles start at two
amplitudes, SN(0) = 81.2, and SN(0) = 285, which are the
weakest and strongest cycles since Cycle 1, correspondingly.
Then, we observe the PDF of the E-O correlation and the O-E
correlation. The PDFs of these correlations with SN(0) = 81.2
are shown in Figure 5(a) and (b) for the iterative map using the
standard and optimized parameter sets, respectively. The
difference between the two correlations is not notable. For the
case with SN(0) = 285, shown in Figure 5(c) and (d), the
difference between the two correlations is more significant for
the optimized set of parameters. All these plots indicate that
both correlations are not quite likely to be significantly
positive. Instead, there is a higher probability for negative
values.

We further restrict the analysis to 24 cycles, with the results
shown in Figure 6. The difference between low (left panels)
and high (right panels) initial cycle amplitudes becomes more
pronounced. For an initial amplitude of 81.2, the positive
correlations, consistent with observations and those presented

in Section 3.1, are located in the tail of the PDFs. The
corresponding E-O correlation is slightly larger than the O-E
correlation, again consistent with observations. To understand
the observed correlation definition of the G-O rule, we show a
set of 24 cycles as an example in Figure 6(c), in which the E-O
correlation is significantly positive, larger than 0.9. In this
example, most even–odd pairs (red) fall on the rising part of
the recursion function, while odd–even pairs (blue) do not.
Since the rising part of the recursion function is relatively
linear, correlations are higher when the pairs of cycles lie in
this range. In contrast, when the initial amplitude is 285, the
O-E correlation tends to be stronger, and the difference
between E-O and O-E correlations becomes more evident for
the optimized set of parameters. Figure 6(f) shows another
example where the O-E correlation exceeds 0.9. Here, most
odd–even pairs (blue) lie within the linear region of the
recursion function. These results suggest that the correlation
definition is sensitive to the initial cycle amplitude.
The higher O-E correlation observed over limited time range

presented above arises from the asymmetric shape of the
recursion function between the rising and descending parts.
The rising phase tends to be more linear with less scatter,
while the descending phase is more nonlinear and exhibits
greater variability. As a result, one correlation is more strongly
influenced by cycle pairs along the linear (rising) part of the
recursion function, whereas the other is dominated by the more
scattered, nonlinear (descending) part. When the initial cycle
in a pair has an extreme amplitude, the difference between the
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Figure 4. Statistical properties of the G-O rule under limited numbers of cycles. Panels (a) and (b) are the PDF of the E-to-A ratio and the median of ΔSN,
respectively, for 50 pairs of cycles. The solid and the dashed vertical lines represent the mean and 1σ range, respectively. Panels (c) and (d) are same as (a) and (b),
but for the number of cycle pairs being 12.
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E-O and O-E correlation coefficients becomes more
pronounced.

In summary, for limited cycles, the G-O rule by its cycle
strength definition is only a trend and is not statistically
significant even at 1σ significance. The behavior of solar
cycles are more likely to form different G-O blocks, with some
blocks having larger odd cycles, some having larger even
cycles, and the total E-to-A ratio is not guaranteed to be either
larger or smaller than 0.5. This favors the observational studies
suggesting that there are variations of G-O rule, such as
Mursula et al. (2001), Tlatov (2013), Zolotova & Ponyavin
(2015). We note that the variations of G-O rule in our iterative
map is random instead of systematic. As for the correlation
definition of the G-O rule, it is in general slightly more likely
for E-O correlation to be larger than O-E correlation when the
initial cycle amplitude is low, but still the correlation definition
is not guaranteed under a limited number of cycles.

4. The General form of the G-O Rule and its Origin
from the Nonlinearity and Stochasticity

In the previous section we have analyzed the different
quantified forms of the G-O rule, which enable us to
investigate the intrinsic origin of the G-O rule in this section.
From Section 3.1, we know that the E-to-A ratio is unaffected
by the method of pairing cycles. This implies that there is an
inherent property of the cycles that does not require pairing
them at all. In fact, the iterative map, which describes the

relationship between cycle n and n+1, does not distinguish
between even and odd cycles from the outset. As discussed in
the first paper of the series (Wang et al. 2025), any solar cycle
in the iterative map loses all its initial information after only a
few iterations and becomes indistinguishable from all cycles in
the statistical sense. This means that even and odd-numbered
cycles are not distinguishable. This is true, as Figure 7(a)
shows that even and odd-numbered cycles have the same PDF.
From this perspective, the general G-O rule in the long run

does not need pairing at all. For any two adjacent cycles, there
is a larger probability for the latter cycle to be stronger than the
former cycle, which is referred to as the general form of the
G-O rule. We evaluate this as below. Let p(x) be the PDF of x
with x being ( )nSN , and q(y) be the PDF of y with y being

( )+nSN 1 . The former p(x) is an unconditional probability,
and the latter q(y) is a conditional probability P(y|x), which is a
measure of the probability of ( )+nSN 1 occurring, given the
strength of ( )nSN . Then the general G-O rule is to examine the
following probability

( ) ( ) ( ) ( )> =
= =

P y x q y p x dydx. 2
x y x0

The function p(x) should be obtained by generating a large
number of cycle amplitudes with Equation (1), and the result is
presented in Figure 7(a). The function q(y) as a conditional
probability, is not the same as p(x), but is determined by the
recursion function, as the nonlinearity determines its peak and
the stochasticity determines its scatter. In our case, the
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Figure 5. Statistical properties and examples of the correlation definition of the G-O rule for 50 pairs of even and odd cycles. Panels (a) and (b) are the PDF of
correlation coefficients under the standard set of parameters and the optimized set of parameters, respectively, with the initial cycle amplitude 81.2. The red curve
indicates the E-O correlation, while the blue curve indicates the O-E correlation. Panels (c) and (d) are same as panels (a) and (b), respectively, but for the initial
cycle amplitude 285.
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stochasticity is a Gaussian distribution, so q(y) should be as
follows,

( ) ( ) ( )=
< >

q y
y y1

2
exp

2
, 3

y y

2

2

where <y> = ( )k k xerf x
0 1 quench

, and σy = ( ) ×k k erf stochx
0 1 quench

.
This probability can be calculated as long as we have the PDF p
(x). Using the PDF in Figure 7(a), which is from Section 3.2 of
Wang et al. (2025), we have ( )> =P y x 0.546. Then, the E-to-
A ratio is 0.454, very close to the E-to-A ratio in Section 3.1.

Now we do not consider ΔSN within pairs of cycles, but
ΔSN of two arbitrary adjacent cycles. The PDF of ΔSN,

( )= +P y x SN , is actually as follows

( ) ( ) ( ) ( )= + = +
=

P y x q x p x dxSN SN . 4
x 0

The result of the integration of Equation (4) is presented in
Figure 7(b), which is identical to Figure 2, showing an
asymmetric distribution on two sides and a discontinuity at 0.
The discontinuity at 0 is a result of the property of the
recursion function shown in Figure 1. The integration
Equation (4) can be regarded as an integration of the recursion
function along a line y = x + ΔSN, weighted by the PDF of
cycle amplitude. As it is shown in Figure 1, when ΔSN is
smaller than 0, such a line only covers the descending part of
the recursion function. But when ΔSN becomes larger than 0,
the ascending part of the recursion function is also included.
The additional ascending component leads to a discontinuous
and asymmetric distribution. In particular, the portion near the
origin results in the noticeable jump at ΔSN = 0.
Surely enough, the long term G-O rule of the iterative map

is a direct result of the nonlinearity and stochasticity in the B-L
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10

Research in Astronomy and Astrophysics, 25:125013 (13pp), 2025 December Wang, Jiang & Wang



mechanism. The recursion function in Figure 1 is different in
the ΔSN less or greater than 0 part, then the long-term G-O
rule will occur. Such differences make it more likely for a
weak cycle to be followed by a stronger cycle, but less likely
for a strong cycle to be followed by a weaker cycle. From this
perspective, not limited to the recursion function we introduce,
other nonlinear stochastic iterative maps could also produce
the G-O rule. But the exact statistical significance varies
according to the specific form and parameters. When the
nonlinearity and stochasticity change, how much of the
recursion function falls to the upper-left part and the lower-
right part in Figure 1 becomes different, and the significance of
G-O rule is different as well. We note that, “cycles are more
likely to be followed by a stronger cycle” does not result in
unbounded growth of cycle strength. The “cycles” in this
statement is an arbitrary cycle among the PDF of cycles. For a
definite cycle, whether the next cycle is probably stronger or
weaker is solely determined by Equation (1). Statistically,
while ΔSN is more likely to be positive, the absolute values of
positive ΔSN are smaller than negative, so the cycle amplitude
is not unbounded.

5. Discussion and Conclusions

In this article, we have analyzed the G-O rule using an
observation-based iterative map developed in the prequel to

this study (Wang et al. 2025). A larger portion of the recursion
function lies in the region where the cycle amplitude increases
from one cycle to the next, rather than decreases. When this
recursion function is weighted by the PDF of cycle amplitudes
and integrated over the full amplitude range, it implies that an
arbitrary solar cycle is statistically more likely to be followed
by a stronger cycle than by a weaker one. This underlying
asymmetry represents a generalized form of the G-O rule,
unifying the various forms reported in the literature when solar
cycles are analyzed in pairs. Over sufficiently long timescales,
explicit cycle pairing becomes unnecessary to observe this
trend. On shorter periods lasting a millennium or less, the G-O
rule manifests only as a weak trend without statistical
significance. During such intervals, the solar cycle can
randomly alternate between following the G-O rule and its
reversed form, without a strong preference for either,
consistent with observational studies that report temporal
variations in the rule. The exact tendency of the G-O behavior
under a limited number of cycles is influenced by the form and
parameters of the recursion function, which should be taken
into account in future investigations of solar cycle nonlinearity
and stochastic dynamics.
The observation-based iterative map for solar cycles

introduced in the prequel (Wang et al. 2025), though
seemingly simple, is an effective tool for investigating the
generic and complex behaviors of nonlinear systems, like the
solar cycle. The recursion function incorporates fundamental
solar dynamo processes: the regeneration between toroidal
field and poloidal field, and the cancellation between opposing
poloidal polarities. We have clearly shown that the G-O rule in
its general form originates from the nonlinearity and
stochasticity of poloidal field generation, generic to solar
dynamos. The quantification of the G-O rule, especially under
a limited solar cycle number, is heavily affected by the form
and parameterization of the nonlinearity and stochasticity,
hence more realistic observations are key to evaluate the
observed G-O rule.
In the iterative map that generates the G-O rule, one cycle

solely determines the next, and there is no longer-than-1-cycle
memory. From this perspective, it is not necessary to consider
the Hale 22 yr cycle as the fundamental component of solar
cycle evolution in order to explain the G-O rule, nor is other
long-term memory or fossil field needed. Yet, we do not
completely rule out the possibility of other explanations.
Since we interpret the G-O rule as an integration of the

recursion function weighted by the PDF of cycle amplitudes,
we can show that the G-O rule is a direct product of
nonlinearity and stochasticity. Because of nonlinearity, the
recursion function is intrinsically different in its
SN(n + 1) > SN(n) and SN(n + 1) < SN(n) parts, with
stochasticity included. Then, there will be a statistical
difference in the positive and negative parts of the distribution
of ΔSN. Such a result is not limited to the specific nonlinearity
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Figure 7. Probability density function of cycle amplitude (upper panel) and
ΔSN (lower panel). The curve in the upper panel is actually composed of three
overlaid curves, which are a black curve referring to all cycle amplitude, a red
curve indicating even cycle amplitude, and a blue curve showing odd cycle
amplitude. For the physical origin of the discontinuity at ΔSN = 0, see the
corresponding main text.

11

Research in Astronomy and Astrophysics, 25:125013 (13pp), 2025 December Wang, Jiang & Wang



and stochasticity we introduce, yet the exact statistical
significance is affected by the specific formations. The G-O
rule in the long term is a natural result of nonlinearity affected
by stochasticity.

The statistical properties can be vastly different when the
number of cycles is limited. Observational studies, such as Hazra
et al. (2015), tend to show that the correlation coefficient between
adjacent cycles is positive. The correlation definition of the G-O
rule suggests that the correlation is more significantly positive for
even–odd pairs than odd–even pairs. We have shown that such
coefficients can have large scatter in their distribution when the
number of cycles is 100, and is largely dependent on parameters
of nonlinearity and stochasticity, and dependent on initial cycle
amplitude. If the starting cycle is weak, and the weak part of the
recursion function is close to linear function, then it is possible for
the correlation definition of the G-O rule to occur in a limited
range. If the number of cycles is as limited as the directly
observed cycles, the uncertainty of the G-O rule will become
even larger, making it less meaningful for direct comparison.
Better observation-based nonlinearity and stochasticity should
provide a more accurate explanation for characteristics of the
observed short-term G-O rule.

Our iterative map at present does not include grand minima, as
it has been discussed in the Discussions section in our first paper
(Wang et al. 2025). Proxies of long-term solar activity show that
grand minima refer to a separate peak in the probability density
function along with the normal cycles (Usoskin et al. 2014). The
original definition of the G-O rule (Gnevyshev & Ohl 1948),
starting from cycle 1, does not include grand minima; more
recent observational evaluations like Similä & Usoskin (2023) do
not consider grand minima either. From the perspective of
evaluating and understanding the G-O rule, reconstructing
realistic grand minima is not obligatory. On the other hand,
while large temporal ranges of high solar activity, referred to as
grand maxima exist, their exact difference to normal cycles and
physical origin are not clear, for they do not appear to have a
distinctive peak in observational probability density function
(Usoskin 2023). From this perspective, we do not explicitly
regard strong cycles as grand maxima in our iterative map when
trying to understand the G-O rule.

Another extreme case associated with grand minima and
maxima is the occurrence of large deviations from the expectation
value in some random realizations. In our model, we adopt a
reflecting boundary to keep the cycle amplitudes positive. If not,
some negative values will occur due to the large randomness, in
which case the total amount of dipole moment generated during
the cycle is too small to cancel out the dipole from the previous
cycle and build up the dipole field of opposite polarity at the start
of the next cycle. The stochasticity in our model mainly
originates from the randomness in the latitude and tilt of active
regions. As established by Jiang et al. (2014), active regions
emerging at low latitudes with large tilts can have a profound
effect on cycle variability. In extreme cases, rogue active regions

with large flux, low latitude, and anti-Joy’s tilt can halt the
dynamo process by preventing the build up of the poloidal field
of the next cycle, as shown in the simulation examples of Nagy
et al. (2017). This physical scenario corresponds to the possibility
of negative values in the iterative map. Better understanding of
such extreme cases and better treatments in the recursion function
will be considered in future studies.
Future advance in the solar cycle recursion relation within

the framework of the B-L dynamo will be able to provide
better explanation for the G-O rule. Such progress will depend
on both more accurate observations of solar cycles and a
deeper understanding of the underlying B-L dynamo mechan-
isms. In the foreseeable future, the number of well-resolved
solar cycles is unlikely to be sufficient for determining the
E-to-A ratio with statistical significance. As a result, the G-O
rule should be viewed as a statistical trend rather than a strict
law within the B-L dynamo framework. Consequently, it
should not be used in isolation as a definitive observational
constraint in solar dynamo modeling, nor as a standalone
predictive tool for future solar cycles. A more reliable
approach to understanding and applying the G-O rule lies in
combining it with other characteristics of solar cycle evolution.
While the number of cycles is too limited for the E-to-A

ratio, several observational studies of the G-O rule can be
conducted to examine the nonlinearity and stochasticity based
G-O rule. The first is the revision of the observational ΔSN
(e.g., Similä & Usoskin 2023). As we have already pointed out
in the manuscript, its median instead of mean value is more
fitted to represent the G-O rule. Another valuable topic is the
distribution of the G-O blocks and cycle alternation blocks,
from better and longer timescale data. Whether these blocks
follow exponential distribution is a direct examination of the
stochastic nature of the G-O rule. Furthermore, if the
evaluation of the correlation definition can be extended to
∼50 pairs of cycles in the future with enough statistical
significance, it will be more likely to examine whether the
currently observed difference in correlation coefficients is an
effect of limited cycle numbers or not.
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