Research in Astronomy and Astrophysics, 25:125009 (13pp), 2025 December

© 2025. National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data

mining, Al training, and similar technologies, are reserved. Printed in China.

https://doi.org/10.1088/1674-4527 /ac06ff
CSTR: 32081.14.RAA .ac06ff

CrossMark

Estimating Stellar Atmospheric Parameters and Elemental Abundances

Using Fully Connected Residual Network

Shuo Li'*®, Yin-Bi Li'?®, A-Li Luo'*@®, Jun-Chao Liang'*@®, Hai-Ling Lu'*@®, and Hugh R. A. Jones®

University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physics, Astronomy and Mathematics, University of Hertfordshire, UK
Received 2025 April 30; revised 2025 July 12; accepted 2025 August 5; published 2025 October 17

Abstract

Stellar atmospheric parameters and elemental abundances are traditionally determined using template matching
techniques based on high-resolution spectra. However, these methods are sensitive to noise and unsuitable for
ultra-low-resolution data. Given that the Chinese Space Station Telescope (CSST) will acquire large volumes of
ultra-low-resolution spectra, developing effective methods for ultra-low-resolution spectral analysis is crucial. In
this work, we investigated the Fully Connected Residual Network (FCResNet) for simultaneously estimating
atmospheric parameters (T, log g, [Fe/H]) and elemental abundances ([C/Fe], [N/Fe], [Mg/Fe]). We trained
and evaluated FCResNet using CSST-like spectra (R~ 200) generated by degrading LAMOST spectra
(R ~ 1800), with reference labels from APOGEE. FCResNet significantly outperforms traditional machine
learning methods (KNN, XGBoost, SVR) and CNN in prediction precision. For spectra with the g-band signal-to-
noise ratio greater than 20, FCResNet achieves precisions of 78 K, 0.15 dex, 0.08 dex, 0.05 dex, 0.10 dex, and
0.05 dex for To, logg, [Fe/H], [C/Fe], [N/Fe] and [Mg/Fe], respectively, on the test set. FCResNet processes
one million spectra in only 42 s while maintaining a simple architecture with only 348 KB model size. These
results suggest that FCResNet is a practical and promising tool for processing the large volume of ultra-low-
resolution spectra that will be obtained by CSST in the future.
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1. Introduction

Stellar atmospheric parameters—including effective temperature
(T, surface gravity (log g), and metallicity ([Fe/H])—together
with element-to-iron abundance ratio ([X/Fe]) such as [C/Fe],
[N/Fe], and [Mg/Fel], are fundamental parameters for characteriz-
ing stars and understanding the structure and chemical evolution of
the Milky Way. Large-scale spectroscopic surveys such as the
Large Sky Area Multi-Object Fiber Spectroscopic Telescope
(LAMOST; Cui et al. 2012) Experiment for Galactic Under-
standing and Exploration (LEGUE; Deng et al. 2012), the Sloan
Extension for Galactic Understanding and Exploration (SEGUE;
Yanny et al. 2009), the Apache Point Observatory Galactic
Evolution Experiment (APOGEE; Majewski et al. 2017), the
Galactic Archaeology with HERMES (GALAH; De Silva et al.
2015), the RAdial Velocity Experiment (RAVE; Steinmetz et al.
2006) and the Dark Energy Spectroscopic Instrument (DESI)
Milky Way Survey (Cooper et al. 2023) have provided vast
quantities of stellar spectra and parameters, which have signifi-
cantly advanced our understanding of the evolution and chemical
formation of the Milky Way.

Among stellar parameters, atmospheric parameters are
relatively easier to estimate than elemental abundances ([X/
H]) using traditional methods. Gray & Johanson (1991) and

Kovtyukh et al. (2003) used line-depth ratios to estimate 7 from
high-resolution spectra, achieving measurement uncertainties as
low as ~10K. Sousa et al. (2012) used a large sample of 451
solar-type stars to develop a calibration based on equivalent
widths, enabling efficient estimation of [Fe/H]. Asteroseismology
is particularly well-suited for estimating log g of stars and has been
used to calibrate log g in both LAMOST and RAVE surveys for
dwarfs and giants (Wang et al. 2016; Valentini et al. 2017). The
accurate measurement of [X/H] typically requires high-resolution
spectroscopy, where absorption lines of specific elements can be
clearly resolved and reliably identified. At medium- and low-
resolution, most absorption lines are weak, blended, or both, which
makes precise abundance determination difficult. However,
spectral fitting across wide wavelength ranges can still enable
reliable estimates of a-element-to—iron abundance ratio ([cr/Fe]).
For example, [«/Fe] has been measured from medium-resolution
spectra with a precision of approximately 0.05 dex (Kirby et al.
2008), and from low-resolution spectra with a precision better than
0.10dex (Lee et al. 2011). Despite these successes, accurate
determination of atmospheric parameters and elemental abun-
dances from low- and ultra-low-resolution spectra remains
challenging for traditional methods such as template matching
and line-depth ratios. Template matching is sensitive to noise and
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heavily depends on the coverage and quality of theoretical grids.
Similarly, line-depth ratio techniques are limited by line blending
and resolution constraints, making [X/H] estimation unreliable.
Recently, with the rise of machine learning and deep learning
techniques, it has become possible to overcome these limitations
by learning complex mappings between spectra and stellar
parameters, enabling the transfer of high-precision labels to low-
and ultra-low-resolution spectra.

Label transfer methods have already been successfully applied
to low-resolution spectra, such as those from LAMOST. For
example, Liu et al. (2015) applied a Support Vector Regression
(SVR) model trained on LAMOST giant spectra with Kepler
seismic log g, achieving an uncertainty of about 0.10dex for
spectra with signal-to-noise ratio (S/N) in the g band (S/N_g)
higher than 20. Zhang et al. (2019) and Zhang et al. (2020)
transferred stellar parameters from APOGEE to LAMOST spectra
using a neural network (StarNet; Fabbro et al. 2018) and an SVR-
based model (SLAM), achieving uncertainties of 45/49 K for T,
0.10/0.10 dex for log g, 0.05/0.04 dex for [M/H], 0.03/0.03 dex
for [a/M], 0.06/0.06dex for [C/M], and 0.07/0.11dex for
[N/M] for spectra with S/N_g larger than 10/100, respectively.
Xiang et al. (2019) developed the DD-Payne, a data-driven model
that inherits essential ingredients from The Payne (Ting et al.
2019) and The Cannon (Ness et al. 2015), incorporating constraints
from theoretical models and trained on LAMOST spectra with
stellar parameters from GALAH and APOGEE, to derive T,
log g, and 16 elemental abundances in [X/Fe], achieving typical
precisions of better than 30K and 0.07 dex for T4 and logg,
0.03-0.10 dex for the majority of elements, and 0.20-0.30 dex for
[Cu/Fe] and [Ba/Fe] for spectra with S/N_g>350. Li & Lin
(2023) proposed StarGRUNet, a deep learning model trained on
LAMOST spectra with stellar labels from APOGEE, to estimate
Ter, logg, and 13 elemental abundances in [X/H], achieving
typical precisions of 94K for Ty, 0.16dex for logg,
0.07-0.16 dex for most abundances, 0.18dex for [N/H] and
0.22 dex for [Cr/H] for spectra with S/N_g > 5.

Although previous studies have demonstrated the feasibility
of label transfer methods on low-resolution spectra, related
work on ultra-low-resolution spectra, such as those from the
Chinese Space Station Telescope (CSST; R ~ 200), remains
scarce. For example, Wu et al. (2024) developed a two-
dimensional Convolutional Neural Network (CNN) trained on
LAMOST spectra degraded to R~ 200 to estimate atmo-
spheric parameters and [C/Fe], achieving mean absolute errors
of 99K for T, 0.22 dex for log g, 0.14 dex for [Fe/H], and
0.26 dex for [C/Fe] for spectra with S/N_g > 10. To support
future stellar parameter estimation from ultra-low-resolution
CSST spectra, this work focused on LAMOST spectra
degraded to R ~ 200. Given that CSST is expected to collect
an enormous amount of spectroscopic data, it is crucial to
develop a precise and computationally efficient method
capable of estimating atmospheric parameters and elemental
abundances. In this work, we proposed a neural network
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architecture, the Fully Connected Residual Network (FCRes-
Net), which demonstrates superior performance in estimating
T.s, log g, [Fe/H], [C/Fel, [N/Fe], and [Mg/Fe].

The structure of this paper is organized as follows. Section 2
describes the data set and preprocessing procedures. Section 3
introduces the FCResNet architecture. In Section 4, we
present and analyze the experimental results in detail. Finally,
Section 5 summarizes the main results of this study.

2. Data

In this section, we describe the data sources and the
preprocessing procedures. To simulate the observational
characteristics of the future CSST and obtain data with similar
properties, we selected low-resolution spectra from LAMOST
DRS8, degraded to a resolution of R ~ 200. The corresponding
stellar parameters—T.g, log g, [Fe/H], [C/Fe], [N/Fe], and
[Mg/Fe]—were adopted from APOGEE DR16.

LAMOST is located at the Xinglong Observatory, northeast
of Beijing, China. It is a national scientific research facility
operated by the National Astronomical Observatories of the
Chinese Academy of Sciences (Su & Cui 2004). LAMOST is a
special reflecting Schmidt telescope that combines a wide field
of view (5°) with a large effective aperture (ranging from 3.6
to 4.9 m, depending on the pointing altitude and hour angle).
This configuration allows LAMOST to obtain 4000 spectra
simultaneously in a single exposure, with a spectral resolution
of R~ 1800 (Cui et al. 2012). The primary scientific goal of
LAMOST is to collect millions of stellar spectra to enable
studies of stellar astrophysics, the structure of the Milky Way,
as well as extragalactic astronomy and cosmology (Zhao et al.
2012). The spectroscopic survey officially began in 2012
September and has since obtained over 10 million spectra (Luo
et al. 2015). LAMOST DRS includes spectra from the pilot
survey conducted between 2011 and 2012, as well as from the
regular survey conducted from 2012 to 2020, comprising a
total of 10,388,423 stellar spectra.

APOGEE is one of the major programs within SDSS III
(Majewski et al. 2017) and IV (Blanton et al. 2017), and
represents a large-scale stellar spectroscopic survey conducted
in the near-infrared (H-band) portion of the spectrum. The
survey targets over 700,000 stars, primarily Galactic red giants
spanning all stellar populations. It also includes red giants
from the Magellanic Clouds and other nearby dwarf galaxies,
as well as a significant number of FGKM-type dwarf stars
(Zasowski et al. 2013; Smith et al. 2021). In this work, the
stellar atmospheric parameters and elemental abundances were
adopted from APOGEE DR16, which provides high-resolution
(R=22,500), near-infrared spectra covering the wavelength
range 15140-16940 A for approximately 430,000 stars across
both the northern and southern skies (Jonsson et al. 2020).
These spectra are used to derive precise stellar atmospheric
parameters, radial velocities, and chemical abundances of up to
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Figure 1. Examples of abnormal LAMOST spectra. The top panel shows a spectrum with missing flux, while the bottom panel shows a spectrum with abnormal flux.

26 species using the APOGEE Stellar Parameter and Chemical
Abundance Pipeline (ASPCAP; Garcia Pérez et al. 2016). In
DRI16, several spectroscopically derived parameters have been
calibrated, improving their accuracy. A detailed description of
each parameter and its calibration process is provided in
Jonsson et al. (2020).

We first obtained 5,211,501 low-resolution stellar spectra from
LAMOST DRS8 with S/N_g greater than 20. These were then
cross-matched with APOGEE DR16, resulting in 104,867 spectra
with corresponding stellar parameters. We adopted stellar
parameters from APOGEE rather than LAMOST due to
APOGEE’s higher spectral resolution, which provides more
accurate atmospheric parameters and its capability to determine
elemental abundances. Subsequently, we applied the following
selection criteria to filter reliable parameters and spectra, and
performed spectral preprocessing to obtain CSST-like spectra:

1. For stellar parameters, Jonsson et al. (2020) noted that
stars with STARFLAG= (0, ASPCAPFLAG= 0, or
parameters set to —9999.99 may be affected by spectral
quality issues in APOGEE DR16, potentially resulting in
unreliable parameter estimates. Therefore, such entries
were excluded from our sample. To eliminate scale
differences among different stellar parameters, all data
sets (including training, validation, and test sets) undergo
Z-score normalization based on the mean and standard
deviation computed from the training set, as defined in
Equation (1), with the normalized parameters serving as
target outputs for FCResNet training. After training, the
model’s predictions require denormalization to convert
back to obtain the true stellar parameter values.

2. For spectra, we first extracted the wavelength range
4000-8122 A. Following Luo et al. (2012), spectra with

fibermask=0 or ormask=0 were removed to elim-
inate abnormalities (see Figure 1). To match the CSST
resolution, we degraded the spectra to R =200 using the
method in Lustig-Yaeger et al. (2019), and used the
resulting 143-dimensional spectra as CSST-like spectra
(see Figure 2). As input to the FCResNet, each spectrum
was individually normalized using Equation (1).
%= xi_M(xi)’ )
o (x;)
where x; denotes the original data, X; is the normalized data,
and p(x;) and o(x;) represent the mean and standard deviation
of x;, respectively.

After the above steps, we obtained 22,632 stars containing
all six stellar parameters: T, log g, [Fe/H], [C/Fe], [N/Fel],
and [Mg/Fe]. We randomly divided the data set into a training
set (60%), a validation set (20%), and a test set (20%). The
distributions of all these parameters are shown in Figure 3. It is
evident that the data set includes a substantial number of both
dwarf and giant stars, allowing the test set to effectively
evaluate the generalization capability of our model.

3. Method

In the field of deep learning, Fully connected Neural Networks
(FNN), as universal approximators (Hornik et al. 1989), possess
the capability to approximate arbitrary functions (Liang &
Srikant 2016) and demonstrate exceptional performance in
classification and regression tasks (Arulampalam & Bouzerdoum
2003). Recent studies (Simonyan & Zisserman 2014; Szegedy
et al. 2014; Srivastava et al. 2015a, 2015b) have revealed
the decisive influence of network depth on model accuracy,
with significant performance improvements achievable through
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Figure 2. Comparison between the original LAMOST spectrum (black), covering the range 3690-9100 A, and the CSST-like spectrum (blue), covering

4000-8122 A. The CSST-like spectrum was obtained by degrading the original resolution from R =

Yaeger et al. (2019).

1800 to R = 200, following the method described in Lustig-
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Figure 3. Distributions of stellar parameters in our data set. From left to right and top to bottom, the panels correspond to T, log g, [Fe/H], [C/Fe], [N/Fe] and
[Mg/Fe], respectively. These parameters were derived from APOGEE DR16 and correspond to 22,632 stars cross-matched with LAMOST DR8. All parameters
were selected based on rigorous quality criteria to ensure the reliability of the sample for model training and evaluation.

increasing the number of network layers. However, as network
depth increases, issues such as model degradation (He &
Sun 2014; Srivastava et al. 2015a), and vanishing/exploding
gradients (Bengio et al. 1994) become increasingly prominent. To
address these challenges, residual block techniques have emerged
as an effective solution. In this work, we combined FNN with
residual blocks to construct the FCResNet, aiming to resolve the
aforementioned problems encountered by deep FNN in regression
tasks. We first outline the fundamental principles of FNN in
Section 3.1, then elaborate on the mechanisms of residual blocks
in Section 3.2, and finally describe the construction of FCResNet
in Section 3.3.

3.1. Fully Connected Neural Network

In this section, we briefly outline the calculation process of
FNN. For more details, we refer the reader to Svozil et al. (1997).

Suppose that (x;, y;), i = 1, 2, ..., N, represents the data set,
where x; = (Xj1, Xj2,....%in) T is the stellar spectrum corresp-
onding to n dimensions, y; is the stellar parameter associated
with x;, and ¥, denotes the value estimated by the FNN. Let L
denote the number of layers in the FNN (with the first layer
being the input layer and the Lth layer being the output layer).
We use w! i to denote the weight of the connection from the kth
neuron (or node) in the (I — 1)th layer to the jth neuron in the
Ith layer, and use bf to denote the bias of the jth neuron in the
Ith layer. The FNN fits the model through the following
process:

1. Input x;. Set the activation of the input layer as a' = x;.
2. Forward propagation. For each layer [ = 2, ..., L,
initialize the weights and biases. The activation a of the
Jjth neuron in the Ith layer is related to the actlvatlons in
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the (I — 1)th layer by:

1
I _ § : I 1—1 Il _ I

k=1
(I=2,...L — 1), )

where the summation is over all neurons k in the (I — 1)
th layer. For the output layer (/ = L), corresponding to
the regression prediction, the output is:

np—q

o _ L L L-1_ L

Vi =ai =) wiar ' + by, (3)
k=1

The mean square error (MSE) is used as the loss function
to measure the difference between the estimated value ¥;
and the true value y;:

N
loss = Y (5 — y)> 4)
i=1

3. Back propagation. The goal of back propagation is to
update the weights and biases using the gradient descent
method, thereby minimizing the loss defined in
Equation (4). For each layer [ =L — 1, L — 2, ..., 2,
substituting Equations (2) and (3) into Equation (4), the

updates for w}k and b} are:

i 1 Oloss | I—1¢l
Wik < Wi — 770Wj4k = Wjr — Nay 5j,
bl bl — 2o — pl sl ©
3T T M T T 0
. . L _ Oloss
where 7 is the learning rate, 67 = 5 =% T and

Nyt
1 I+1¢l+1 l
‘512(2 wy Oy )U’(Zf)-
k=1

Repeating steps 2 and 3, the weights w}k and biases b} are
iteratively updated until the loss defined in Equation (4)
approaches zero. Once the network is trained, Equation (3) can
be used for making predictions.

The performance of the FNN largely depends on the depth
of its hidden layers: deeper architectures generally offer
greater representational capacity. However, increasing the
number of hidden layers introduces several challenges that
must be addressed, such as:

1. Deep architectures may lead to the problems of vanishing
and exploding gradients during training (Hochreiter 1998;
Pascanu et al. 2012). Specifically, in Equation (5), when /
is small (i.e., layers close to the input and far from the
output), the backpropagated error term 6’j may approach
zero or infinity due to repeated gradient multiplication.
As a result, the updates to w}k and b} either vanish or
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Figure 4. Left: The structure of the residual block used in this work. Right:
The architecture of the proposed Fully Connected Residual Network
(FCResNet) model.

diverge, hindering the learning of lower layers and
degrading the model’s predictive capability.

2. He et al. (2016a) observed that increasing the depth of
hidden layers may lead to model degradation: as the
network becomes deeper, the model’s accuracy saturates
and then deteriorates rapidly. This phenomenon is
characterized by increasing errors on both the training
and test sets, and notably, it is not caused by overfitting,
but rather by optimization difficulties inherent in deep
architectures.

To address the aforementioned issues, He et al. (2016a)
proposed residual blocks, which effectively alleviate the
problems of vanishing/exploding gradients and model
degradation, particularly in deep CNNs for image classifica-
tion tasks.

3.2. Residual Blocks

A residual block is a combination of several hidden layers
that introduces identity mapping to ease the training of deep
networks (as shown in the left panel of Figure 4).
Mathematically, the residual block modifies Equation (2) as
follows:

n_
al = U(Z wiai ' + b + a}2), (6)
k=1

where aj_z represents the identity mapping from the (/ — 2)th
layer to the Ith layer on the jth neuron. Based on Equation (6),

a recursive connection between deep and shallow hidden
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layers can be established:

P R A N B B B VN
aj—U(Zj+aj )—U(Zj+2j + a; )=

=0+ 24z T a D, @)
where m denotes the number of residual blocks, and ajl» —2m=2 g

the identity mapping from the (I — 2m — 2)th layer to the
(I — 2m)th layer on the jth neuron. Equation (7) demonstrates
the establishment of a direct link between the /th (deep) and
(I — 2m — 2)th (shallow) layers.

He et al. (2016b) proved that such skip connections in residual
blocks can effectively mitigate the problems of gradient
vanishing and exploding, enabling the parameters wjl»k and b} in
Equation (5) to converge more reliably toward the minimum of
the loss function defined in Equation (4). In addition, these
connections help address the degradation problem in deep neural
networks, which has been empirically validated. The residual
networks achieved top performance on several benchmarks,
including ImageNet detection, ImageNet localization, COCO
detection, and COCO segmentation (He et al. 2016a).

3.3. FCResNet

We incorporated residual blocks (as shown in the left panel
of Figure 4) into a Fully Connected (FC) architecture to
construct our model, referred to as FCResNet. The architecture
of FCResNet consists of an input layer, two residual blocks,
two FC layers, and an output layer (as shown in the right panel
of Figure 4).

1. Input layer. The input to the network is a normalized
CSST-like spectrum represented by a 143-dimensional
vector.

2. Residual blocks. Each residual block consists of a
sequence of layers: the first FC layer, a ReLU activation,
the second FC layer, and another ReL.U activation. In
addition, an identity shortcut connects the input of the
block directly to the output of the second FC layer
through element-wise addition.

3. FC layers. Each FC layer contains 128 neurons. The first
FC layer projects the input spectrum into a 128-
dimensional feature space, serving as the input to the
residual blocks. After processing through the residual
blocks, the final FC layer aggregates the feature
representations learned by the residual blocks. Following
common neural network design principles, inserting an
FC layer before the output layer helps stabilize the
model’s predictions.

4. Output layer. The output layer contains six neurons
corresponding to the normalized stellar parameters: T,
log g, [Fe/H], [C/Fe], [N/Fe], and [Mg/Fe]. The actual
physical values are obtained by applying the inverse
normalization to these outputs.

Li et al.

FCResNet is implemented using PyTorch. During training,
128 spectra are input in each batch (i.e., batch_size = 128), and
the initial learning rate is set to 0.001. If the validation loss does
not decrease for 20 consecutive epochs, the learning rate is
reduced by a factor of 10, down to a minimum of 10~%, The loss
function is the mean MSE of six normalized stellar parameters,
and the optimization algorithm is Adam (Kingma & Ba 2014).
Training is terminated once the validation loss reaches its
minimum.

4. Performance Evaluation
4.1. Evaluation Criteria

Let n denote the number of spectra in the data set, y; the true
label corresponding to the input x;, and ¥ the predicted value
produced by FCResNet. The following metrics were used to
evaluate the performance of our model:

1. The mean of the residuals (u):

n

=13 ®)

iz
where ¢ =3 —y, represents the residuals of the
parameters. The mean of the residuals reflects the
systematic bias of a model’s predictions. Specifically, it
indicates whether the model tends to consistently over-
estimate or underestimate the true values across the
data set.

2. The standard deviation of the residuals (0):

 Q—
- \/ PODINCED ©)

The standard deviation of the residuals reflects the
dispersion or precision of a model’s predictions. It quantifies
how much the predicted values deviate from the true values on
average, regardless of the direction of the error.

4.2. Results

The trained FCResNet was applied to simultaneously
predict six stellar parameters from CSST-like spectra. The
first two rows of Figure 5 present the comparison between
FCResNet predictions and APOGEE labels on the test set for
the directly predicted parameters, while the last row of
Figure 5 compares the calculated elemental abundances
[X/H] = [X/Fe] + [Fe/H]. As shown, the precisions for
Ter, logg. [Fe/H], [C/Fe], [N/Fe], [Mg/Fe], [C/H], [N/H]
and [Mg/H] reach approximately 78 K, 0.15 dex, 0.08 dex,
0.05 dex, 0.10 dex, 0.05 dex, 0.09 dex, 0.13 dex and 0.08 dex,
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Figure 5. Comparison between FCResNet predictions and APOGEE labels on the test set. From left to right and top to bottom, the panels correspond to T, log g,
[Fe/H], [C/Fe], [N/Fe], [Mg/Fe], [C/H], [N/H] and [Mg/H], respectively. The first six parameters are directly predicted by the model, while the last three are
calculated using [X/H] = [X/Fe] + [Fe/H]. In each panel, the upper subplot shows a density scatter plot of FCResNet predictions vs. APOGEE labels, while the
lower subplot displays the residuals (predicted value minus label) vs. the labels. The x and o represent the systematic bias and dispersion, respectively.

respectively, with systematic biases close to zero. These results
demonstrate that FCResNet achieves excellent performance in
simultaneously predicting multiple stellar parameters from
spectra with a resolution as low as R = 200. The last column of
Table 1 summarizes the performance of FCResNet on both the
validation and test sets. Although the selected model during
training was based on its best performance on the validation

set, the performances on the validation and test sets are nearly
identical. This indicates that the model does not suffer from
overfitting and exhibits strong generalization capability. Such
consistency across data sets demonstrates the robustness of
FCResNet and its ability to generalize well to unseen spectra.
To validate the stability of the model, we investigated how the
prediction precision of FCResNet for the six stellar parameters
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Table 1
Comparison of Model Size, Execution Time for One Million Spectra, and Prediction Precision of Six Stellar Parameters (T, log g, [Fe/H], [C/Fe], [N/Fe] and
[Mg/Fe]) across KNN, XGBoost, SVR, CNN, and FCResNet on the Validation and Test Sets

Method KNN XGBoost SVR CNN FCResNet
Model Size 33 MB 405 MB 54 MB 943 KB 348 KB
Execution Time 30 s 6 minutes 27 minutes 46 s 42 s
Validation Set
A To (K) 5 + 140 3 + 88 3 + 82 0+ 79 -2 +76
A log g (dex) 0.02 £ 0.32 0.01 £ 0.19 0.00 £ 0.17 —0.00 £ 0.15 —0.00 £ 0.15
A [Fe/H] (dex) 0.03 + 0.18 0.00 + 0.09 0.00 £ 0.08 —0.00 £ 0.07 0.00 £ 0.07
A [C/Fe] (dex) —0.00 £ 0.08 —0.00 £ 0.06 0.00 £ 0.06 —0.00 £ 0.05 —0.00 £ 0.05
A [N/Fe] (dex) 0.00 £ 0.12 0.00 £ 0.11 —0.00 £ 0.10 0.00 £ 0.10 0.00 £ 0.10
A [Mg/Fe] (dex) —0.01 £ 0.08 —0.00 £ 0.06 —0.00 £ 0.05 0.00 £ 0.05 —0.00 £ 0.04
Loss 0.3972 0.2189 0.1932 0.1703 0.1608
Test Set
A Tor (K) 6 + 144 1 + 92 1 + 86 -2 + 80 -2+ 78
A log g (dex) 0.03 £ 0.33 0.01 £ 0.20 0.00 £ 0.17 —0.00 £ 0.15 0.00 £ 0.15
A [Fe/H] (dex) 0.03 + 0.18 0.00 £ 0.10 0.00 £ 0.08 —0.00 £ 0.08 —0.00 £ 0.08
A [C/Fe] (dex) —0.00 £ 0.08 0.00 £ 0.06 0.00 £ 0.06 0.00 £+ 0.05 —0.00 £ 0.05
A [N/Fe] (dex) —0.00 £ 0.12 —0.00 £ 0.11 —0.01 £ 0.11 —0.00 £ 0.10 —0.00 £ 0.10
A [Mg/Fe] (dex) —0.01 £ 0.08 0.00 £ 0.06 —0.00 £ 0.05 0.00 + 0.05 —0.00 £+ 0.05
Loss 0.4150 0.2348 0.2104 0.1872 0.1792

varies with S/N_g on the test set, as shown in Figure 6. It can
be seen that the prediction precision remains relatively stable
across different S/N_g levels, indicating that the model
exhibits strong robustness when applied to spectra with
varying quality.

To further validate the reliability and reasonableness of the
model-predicted parameters, we compare the Kiel diagrams of
FCResNet and APOGEE on the test set in Figure 7. The gray
lines represent 7 Gyr isochrones generated using the theor-
etical models from the PAdova and TRieste Stellar Evolution
Code (PARSEC; Bressan et al. 2012), with metallicities of
—0.6, —0.3, 0, and 0.3dex. The results demonstrate that
FCResNet not only successfully reproduces the number
density distribution and metallicity gradient patterns of
APOGEE in the Kiel diagram, but also shows excellent
agreement with the PARSEC isochrones. Additionally,
Figure 8 presents the density distributions of [X/Fe] versus
[Fe/H] for both APOGEE labels and FCResNet predictions on
the test set. The distribution patterns of [X/Fe] versus [Fe/H]
between FCResNet and APOGEE show remarkable similarity,
further confirming the reliability of the model’s elemental
abundance predictions.

As shown in Figure 9, we present the pairwise density
distributions of elemental abundances [Fe/H], [C/H], [N/H],
and [Mg/H] for both APOGEE and FCResNet on the test set,
with Pearson correlation coefficients (r) annotated in the upper
left corner of each subplot. The APOGEE results reveal
strong correlations among [X/H] abundances, with r values
ranging from 0.85 to 0.95. FCResNet exhibits highly similar

distribution patterns to APOGEE, with enhanced correlations
reflected in increased r values ranging from 0.89 to 0.97,
demonstrating that FCResNet not only captures but also
strengthens the intrinsic relationships among elemental
abundances. To investigate whether the multi-parameter
prediction of FCResNet only relies on statistical correlations
between parameter labels, we trained six individual FCResNet
models for single-parameter prediction using the same data set.
The test set results show precisions of 76 K, 0.15 dex,
0.09 dex, 0.06 dex, 0.10 dex, and 0.05 dex for T.g, logg,
[Fe/H], [C/Fe], [N/Fel], and [Mg/Fe], respectively. The
experimental results demonstrate that the precision of multi-
parameter model is very similar to that of single-parameter
models, indicating that the network does not simply make
mutual inferences based on statistical correlations between
stellar parameter labels, but rather learns underlying patterns
from spectral features. For ultra-low-resolution CSST-like
spectra, the model may not directly identify specific absorption
line features when predicting elemental abundances, but neural
networks, as powerful feature extractors, can capture complex
spectral patterns correlated with elemental abundances, even
when the physical interpretation of these features is not always
apparent.

To further investigate whether FCResNet can identify
prominent absorption features (such as the Mgl b triplet)
when predicting [Mg/Fe], we present the SHapley Additive
exPlanations (SHAP) analysis for [Mg/Fe] predictions by
FCResNet on the test set in Figure 10, highlighting the top
three wavelength regions that the model focuses on most. The



Research in Astronomy and Astrophysics, 25:125009 (13pp), 2025 December

Li et al.

240
0
—240

1.0

0.45
0.00
—0.45

0.8

0.24
0.00
—0.24

0.15
0.00
—0.15

Residuals

I
>

I~
=~
Normalized Density

0.3
0.0
—-0.3

0.15
0.00
—0.15

0.2

o

0.0

S/N_g

Figure 6. Density scatter plots of residuals vs. g-band signal-to-noise ratio (S/N_g) for FCResNet predictions compared to APOGEE labels on the test set. From top
to bottom, the panels correspond to T, log g, [Fe/H], [C/Fel, [N/Fe] and [Mg/Fe], respectively. The red error bars represent the mean and standard deviation of
the residuals within each S/N_g bin. The bin width is 10, and only bins containing more than 50 data points are shown.

results confirm that the model successfully identifies the Mg I b
triplet near 5184 A, where lower flux values (deeper
absorption) correspond to higher SHAP values, indicating
the tendency of the model to predict higher [Mg/Fe] values.
This behavior is consistent with astrophysical principles.
Additionally, the model recognizes other spectral features that
may exhibit strong statistical correlations with [Mg/Fe].

4.3. Comparison of Different Algorithms

To further evaluate the effectiveness of FCResNet, we
compared it with several representative machine learning
algorithms—K-Nearest Neighbors (KNN), eXtreme Gradient
Boosting (XGBoost), SVR and CNN-—each with distinct
strengths. KNN offers simplicity and interpretability;
XGBoost provides powerful structured-data performance via
ensemble learning; SVR emphasizes robustness and margin-
based regression; and CNN is well-suited for extracting local
features in high-dimensional sequential data.

The above algorithms were implemented using Python
libraries. KNN and SVR were built using the Scikit-
learn library, XGBoost was implemented with the
xgboost library, and CNN was constructed using PyTorch.

For KNN, XGBoost and SVR, we employed Bayesian
optimization to search for the optimal hyperparameters based
on validation loss. To evaluate the models’ ability to predict
multiple parameters simultaneously, the loss function was
defined as the mean MSE of six normalized stellar parameters,
consistent with the setting of FCResNet. The hyperparameter
exploration spaces and the optimal configurations are sum-
marized in Table 2. For the CNN model, the network
architecture is summarized in Table 3, which includes four
convolutional layers, four max-pooling layers, and one FC
layer. All activation functions are ReLU. Other settings,
including batch_size, learning rate, and optimizer, are kept
consistent with those used in FCResNet. The best-performing
model is selected based on the validation loss.

The comparison results of five trained models—KNN,
XGBoost, SVR, CNN, and FCResNet—on both the validation
and test sets are summarized in Table 1. Among them,
FCResNet and CNN significantly outperform traditional
machine learning methods in terms of prediction precision.
Specifically, FCResNet achieves the lowest overall loss
(0.1608 on the validation set and 0.1792 on the test set), and
attains the highest precision in all six steller parameters,
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within each grid cell, while that in the lower panels represents the mean [Fe/H] within each grid cell. The grid widths are 100 K for T, and 0.2 dex for log g,
respectively. The gray lines represent 7 Gyr isochrones generated using the theoretical models from the PAdova and TRieste Stellar Evolution Code (PARSEC;

Bressan et al. 2012), with metallicities of —0.6, —0.3, 0, and 0.3 dex.
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for APOGEE labels (left) and FCResNet predictions (right) on the test set.

10

slightly outperforming CNN in T In contrast, KNN,
XGBoost, and SVR exhibit noticeably higher dispersions,
particularly in T, and logg, with dispersions exceeding
82-140 K and 0.17-0.32 dex, respectively. This degradation in
performance is likely due to the high dimensionality (143) of
the input spectrum, which challenges traditional models that
rely on feature engineering. These methods require manual
selection or transformation of features and often struggle to
extract complex patterns from high-dimensional data, leading
to reduced precision. CNN alleviates the need for manual
feature construction and is particularly effective at handling
high-dimensional data by automatically extracting hierarchical
features. However, when the spectral dimension is relatively
low (143), the advantages of CNN become less pronounced,
and its complex architecture may not yield significant
performance gains. In terms of simplicity, FCResNet is the
most lightweight model, with a size of only 348 KB, compared
to 943 KB for CNN and over 400 MB for XGBoost. It is worth
noting that hyperparameter tuning for XGBoost and SVR was
extremely time-consuming, yet did not yield significant
improvements in precision. In terms of efficiency, we also
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Figure 10. SHapley Additive exPlanations (SHAP) summary plot for [Mg/Fe]
predictions by FCResNet on the test set. Each row represents a specific
wavelength region, with the horizontal position indicating the SHAP value
(impact on model output) and colors representing the feature values (blue for
low flux, red for high flux).

evaluated the execution time required to simultaneously
predict six stellar parameters for one million spectra.
FCResNet and CNN were tested on an NVIDIA RTX 3070
GPU, while KNN, XGBoost and SVR were run with multi-
core parallelism on an Intel Core 17-10700K CPU. KNN is the
fastest (30 s), but at the cost of the lowest precision.
FCResNet, in contrast, achieves the best balance between
precision and speed, completing the task in only 42 s.

Overall, FCResNet demonstrates outstanding performance on
precision, simplicity and efficiency, making it a highly reliable
model for simultaneously estimating multiple stellar parameters
from large-scale ultra-low-resolution CSST spectra.

[X/Fe] + [Fe/H]. The Pearson

Table 2

The Hyperparameter Exploration Spaces and the Corresponding Optimal
Configurations for KNN, XGBoost and SVR, Determined through Bayesian

Optimization
Optimal
Hyperparameter Exploration Space Configuration
KNN
n_neighbors [1, 20] 9

weights {uniform, distance} distance
algorithm {ball_tree, kd_tree, brute} kd_tree
metric {euclidean, manhattan, chebyshev
chebyshev}
XGBoost
n_estimators [1000, 50,000] 20,000
learning_rate 0, 1] 0.01
max_depth [1, 20] 7
min_child_weight [1, 20] 16
gamma [0, 10] 0
reg_alpha [0, 10] 2
reg_lambda [0, 10] 0.5
subsample 0, 1] 0.3
colsample_bytree O, 1] 0.7
SVR
C [1, 100] 10
epsilon [0.01, 0.20] 0.12
gamma [0.01, 0.10] 0.07
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Table 3

The CNN Model Architecture Adopted for Comparison Experiments
Layer Feature Map Kernel Size Stride Padding Shape Activation
Input 1 1 x 143
Convolution 10 1x3 1 1 10 x 143 ReLU
Max Pooling 10 1x2 1 0 10 x 142
Convolution 20 1x3 1 1 20 x 142 ReLU
Max Pooling 20 1x2 2 0 20 x 71
Convolution 40 1x3 1 1 40 x 71 ReLU
Max Pooling 40 1x2 1 0 40 x 70
Convolution 50 1x3 1 1 50 x 70 ReLU
Max Pooling 50 1x2 2 0 50 x 35
Flatten 1 1 x 1750
Fully Connected 1 1 x 128 ReLU
Output 1 1x6

5. Summary

In this work, we explored a neural network-based model,
FCResNet, for simultaneously estimating multiple stellar para-
meters (T, log g, [Fe/H], [C/Fe], [N/Fe], and [Mg/Fe]) from
CSST-like spectra with a resolution of R = 200. The main results
are as follows:

1. Data set construction and model architecture: We
constructed a high-quality data set by cross-matching
22,632 low-resolution LAMOST spectra (degraded to
R ~ 200 to simulate CSST observations) with corresp-
onding stellar parameters from the high-resolution
APOGEE survey. The data set was randomly divided
into training (60%), validation (20%), and test (20%)
sets. FCResNet combines fully connected neural net-
works with residual blocks to address gradient vanish- 3.
ing/exploding problems and model degradation issues
encountered in deep architectures. The model consists of
an input layer, two residual blocks, two fully connected
layers, and an output layer.

2. Superior performance and efficiency: We implemented
and compared FCResNet against baseline models
including KNN, XGBoost, SVR, and CNN on the test
set for spectra with S/N_g > 20. FCResNet achieves the
highest prediction precision, with precisions of 78 K,
0.15 dex, 0.08 dex, 0.05 dex, 0.10 dex, and 0.05 dex
for T, logg, [Fe/H], [C/Fe], [N/Fe], and [Mg/Fe],
respectively. FCResNet demonstrates  significant

56.8% better than KNN. In computational efficiency,
FCResNet requires only 42 s to process one million spectra,
representing speed improvements of 1.1 times faster than
CNN, 38.6 times faster than SVR, and 8.6 times faster than
XGBoost, while being slightly slower than KNN but with
dramatically higher precision. Moreover, FCResNet is the
most lightweight and easy-to-train model with only 348 KB
size, compared to 943 KB for CNN, 54 MB for SVR, 405
MB for XGBoost and 33 MB for KNN. While traditional
machine learning algorithms require time-consuming
hyperparameter tuning with limited precision gains, and
CNN achieves similar precision but relies on complex
architecture and extensive tuning, FCResNet attains a
strong balance between simplicity, speed, and precision,
making it highly suitable for large-scale deployment in
future CSST operations.

Physical interpretability and validation: Kiel diagram
comparisons and abundance pattern analyses show excel-
lent agreement between FCResNet predictions and APO-
GEE labels, as well as consistency with PARSEC
theoretical isochrones. SHAP analysis confirms that
FCResNet successfully identifies physically meaningful
spectral features, such as the Mgl b triplet near 5184 A for
[Mg/Fe] predictions, demonstrating that the model learns
underlying astrophysical patterns rather than merely
exploiting statistical correlations between parameters.
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