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Abstract

Accurate modeling of the point spread function (PSF) is essential for scientific measurements derived from
observations. This study aims to present the issues related to PSF modeling for the Chinese Space Station Survey
Telescope (CSST) and then propose a practical approach for PSF reconstruction specific to CSST. We utilize
PSFEx and ePSF to reconstruct the PSFs from simulated images of CSST’s PSFs and quantify the impact of
image size and setups of the programs on PSF reconstruction by comparing the outputs with the ground truth. We
also assessed the effect of the selection of stars on PSF reconstruction, such as unresolved binaries with varying
binary fractions and separations in the same manner. Our analysis indicated that both PSFEx and ePSF programs
tend to overestimate the radius and introduce biases in the ellipticity measurements of the PSFs, due to the
undersampling of the CSST PSF. These biases remain consistent across different program setups and image sizes
but can be corrected empirically. In addition, unresolved binaries have a significant influence on PSF modeling.
However, our deep learning-based method can effectively identify suitable stars for PSF modeling to avoid this
problem, achieving a classification accuracy of 89.1% and an AUC of 0.937. By integrating the source selection
with empirical correction modules, the measured parameters of PSFs match the ground truth, as validated by
Kolmogorov-Smirnov tests. This combined approach is expected to enhance the measurement of PSFs, leading to
more accurate scientific results from CSST data.

Key words: gravitational lensing: weak — (stars:) binaries (including multiple): close — methods: analytical

1. Introduction measurements. Accurate PSF models help disentangle over-
lapping sources, allowing for more precise photometric
measurements (Stetson 1987; Hildebrandt et al. 2012). PSF

reconstruction plays a critical role in deconvolution techni-

The point spread function (PSF) is the impulse response of
the imaging system to a point source, and it describes how the
system blurs the incoming light (Braat et al. 2008; Born &

Wolf 2013). Due to factors such as the diffraction, atmospheric
disturbances (for ground-based telescopes), aberrations in the
telescope’s optical system, and imperfections in the instrument
detectors, the image of a point source does not appear as a
single bright point. Instead, the light spreads out, forming a
characteristic blurred pattern, which is referred to as the PSF
(Beltramo-Martin et al. 2020). The observed image of any
astronomical object is a convolution of its true shape with the
PSF of the instrument. Essentially, the PSF reveals how the
optical instrument distorts the light from astronomical objects
(Schmitz 2019). Understanding the PSF is therefore crucial for
accurately interpreting the shapes and structures of astronom-
ical objects.

The PSF directly influences the distribution of light across
the detector, thereby affecting the accuracy of photometric

ques, which are particularly useful for resolving fine details in
galaxy morphology, star clusters, or crowded stellar fields,
thereby increasing the effective resolution of astronomical
images (Hanisch et al. 1997; Bertero & Boccacci 2005). In
addition to its impact on photometry and image resolution,
PSF modeling is essential for astrometric measurements, such
as parallax determinations and proper motion studies of stars
(Mighell 2005; Lindegren et al. 2018). By affecting the
centroiding of stars and galaxies, the PSF significantly
determines the precision of positional measurements. Through
accurate PSF reconstruction, potential biases introduced by
instrumental effects are minimized, ensuring that the measured
positions of astronomical objects remain accurate and reliable
(Libralato et al. 2024). Among its various applications, PSF
modeling is particularly critical in the context of weak


https://orcid.org/0000-0003-2477-6092
https://orcid.org/0000-0001-5912-7522
https://orcid.org/0000-0003-3243-464X
mailto:wuyou@nao.cas.cn
mailto:nan.li@nao.cas.cn
https://doi.org/10.1088/1674-4527/ae088a
https://cstr.cn/32081.14.RAA.ae088a
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ae088a&domain=pdf&date_stamp=2025-10-15

Research in Astronomy and Astrophysics, 25:125003 (18pp), 2025 December

gravitational lensing. Weak lensing is a key observational tool
in cosmology for probing the distribution of dark matter and
constraining cosmological parameters (Mandelbaum 2018).
Given the small lensing signals involved, even minor errors in
PSF estimation can significantly affect the results. Accurate
PSF modeling is crucial to distinguish the small distortions
caused by gravitational lensing from those introduced by the
instrument (Rhodes et al. 2000; Erben et al. 2001).

PSF modeling methods can be broadly categorized into
parametric and non-parametric approaches (Liaudat et al.
2023). Parametric models use known instrument information
for PSF modeling, typically involving forward modeling to
refine the PSF, with star observations used for calibration.
Such models, including the simple Gaussian and Moffat
profiles, offer computational efficiency but often fall short in
accurately capturing the complex variations in PSFs seen in
real astronomical data. An example of a widely used
parametric model is Tiny Tim (Krist 1993, 1995; Krist
et al. 2011), which was designed for the Hubble Space
Telescope (HST). Tiny Tim models the PSF by leveraging
detailed knowledge of the telescope’s optics and simulates the
PSF across different wavelengths and detector positions. In
contrast, Anderson & King (2000) developed the effective PSF
(ePSF) method, a non-parametric technique that iteratively
models the PSF directly from observed stars. The ePSF
describes how a star’s light is distributed across each pixel,
offering a more data-driven and accurate representation of the
PSF (Anderson 2016). Hoffmann & Anderson (2018)
conducted a comparative study of PSF modeling techniques
and found that the effective PSF method consistently outper-
forms Tiny Tim, revealing the limitations of physically based
parametric approaches. Non-parametric approaches primarily
rely on data-driven methods to model the PSF, rather than
predefined functional forms. These methods directly measure
the PSF from observed stars in the field and estimate it at other
positions, making them more flexible and adaptable to real
data. This category includes interpolation-based models like
Kaiser—Squires—Broadhurst method (Kaiser et al. 1995), as
well as techniques based on Principal Component Analysis
(Lupton et al. 2001; Jee et al. 2007; Jee & Tyson 2011),
Resolved Component Analysis (Ngole et al. 2016), Multi-CCD
PSF models (Liaudat et al. 2021), PSFs in the Full Field (Jarvis
et al. 2021), and PSF Extractor (PSFEx) (Bertin 2011). Of
these approaches, PSFEx stands out as the most typical and
widely used tool, particularly in weak lensing surveys such as
DES (Zuntz et al. 2018), HSC (Mandelbaum et al. 2018), and
CFIS (Guinot et al. 2022). PSFEx models the PSF by
extracting information from bright stars, making it highly
accurate even in complex environments and capable of
modeling spatially varying PSFs across wide fields of view.
It has become a standard tool for large astronomical surveys
due to its efficiency and adaptability.
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The upcoming Chinese Space Station Survey Telescope
(CSST; Zhan 2011; Cao et al. 2018) is a 2 m aperture space
telescope designed to conduct photometric and slitless
spectroscopic surveys across 17,500 square degrees of the
sky. It will cover a wavelength range from 0.255 pm to
1.0 pm, including at least six bands (NUV, u, g, r, i, z) utilizing
18 filters, with each filter covering a single detector. CSST has
a large field of view of 1 square degree, with a pixel size of
approximately 0.074, and it boasts a spatial resolution of
~0715. Over its 10 yr mission, CSST is expected to collect
photometric data for billions of stars and galaxies, as well as
spectroscopic data for hundreds of millions of objects. For
large-scale surveys like CSST, the accuracy of PSF modeling
becomes a critical factor. It ensures precise galaxy shape
measurements, which are essential for studying the distribution
of dark matter and the large-scale structure of the Universe.
Inaccurate PSF modeling can result in systematic errors in
galaxy shape measurements, leading to biased estimates of the
weak lensing shear and, consequently, inaccurate cosmological
parameter determinations (Hirata & Seljak 2003).

Since the precision of data-driven PSF modeling heavily
depends on the quality of the input data, selecting clean,
isolated single stars is essential for achieving accurate results.
However, distinguishing unresolved binaries® from single stars
remains a significant challenge. This issue is fundamentally
linked to the spatial resolution of telescopes, which is
determined by diffraction limits that restrict the ability to
resolve two closely spaced objects. For example, the CSST has
a photometric instrument with a pixel size of approximately
0.074 and a spatial resolution of about 0" 15. As a result, stars
separated by less than two physical pixels cannot be
distinguished. The presence of unresolved binaries contam-
inates the sample used for PSF modeling, ultimately degrading
the accuracy of the model. Furthermore, systematic errors may
arise during the modeling process, compounding the impact on
the precision of the PSF.

This study aims to optimize PSF modeling for the upcoming
CSST mission, enhancing its capacity to achieve the precision
required in large-scale surveys. We focus on eliminating the
contamination caused by unresolved binaries in PSF modeling
and addressing systematic errors. The analysis is conducted
using simulated data from the 18 CCD detectors of CSST,
providing valuable insights and preparations for future
applications with real CSST observations.

The structure of this paper is as follows: In Section 2, we
describe the generation of simulated CSST images and the
methodologies used for PSF modeling and measurement. In
Section 3, we analyze the accuracy of PSF modeling using

® Unresolved binaries occur when two stars in a binary system are closely
aligned along the same line of sight, with their angular separation smaller than
the telescope’s spatial resolution limit. In this case, their light blends into a
single point, causing them to overlap in the image and appear indistinguishable
from a single star.
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Figure 1. Imaging pipeline overview: An ideal image is first generated by convolving the flux of a given star from the catalog with an interpolated PSF from the
CSST optical simulation data sets, which include various optical aberrations. Detector effects such as Poisson noise from photon counting, sky-background levels,
CCD dark current, Gaussian read noise, as well as bias and gain factor corrections are subsequently applied, producing the final simulated CCD image.

simulated CSST images, conducting a detailed investigation
into the effects of image size, sampling rate, and the
contamination of modeling samples caused by unresolved
binaries. Section 4 explores deep learning methods for source
selection and applies empirical correction techniques to
mitigate systematic errors. By combining both source selection
and empirical correction, we evaluate the resulting improve-
ments in PSF modeling precision. Finally, in Section 5, we
present a summary of the results and discuss future directions.

2. Data Sets and Methodology
2.1. Mock PSF Images of CSST

To realistically simulate the CSST images, a high-fidelity
data set of CSST PSFs is used to model the optical system’s
impact on image quality. These PSFs are produced using an
optical emulator with six modules to simulate the optical
aberration, including mirror surface roughness, fabrication
errors, CCD assembly errors, gravitational distortions, and
thermal distortions. For each star in the catalog, we calculate
its flux within the CSST filter system and generate its image by
convolving the star with a PSF interpolated from the data set at
a given position. Various types of noise are incorporated in our
image simulator, including shot noise, sky background and
detector effects. With the CSST throughputs we use GalSim
(Rowe et al. 2015) to generate photons from a given object and
add Poisson noise from both the sky background and the dark
current of a CCD detector. The levels of sky background are
(0.004, 0.021, 0.164, 0.207, 0.212, 0.123, 0.037) e~ /pixel/s
for the bands of (NUV, u, g, r, i, z, ¥), respectively, and the
dark current is 0.02 e~ /pixel/s. Thus, for example, in i-band
this results in an average of approximately 35 e /pixel in a
150 s exposure. Read noise is modeled as a Gaussian
distribution with o = 5.0 e /pixel. Bias and gain factor are
then applied to simulate the production of mock images on the
detector. These considerations ensure that our simulated

images closely resemble those obtained under real observa-
tional conditions. The resulting images have customizable
sizes, with each pixel having a size of 0'074, corresponding to
the pixel size of the photometric instrument in CSST. An
overview of our imaging pipeline is shown in Figure 1.

2.2. PSF Modeling and Measurement

For the purpose of modeling the PSF, we utilize PSFEx to
extract precise PSF models. PSFEx is a powerful tool designed
to extract precise PSF models from images processed by
SExtractor (Bertin & Arnouts 1996), facilitating model-fitting
photometry and morphological analyses. Key features of PSFEx
include modeling both non-parametric and parametric PSF
models, reconstructing PSF models from undersampled images
using super-resolution techniques, and modeling PSF variations
as polynomial functions of position. The modeling process
involves starting with input catalogs, pre-selecting vignettes,
using built-in or user-supplied image bases, deriving PSF models,
and computing homogenization kernels. PSF models can be
controlled at different sampling rates and are represented as
images with adjustable resolution, allowing for flexibility and
interoperability with other software tools.

Accurate measurement of the PSF is essential for under-
standing and correcting distortions in astronomical images. We
employed GalSim library to measure the PSF. The process
begins by converting the PSF data into a GalSim image.
Subsequently, the adaptive moments of the GalSim image are
determined using the FindAdaptiveMom module. This method
estimates the best-fit elliptical Gaussian to the object,
computed iteratively by initially guessing a circular Gaussian
as a weight function. Weighted moments are computed and
then recomputed using the results of the previous step as the
weight function. The iterative process continues until the
measured moments converge with those used for the weight
function, allowing for robust measurement of the PSF
parameters even in the presence of noise or slight distortions
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(Bernstein & Jarvis 2002; Hirata & Seljak 2003). The adaptive
moments of an image I(x) are defined by the following
equations:

[ @ = xoPw@)I () dx
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In the above expressions, M;; and M;; represent the second
moments along the i and j axes, respectively, while M
captures the cross-correlation between the i and j axes. These
moments characterize the shape and orientation of the PSF in
terms of its ellipticity and size. w(x) denotes the weight
function used in the calculation. The weighted centroid x, can
be interpreted as a 2D vector (xo ;X0 ), Where the components

are given by:
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Several key PSF parameters are derived from the adaptive

moments, including the trace of the second moment matrix, 7.

The trace represents the total intensity distribution of the PSF

and is calculated as the sum of the diagonal elements M;; and
M, given by:

T = M; + M;. (6)

The size of the PSF, denoted as R, is calculated as:
R = 0*\J2, (7

where o, representing the width of the best-fit elliptical
Gaussian, is defined as:

T
g_\g. ®)

Additionally, the ellipticity components el and e2, as well
as the total ellipticity e, are obtained from the observed shape
of the PSF:

M — Mj;
o= — 0 9
1 T 9)
2M;
ey = m—— (10)
T

e = e+ e’ (11)
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The components el and e2 describe the shape distortion of the
PSF, with el measuring elongation along the x/y axes, and e2
quantifying elongation along diagonal directions. These
parameters are particularly important in weak lensing studies,
where even small PSF distortions can introduce significant
biases in the inferred shapes of galaxies. While ellipticity
characterizes the PSF’s shape, the radius parameter R
measures its overall size and spread, affecting the resolution
and the ability to accurately recover features in astronomical
images. By combining R with the ellipticity components el
and e2, the PSF is comprehensively characterized in terms of
both size and shape (Bernstein & Jarvis 2002; Mandelbaum
et al. 2005). Precise measurements of these parameters allow
us to apply effective corrections to observed galaxy shapes,
minimizing biases introduced by the PSF in scientific analyses,
which is essential for obtaining accurate and reliable
astrophysical measurements.

3. Analysis of PSF Reconstruction

This section investigates several key factors that influence
the accuracy of PSF reconstruction, including the input image
size, the sampling rate used to model the PSF at sub-pixel
resolution, and the contamination from unresolved binary stars
in the PSF modeling sample.

3.1. Impact of Image Size on PSF Modeling Accuracy

To evaluate whether different image sizes affect PSF
modeling, we generated simulated images with sizes of 16,
32, 64, and 128 pixels. Each set contained 500 images, with a
pixel size of 07074 and a total flux of 50,000. Then, PSFEx
was employed to perform PSF modeling on each set of
simulated images, using a sampling rate of 2 times the original
pixel size. Following the modeling, we measured key PSF
parameters, including the size R, and the ellipticity compo-
nents el, e2.

The results are summarized in Figure 2, which shows the
distributions and cumulative probabilities of the PSF para-
meters (R, el and e2) for each image size. The density plot of
el shows that the 16pixel image size exhibits a slight
deviation from the others, with small variations between
different image sizes. In contrast, for €2, there is virtually no
variation across different image sizes. The density plot and
cumulative probability plot of R indicate slight variations
across different image sizes, but the overall spread is minimal.
Overall, this analysis indicates that the image size has a
minimal impact on PSF modeling, as the PSF parameters
measured from different image sizes are consistent with each
other, suggesting that variations in image sizes do not
significantly affect the accuracy and reliability of the PSF
modeling process.
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Figure 2. Impact of image sizes on PSF measurements of ellipticity components ey, e, and radius parameters (R) for CCD12 of CSST. The left panels display the
kernel density estimate (KDE) distributions, while the right panels show the cumulative distribution function (CDF) curves for each parameter. Different colors
correspond to simulated images of varying sizes (16, 32, 64, and 128 pixels), reflecting the dimensions of the generated stellar images used in PSF reconstruction.
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3.2. Impact of Sampling Rate on PSF Modeling Accuracy

Another crucial parameter in PSF modeling is the sampling rate,
which determines the resolution at which the PSF is reconstructed
relative to the original pixel scale. This parameter is particularly
important when dealing with undersampled data, where the native
pixel size is too large to adequately resolve the PSF structure. A
higher sampling rate enables the recovery of finer PSF details by
effectively increasing the resolution of the model, which is
essential for accurate astrometric and photometric measurements.
However, higher sampling rates also increase computational
complexity and may introduce noise if not properly constrained.
Conversely, lower sampling rates are less demanding computa-
tionally but may result in a loss of details and potential
inaccuracies. Therefore, selecting an appropriate sampling rate is
crucial for balancing detail resolution, computational efficiency,
and noise control, ensuring robust PSF characterization.

To more precisely evaluate the impact of different sampling
rates on PSF morphology, we conducted tests by performing
PSF modeling using different sampling rates on simulated
CSST images and simulated images with a Gaussian PSF
function, separately, and then measured the PSF parameters R,
el and e2. As a reference, in addition to PSFEx, we also
employed the ePSF method for PSF reconstruction. This
method provides a detailed empirical model of the PSF, which
can be implemented via the EPSFBuilder module in the
Photutils library (v1.2.0 Bradley et al. 2016). The ePSF is
constructed by oversampling beyond the detector pixels, and
its accuracy is iteratively refined. The model is fitted to star
profiles, and adjustments are made based on the residuals,
progressively improving its precision.

3.2.1. PSF Modeling from Mock CSST Images

We employed both PSFEx and ePSF methods to perform
PSF modeling on mock images of CCD12. The sampling rates
varied from 2 to 10. After constructing the PSF models using
these methods, we measured the PSF parameters R, el, and 2
for each model. To evaluate the reconstructed PSF models, we
compared these measurements with the true values obtained by
directly measuring the original PSF matrix of CCD12. These
results are presented in Figure 3. The left panels show the
results for CCD12 of CSST: the top panel corresponds to the
ellipticity component el, the middle panel to e2, and the
bottom panel to the PSF size R. It can be seen that both PSFEx
and ePSF systematically underestimate the el and e2 values,
while the R values are slightly overestimated. Additionally, the
variations across different sampling rates are minimal,
suggesting that the choice of sampling rates has a limited
impact on the accuracy of PSF parameter measurements.
These measurement deviations could be attributed to intrinsic
issues with the PSF models, characteristics of the simulated
data, or systematic errors in the interpolation process used in
both methods.
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3.2.2. PSF Modeling from Gaussian PSF Images

To verify whether the deviations in measured values were
due to the PSF itself, we replaced the CSST’s PSF with a
Gaussian function. Using the same methodology employed for
generating simulated CSST data, we generated 500 simulated
images with Gaussian PSF. These images had a size of
64 x 64 pixels, with each image having a total flux of 50,000,
consistent with the previous tests. The Gaussian function was
designed with an FWHM of 0715 to match the FWHM of the
CSST’s PSF. We then employed both PSFEx and ePSF
methods to perform PSF reconstruction on these simulated
images at different sampling rates, ranging from 2 to 10.
Following the reconstruction, we measured the PSF para-
meters for each model. This approach allowed us to evaluate
the measurement deviations of the reconstructed Gaussian PSF
under different sampling rates and compare the results with
those obtained using the CSST PSF.

The right panels of Figure 3 illustrate the variations in the
PSF parameters across different sampling rates for the
Gaussian PSF model. From the top and middle panels, it is
evident that the el and e2 values directly measured from the
Gaussian model remain close to zero, as expected for a
symmetric Gaussian PSF. Both the PSFEx and e PSF methods
show deviations from the directly measured Gaussian el and
e2 values, with the reconstructed parameters slightly over-
estimated. The deviations for the PSF reconstructed using the
PSFEx method are relatively smaller. Furthermore, the
variations in el and e2 remain consistent across different
sampling rates, indicating that the sampling rate does not have
a major impact on the reconstruction of the ellipticity
components for the Gaussian PSF. The bottom panel shows
that both methods slightly overestimate the R values. For the
ePSF method, the degree of overestimation remains consistent
across different sampling rates, while for the PSFEx method,
the R value decreases when the sampling rate is 8.

Combining the analysis from Section 3.2.1, it is evident that
although the PSFEx and ePSF methods can reconstruct PSFs
from stellar images with reasonable accuracy, there are systematic
biases leading to slight overestimation of the radius parameter and
deviations in the ellipticity components. A potential cause of these
biases is the interpolation process used to reconstruct the PSF,
where small errors accumulate and systematically affect the
estimated PSF shape. Additionally, the original input PSF matrix
in the simulation is undersampled, introducing errors that
propagate through the reconstruction process. Therefore, there
may be inherent limitations in directly reconstructing PSF shapes
from images, and these systematic biases must be carefully
considered when interpreting measurement results.

3.3. Source Selection Effects

For accurate PSF reconstruction, it is essential to use a clean
and isolated sample of single stars. However, the mistaken
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Figure 3. Variations in ellipticity components ey, e,, and radius parameter (R) measured using different PSF reconstruction methods (PSFEx and ePSF) across
sampling rates (2-10). Pink squares represent parameter values measured after PSFEx reconstruction, navy triangles indicate measurements after ePSF
reconstruction. Left panels: Results for CCD12 of CSST, where horizontal dashed lines indicate reference values obtained by interpolating the original CSST PSF
matrix. Right panels: Results for the Gaussian PSF model, where horizontal dashed lines represent the true Gaussian PSF parameters.

inclusion of unresolved binaries in this sample can lead to
significant errors in PSF modeling. In this section, we analyze
the impact of unresolved binaries on PSF reconstruction.

3.3.1. Impact of Binary Fraction

To understand how different proportions of unresolved binaries
in the sample affect the accuracy of PSF reconstruction, we
established data sets with varying binary fractions. Following the
method described in Section 2.1, we generated a series of
simulated binary images with separations uniformly distributed
from 0.1 to 2 pixels, ensuring a total flux of 50,000 for each pair.
These binary star images were then combined with single star
images to produce data sets with varying binary fractions. Next,
we reconstructed the PSF models for these data sets using PSFEx
and measured the resulting PSF parameters for each model.

Figure 4 illustrates the impact of varying binary fractions on the
PSF models for CCD 12 of the CSST. In the top left panel, the
mean eccentricity values exhibit a slight increasing trend as the
binary fraction rises. However, the variations remain within the 1o

uncertainty range of the true values (gray shaded region),
indicating that the effect is statistically insignificant. We further
analyzed the distributions of the ellipticity components el and €2
under varying binary fractions, as shown in the right panel of
Figure 4. At a binary fraction of 0.1, the distributions of el and €2
are compact and concentrated near zero, indicating minimal
distortion in the PSF models. As the binary fraction increases, the
distribution of el gradually expands and shifts, suggesting a
systematic elongation of the PSF along the x/y axes. In contrast, €2
primarily exhibits an increase in dispersion rather than a directional
shift, indicating greater PSF shape variability along diagonal
directions. At the highest binary fractions (e.g., 0.8-0.9), the €2
distribution becomes significantly more elongated and dispersed
compared to el, further emphasizing the anisotropic nature of the
PSF distortions. These differences indicate that increasing binary
fraction introduces asymmetric distortions in the reconstructed
PSF, with a dominant elongation along the diagonal axes rather
than an isotropic expansion, which significantly affects the overall
PSF shape. The left bottom panel of Figure 4 reveals a clear
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Figure 4. Effects of binary fractions on PSF reconstruction. Left panels: Impact of binary fractions on the eccentricity (e) and radius parameter (R) of PSF models.
Each point represents the mean value for a given binary fraction, with error bars indicating the standard deviation. The gray dashed lines represent the mean
parameter values obtained through direct interpolation, while the gray shaded areas indicate the 1o uncertainty range for these values. Right panel: Distribution of
ellipticity components (e;, e,) across different binary fractions from 0.1 to 0.9 for PSF models.

increasing trend in the radius parameter R as the binary fraction
increases, with values progressively exceeding the true mean and
moving beyond the 1o deviation range. These results indicate that
the ellipticity components el and e2 as well as the radius
parameter R of the PSF models are significantly affected by
contamination from unresolved binaries in the modeling sample.
As the binary fraction increases, these parameters show more
significant variations, emphasizing the need to exclude unresolved
binaries from the PSF reconstruction sample to maintain accurate
measurements.

3.3.2. Impact of Binary Separation

For a more comprehensive understanding of the contamina-
tion caused by unresolved binaries, we examined how varying
separations between them affect PSF reconstruction. Using
CCD12 of the CSST as an example, we generated simulated
binary star images with separations ranging from 0.1 to
2.0 pixels, in 0.1 pixel intervals, while keeping the total flux
for each binary system constant at 50,000. These binary
images were then analyzed to assess the changes in the
ellipticity components and size parameters of the PSF models.

Figure 5 presents the results of this analysis. The top and
middle panels illustrate the variations in el and e2 as binary
separation increases. Both ellipticity components remain rela-
tively stable for separations below 0.6 pixels but begin to exhibit
significant deviations beyond this point, exceeding the standard
deviation range of the true value. The bottom panel depicts the
variation in the radius parameter R with increasing binary
separation. For separations greater than 0.3 pixels, R begins to

show a noticeable linear increase, with values progressively
exceeding the true value and falling outside the standard
deviation range. These results demonstrate that unresolved
binaries have a significant impact on the reconstructed PSF
models. Larger binary separations introduce greater distortions,
affecting the ellipticity measurements and systematically biasing
the size measurements, leading to an overestimation of the PSF
size. This highlights the importance of carefully selecting single-
star sources to minimize contamination and ensure the accuracy
and reliability of PSF reconstruction.

4. Toward Accurate PSF Parameter Calibration
4.1. Source Selection

We introduce a neural network-based approach for source
selection, which aims to improve the precision of PSF modeling
by ensuring that only clean, high signal-to-noise ratio (SNR)
single-star sources are used, thus reducing distortions caused by
unresolved binaries. It is important to emphasize that the current
source selection model is designed specifically for identifying
isolated point sources within 2 pixels (~0"15) in CSST images.’

7 Potential contamination from non-stellar sources (e.g., compact galaxies)

can often be excluded during early-stage screening using morphological
separation or spectroscopic identification. Instrumental artifacts such as
cosmic rays, hot pixels, and detector defects are expected to be effectively
flagged and masked by the CSST standard image processing pipeline before
source catalogs are generated. Additionally, blended stellar sources involving
unresolved triple or higher-order systems are intrinsically rare, and the
probability of multiple stars falling within such a small angular separation
(~0..15) is very low. Given these considerations, we assume a clean input
catalog where most such contaminants have been removed or mitigated during
early data reduction.
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Figure 6. The architecture of the neural net work model, featuring an EfficientNet backbone with multiple MBconv6 blocks followed by fully connected layers and a
softmax output layer for classification. Each MBconv6 block consists of three main components: an expansion convolution layer to increase channel dimensions, a
depth-wise separable convolution for spatial feature extraction, and a squeeze-and-excitation module for adaptive feature recalibration.

This is supported by Hu et al. (2011), who demonstrated through
artificial-star tests that a separation of two pixels is the minimum
at which stellar sources can be reliably resolved in photometric
measurements.

4.1.1. Network Architecture

Building on the work of Wu et al. (2023), who developed a
neural network method based on a modified EfficientNet
architecture (Tan 2019) to distinguish between unresolved
binaries and single stars, the model demonstrated high
performance and accuracy on CSST simulated images and
was further validated on real HST observations. Consequently,
we employed the same approach for our analysis of CSST
simulated images.

To create a more robust training and validation data set, we
simulated stellar images using the PSFs from all 18 CCDs of
CSST. For each CCD, we generated 3000 single-star images and
3000 unresolved binary images, with binary separations
uniformly distributed between 0.1 and 2.0 pixels. This resulted
in a total of 108,000 training images. To ensure consistency
between the single-star and binary samples and avoid model bias,
the total flux was uniformly distributed between 5000 and 50,000
for both types of stars. In addition, an independent validation data
set containing 21,600 images was generated in the same way. The
neural network was trained on the full training set and evaluated
on this independent validation set, ensuring that the model’s
performance is tested against PSF wvariations across differ-
ent CCDs.

The neural network architecture used in our work, as illustrated
in Figure 6, is a modified version of EfficientNet, adapted to
enhance its performance in distinguishing single stars from
unresolved binaries. Specifically, the model consists of an initial
convolutional layer for preliminary feature extraction, followed
by multiple MBconv6 blocks. Each MBconv6 block incorporates
an expansion convolution layer to increase feature channels, a
depth-wise separable convolution for efficient spatial feature
extraction, and a squeeze-and-excitation module for adaptive

recalibration of channel-wise features. After these convolutional
layers, global pooling integrates spatial information, followed by
fully connected layers with batch normalization and a softmax
layer for binary classification. Further technical details of the
model architecture and training procedure follow the methodol-
ogy described in Wu et al. (2023).

4.1.2. Model Performance

After 25 epochs of training, the model’s loss function
converged to its minimum, achieving an accuracy of 89.1% on
the independent validation set. The ROC curve shown in
Figure 7 demonstrates that the model remains highly effective
in distinguishing between unresolved binaries and single stars,
with an AUC score of 0.937. The curve stays close to the
upper-left corner, reflecting a high true positive rate and a low
false positive rate across decision thresholds. The confusion
matrix further demonstrates that the model correctly classified
the vast majority of both binary and single-star images. The
recall for binary systems reached 92.0%, reflecting strong
sensitivity to unresolved binaries, while the recall for single
stars was 86.6%, indicating reliable retention of clean single-
star samples. Despite the additional complexity introduced by
training on diverse PSFs across multiple CCDs, the neural
network maintained high overall accuracy and robustness in
source selection, ensuring that clean single-star inputs can be
reliably identified for PSF reconstruction.

4.2. Empirical Correction of Measured PSF Parameters

In Section 3.2.1, we analyzed the potential systematic biases
in the PSF reconstruction of CSST CCD12, which could lead
to measurement errors in the radius parameter and ellipticity
components. To address and correct these measurement
deviations, we first measured the PSF reconstruction para-
meters for all CCDs of the CSST. This process involved
generating simulated images for each CCD, using PSFEx to
reconstruct the PSF models, and then measuring the el, 2, and
R parameters. These measurements were compared with the
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parameters obtained from directly interpolating the PSF
models, and the results are presented in Figure 8. This figure
illustrates the mean differences in the ellipticity components
el, €2, as well as the percent differences in the radius
parameter R, for each CCD of CSST. The CCDs are arranged
in increasing wavelength order from NUV to the y-band. The
mean differences are calculated as the differences between the
mean values derived using PSFEx and those obtained through
direct interpolation for each CCD. The percent difference in R
is the relative difference between the mean values, expressed
as a percentage of the mean.

The top panel of Figure 8 shows the mean differences in el,
where most CCDs exhibit a negative difference between the
measurements obtained through PSFEx reconstruction and
those from direct interpolation of the PSF models. The mean
differences are more pronounced in the shorter wavelengths.
As the wavelength increases, both the mean differences and
error bars show a decreasing trend, particularly in the longer
wavelengths (such as the y-band). The middle panel of
Figure 8 depicts the mean differences in e2. While the overall
range of deviations in ¢2 is similar to that of el, with both
showing a decrease in deviation as the wavelength increases,
the majority of CCDs show a positive difference. From the
bottom panel of Figure 8, it can be seen that the PSFEx
method consistently overestimates the R values compared to
direct interpolation for all CCDs. The maximum deviation
reaches approximately 15%, observed in the shorter wave-
lengths (such as NUV and the u band). As the wavelength

increases, starting from the r-band, the percentage deviation
significantly decreases, showing a clear trend of error
reduction. In longer wavelengths, particularly in the y-band,
the deviation is approximately 8%, which is the smallest
observed across all CCDs.

The analysis reveals that the reconstructed -ellipticity
components and radius parameter in CSST exhibit systematic
biases across all CCDs, with varying degrees of deviation
depending on the wavelength. A consistent trend is observed in
which both systematic biases and uncertainties decrease as the
wavelength increases, indicating that PSF reconstruction is
more accurate at longer wavelengths. This can be attributed to
the broadening of the PSF in longer wavelengths. As the PSF
becomes wider, it is better sampled by the pixels, which allows
for more accurate PSF reconstruction and reduces systematic
errors. In contrast, at shorter wavelengths, the sharper PSF is
more sensitive to undersampling and noise, leading to larger
deviations and higher uncertainties in the reconstructed PSF.
These results suggest that it is necessary to individually correct
the systematic biases for each CCD to improve the PSF
modeling accuracy, particularly for short-wavelength CCDs,
where systematic errors have a greater impact on scientific
measurements.

4.2.1. Correction of PSF Sizes

For each CCD, we generated simulated images at various
SNRs, following the same simulation process as described in
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Section 3.2.1, but controlling the SNR through total flux.
These images were then used to reconstruct the PSF models
using PSFEx at a sampling rate of 2x. Subsequently, the
ellipticity parameters (el and e2) and size (R) values of the
PSF models were measured across the different SNR levels.
We observed that the R values tend to decrease with increasing
SNR. However, even at higher SNRs, the R values did not
converge to those obtained from direct interpolation of the PSF
models. Figure 9 illustrates examples of the variations in R
values with SNR for CCD 17 and CCD 22.

To capture the trend of R values as a function of SNR, we
applied a polynomial fit to the measured R values for each
CCD, with these fits shown as the cyan lines in the top panels

23

9

9
r r i i

D Number of CSST

Figure 8. Mean differences in ellipticity components el and e2, and the percent difference in radius parameter R for each CCD of CSST. Error bars represent the

of Figure 9. Using the polynomial parameters obtained from
the fit, we corrected the measured R values. The steps for this
correction were: For each measured R value, we calculated its
deviation from the fitted polynomial value at the corresponding
SNR. These deviations were then scaled according to the
standard deviations of the target distribution (the directly
interpolated PSF model values). The scaled deviations were
added to the mean of the target distribution to obtain the
corrected R values. This process ensures that the corrected R
values align more closely with the target distribution,
accounting for systematic biases observed in the original
measurements. Additionally, for each measured R value, we
calculated the ratio of its measured standard deviation to the
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panels: The corrected R values are depicted by the navy line, with error bars indicating standard deviations. The gray dashed line represents R values from direct
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target standard deviation. The measured standard deviations
were then scaled to match the target standard deviation. This
adjustment aligns the uncertainty of the corrected R values
with the uncertainty of the target R values obtained through
direct interpolation, thereby ensuring consistency in measure-
ment precision. The corrected measured R values and their
standard deviations are indicated by the navy points and error
bars in the bottom panels of Figure 9. By combining these
steps, we effectively correct both the R values and their
associated standard deviations, improving the accuracy and
reliability of the reconstructed PSF parameters. As shown in
Figure 9, after correction, the measured R values and their
standard deviations for different SNRs align well with the
values obtained from direct interpolation, generally falling
within one standard deviation.

4.2.2. Correction of Ellipticity

For the ellipticity parameters el and e2, we observed no
discernible trend with varying SNRs across all CCDs. Instead,
the distributions of these parameters remained concentrated
around specific peak values. This behavior is illustrated in the
top panels of Figure 10, where the pink histograms represent
the distributions of ¢1 and e2 for CCD 22, as measured from

the PSF models reconstructed using PSFEx. In contrast, the
gray histograms denote the distributions of el and e2 obtained
from direct interpolation of the PSF models. As shown, there
are noticeable deviations between the measured distributions
and those derived from direct interpolation.

To correct the measured ellipticity parameters, we followed
a systematic correction process. For each measured el and e2
value, we calculated its deviation from the mean of the
measured distribution. These deviations were then scaled by
the ratio of the standard deviation of the target distribution to
that of the measured distribution. Finally, the scaled deviations
were added to the mean of the target distribution to obtain the
corrected el and e2 values. As shown in the bottom panels of
Figure 10, the navy histograms represent the distributions of
the corrected el and e2 values. It is evident that the corrected
measurements align more closely with the values obtained
from direct interpolation of the PSF models, significantly
reducing the observed systematic biases. The Kolmogorov—
Smirnov (KS) test further supports this improved alignment.
Specifically, for el, the KS statistic is 0.062 and the p-value is
0.105, while for €2, the KS statistic is 0.054 and the p-value is
0.209. The small KS statistics imply that the maximum
deviation between the cumulative distribution functions of the
corrected measurements and the directly interpolated values is
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Figure 10. Ellipticity parameter distributions (el, ¢2) of PSF models for CCD 22 of CSST. Left panels: The top plot contrasts the el distributions obtained through
PSFEx (pink) with those derived from direct interpolation (gray), while the bottom plot displays the distribution after correction (navy) alongside the interpolated
distribution (gray). Right panels: Similar analysis for €2, comparing the original PSFEx distribution (pink), the direct interpolation (gray), and the corrected
distribution (navy). The corresponding KS statistic and p-value for both el and e2 are provided.

minimal. Moreover, the high p-values support the hypothesis
that the corrected measurements are statistically similar to the
directly interpolated values. These results indicate a strong
alignment between the corrected and target distributions. In
summary, the correction process effectively reduces the
systematic biases inherent in the PSF reconstructed using the
PSFEx method, leading to more accurate and reliable
ellipticity parameter measurements.

4.3. A Combined Approach for Improving PSF Modeling
Accuracy

The systematic biases in the parameter measurements of
PSF reconstruction can be addressed through parameter
correction methods, while the influence of unresolved binaries
on PSF modeling requires careful source selection. For the
latter, we applied deep learning techniques for source
selection, with the process specifically designed to filter out
unresolved binaries that could introduce significant distortions
into the PSF models reconstructed. In this section, we will
combine these two factors to evaluate the effectiveness of
parameter correction and source selection in improving the
accuracy of PSF model parameters, specifically the radius
parameter and the ellipticity components.

To conduct this analysis, we used CCD12 of CSST as a
representative example and generated a data set with an 80%
binary fraction. We then analyzed the impact of different
combinations of source selection and parameter correction on
the PSF parameters. As shown in Figure 11, the distributions
of the measured R values are presented for four different
scenarios. The gray histograms represent the R values obtained

directly from interpolation of the original PSF matrix, serving
as the true values for comparison. With no source selection and
no parameter correction (top left), the distribution of R values
shows the greatest deviation from the true values, indicating
significant inaccuracies in the PSF reconstruction. When
source selection is applied without parameter correction (top
right), the distribution moves closer to the true values,
suggesting that filtering out unresolved binaries helps to
reduce some of the errors, but discrepancies still remain.
Similarly, when parameter correction is applied without source
selection (bottom left), the distribution also shifts closer to the
true values, but a noticeable gap remains. The combination of
source selection and parameter correction (bottom right)
provides the most accurate R values, closely aligning with
the reference values. The KS statistic and p-value further
support this observation, showing minimal deviation between
the corrected measurements and the reference values. Speci-
fically, for the case with both source selection and parameter
correction, the KS statistic is 0.060 and the p-value is 0.468,
indicating strong alignment between the corrected and
reference distributions.

Figures 12 and 13 present the distributions of the measured
el and e2 values of PSF models for CCD 12 of CSST under
various combinations of source selection and parameter
correction scenarios, illustrating their impact on the ellipticity
measurements compared to the true values (gray histograms).
In both figures, the el and e2 distributions with no source
selection and no parameter correction (top-left panels) exhibit
the most significant deviations from the true values, similar to
the measured R values. Applying only source selection (top-
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right panels) brings the distributions closer to the true values,
indicating that filtering out unresolved binaries significantly
improves the accuracy of el and e2 measurements. The most
accurate results for both el and e2 are achieved when source
selection is combined with parameter correction (bottom-right
panels). The KS-test results further support this observation,
indicating minimal deviation between the corrected measure-
ments and true values. The KS statistic for el is 0.060 with a p-

value of 0.468, while for €2, the KS statistic is 0.065 with a p-
value of 0.367.

These results demonstrate that the combined approach of
source selection and parameter correction significantly
enhances the accuracy of the reconstructed PSF parameters
for CSST, particularly in terms of R, el, and e2. By effectively
filtering out unresolved binaries through source selection, we
reduce one of the main sources of measurement bias, while
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parameter correction further improves the precision of the PSF
shape parameters. The high p-values from the KS tests indicate
that the distributions of the corrected PSF parameters are
statistically consistent with the true values. This underscores
the importance of integrating source selection and parameter
correction to improve PSF modeling accuracy, particularly for
complex data sets in large-scale surveys like CSST.

5. Discussion and Conclusion

In this study, we conducted a comprehensive analysis of
PSF modeling for the upcoming CSST mission, focusing on
addressing systematic errors and the contamination introduced
by unresolved binaries in the PSF reconstruction process. We
used the original CSST PSF matrix and followed the
corresponding CSST simulation process to generate simulated
CSST images. The impact of image size and sampling rate on
PSF modeling was then evaluated with both the PSFEx and
ePSF methods. The analysis showed that image size has a
minimal effect on the accuracy of PSF modeling, as the PSF
parameters (R, el, and e2) remain consistent across different
image sizes. Across different sampling rates, both el and e2
exhibit deviations, while R tends to be slightly overestimated
compared to the true value. However, changes in the sampling
rate only introduce minor variations in the reconstructed PSF
parameters, suggesting that systematic biases in the PSF
reconstruction process play a more significant role in
determining the accuracy of PSF modeling.

We conducted tests on all 18 CCDs and found that el and e2
exhibit systematic deviations that vary across different CCDs.
In the shorter-wavelength bands (NUV and u), these deviations

tend to be larger, with more significant scatter and uncertainty.
As the wavelength increases, the deviations gradually decrease
in magnitude, and the uncertainties become smaller. Mean-
while, R is consistently overestimated across all CCDs, with
the largest deviations up to 15% observed in the NUV and u
bands. As the wavelength increases, the deviations gradually
decrease, reaching the lowest value of approximately 8% in the
y-band. This overall trend indicates more stable PSF
reconstruction in longer-wavelength bands. To mitigate
systematic biases, we applied empirical corrections to the
measured PSF parameters across all 18 CCDs of CSST. For R,
a polynomial fit was applied to capture its trend with varying
SNRs, and corrections were made by adjusting the measured
values and their standard deviations to match those obtained
from direct interpolation. Similarly, for el and e2, we
corrected the measured values by scaling deviations relative
to the target distributions, reducing systematic biases. The
corrected parameters aligned closely with the values from
direct interpolation, as confirmed by KS tests, which
demonstrated improved consistency and reduced biases in
the reconstructed PSF parameters.

Furthermore, we explored the impact of unresolved binaries
on PSF modeling accuracy by examining how binary fraction
and separation affect the reliability of the model. Our analysis
revealed that as the fraction of unresolved binaries increases,
both the ellipticity components (el, e2) and the radius
parameter (R) of the PSF models exhibit significant variations,
with larger binary fractions leading to greater distortions.
Additionally, we found that the separation between binary
stars plays a critical role, with larger separations introducing
more pronounced distortions in the PSF models, particularly in



Research in Astronomy and Astrophysics, 25:125003 (18pp), 2025 December

the radius parameter (R). These findings highlight the
significant impact of contamination from unresolved binaries
and underscore the importance of selecting clean, single-star
sources to ensure accurate and reliable PSF reconstruction. We
developed a neural network-based approach for source
selection to enhance PSF reconstruction by filtering out
unresolved binaries. Built on a modified EfficientNet archi-
tecture, the model achieved high performance on CSST
simulated images, reaching an accuracy of 89.1% after
training. The ROC curve, with an AUC score of 0.937,
demonstrates the model’s effectiveness in distinguishing
unresolved binaries from single stars, while the confusion
matrix confirms its balanced classification performance. These
results indicate that our method can reliably select clean
single-star samples for PSF reconstruction.

Finally, we combined source selection and parameter
correction to improve the accuracy of PSF model parameters
for CSST. By applying deep learning-based source selection to
filter out unresolved binaries, we effectively reduced the most
significant measurement biases, while parameter correction
further enhanced the precision of the reconstructed PSF
parameters. This combined approach results in parameter
distributions showing improved consistency with the true
values, as confirmed by KS-tests with high p-values. By
optimizing PSF modeling techniques for large-scale surveys
such as CSST, this method helps minimize systematic errors in
scientific studies that rely on precise PSF shape and size
measurements. Accurate correction of PSF ellipticity para-
meters enhances the statistical precision of weak lensing
surveys, leading to tighter constraints on cosmological models
and deeper insights into the large-scale structure of the
Universe. Meanwhile, improving the accuracy of the PSF
radius parameter is crucial for photometric and spectroscopic
analyses, ensuring more reliable flux and size measurements of
stars and galaxies.

Several areas for future development remain. The deep
learning-based source selection method can be further
optimized to handle more complex observational environ-
ments. While the current model is trained specifically to
distinguish single stars from unresolved binaries under the
assumption of a clean input catalog, real CSST observations
may still contain residual contaminants after preprocessing,
potentially affecting source classification performance. To
improve the model’s generalizability and robustness against
such out-of-distribution samples, future iterations may benefit
from incorporating a broader ‘“non-stellar” class during
training. Furthermore, enhancements to model design that
account for observational factors such as sky background
fluctuations and crowded stellar fields will be essential to
ensure reliable PSF modeling in realistic survey conditions.

Another key challenge is the reliance on a known “ground
truth” PSF distribution when correcting systematic biases.
While the empirical correction method performs well in
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simulations, such ideal reference PSFs are not available in real
observations. A practical way to construct a reference PSF
distribution is through a combination of ground-based optical
testing and on-orbit calibration. During the ground-based
testing phase, high-resolution PSFs can be obtained under
controlled conditions across different bands and focal plane
positions, providing an initial reference distribution for PSF
parameters. After launch, the CSST will periodically perform
dedicated PSF calibration observations of selected calibration
fields using large dithered imaging strategies. By slightly
shifting the telescope pointing during different exposures, stars
are sampled at different sub-pixel positions across the detector,
effectively mitigating the undersampling problem. High SNR
single stars in these dithered exposures can then be used to
reconstruct a high-resolution “effective PSF” directly from the
data. Furthermore, calibration fields can also be observed with
varying exposure times under the same pointing, enabling the
reconstruction of ePSFs across a range of SNRs and providing
direct calibration of SNR-dependent PSF variations. This data-
driven ePSF model thus serves as a high-fidelity reference for
calibrating PSF parameters from single exposures, correcting
for undersampling, detector-induced distortions, and SNR-
dependent effects. In this way, realistic end-to-end validation
of the empirical correction pipeline becomes possible,
reducing reliance on idealized simulations.

In addition to data-driven strategies, further optimization of
the PSF correction model can benefit significantly from
physics-informed modeling. Current corrections primarily rely
on empirical adjustments to address systematic biases, but a
deeper understanding of the underlying physical origins of PSF
distortions would enhance their effectiveness. Instrumental
effects—including optical distortions from thermal and
mechanical variations, pixelization errors from detector under-
sampling, flux-dependent brighter-fatter effects, and charge
transfer inefficiency during CCD readout—should be expli-
citly modeled in terms of observable parameters. By
incorporating physically motivated relationships among source
brightness, detector position, wavelength, and observation
time, future correction models will be better equipped to
accurately characterize and predict PSF variations across
spatial, temporal, and observational conditions, thereby
reducing reliance on empirical calibration and ensuring robust
PSF accuracy over the course of extended CSST observations.
This physics-informed approach, combined with data-driven
calibration using dithered observations, has the potential to
significantly enhance PSF reconstruction precision, ensuring
more reliable scientific measurements from future CSST
observations.

Beyond these methodological improvements, our future
work will integrate the correction results into a generative PSF
modeling framework, enabling the construction of corrected
PSF images based on the initial PSF model and its measured
parameter deviations. In parallel, we will systematically
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evaluate the impact of PSF correction on shear estimation,
thereby quantifying the resulting improvement in weak lensing
measurement precision. Moreover, the techniques developed
here are expected to be applicable beyond CSST, offering a
pathway for other large-scale surveys that demand precise PSF
modeling for weak lensing and related cosmological analyses.

Acknowledgments

This work was supported by the science research grants from
the China Manned Space Project (Nos. CMS-CSST-2021-A01
and CMS-CSST-2025-A19), the National Key R&D Program of
China (No. 2021YFA1600400/1), the CAS Project for Young
Scientists in Basic Research (No. YSBR-062), and the Ministry
of Science and Technology of China (No. 2020SKA0110100).

ORCID iDs

Peng Wei @ https: //orcid.org/0000-0003-2477-6092
Cheng-Liang Wei ©® https: //orcid.org/0000-0001-5912-7522
Juan-Juan Ren @ https: //orcid.org/0000-0003-3243-464X

References

Anderson, J. 2016, Empirical Models for the WFC3/IR PSF Instrument
Science Report WFC3 2016-12, Space Telescope Science Institute 42

Anderson, J., & King, I. R. 2000, PASP, 112, 1360

Beltramo-Martin, O., Ragland, S., Fétick, R., et al. 2020, Proc. SPIE, 11448,
114480A

Bernstein, G., & Jarvis, M. 2002, AJ, 123, 583

Bertero, M., & Boccacci, P. 2005, A&A, 437, 369

Bertin, E. 2011, in ASP Conf. Proc. 442, Astronomical Data Analysis
Software and Systems XX, Vol. 442, ed. I. N. Evans et al. (San Francisco,
CA: ASP),435

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393

Born, M., & Wolf, E. 2013, Principles of Optics: Electromagnetic Theory of
Propagation, Interference and Diffraction of Light (Amsterdam: Elsevier)

Bradley, L., Sipocz, B., Robitaille, T., et al., 2016 Photutils: Photometry tools,
Astrophysics Source Code Library, record, ascl:1609.011

Braat, J. J. M., van Haver, S., Jansse, A. J. E. M., & Dirksen, P. 2008, PrOpt,
51, 349

Cao, Y., Gong, Y., Meng, X.-M., et al. 2018, MNRAS, 480, 2178

Wu et al.

Erben, T., Van Waerbeke, L., Bertin, E., Mellier, Y., & Schneider, P. 2001,
A&A, 366, 717

Guinot, A., Kilbinger, M., Farrens, S., et al. 2022, A&A, 666, A162

Hanisch, R. J., White, R. L., & Gilliland, R. L. 1997, Deconvolution of hubble
space telescope images and spectra, Deconvolution of Images and Spectra,
Vol. 2 (Boston, MA: Academic Press)

Hildebrandt, H., Erben, T., Kuijken, K., et al. 2012, MNRAS, 421,
2355

Hirata, C., & Seljak, U. 2003, MNRAS, 343, 459

Hoffmann, S. L., & Anderson, J. 2018, AAS Meeting, 231, 150.36

Hu, Y., Deng, L., de Grijs, R., & Liu, Q. 2011, PASP, 123, 107

Jarvis, M., Bernstein, G., Amon, A., et al. 2021, MNRAS, 501, 1282

Jee, M., Blakeslee, J., Sirianni, M., et al. 2007, PASP, 119, 1403

Jee, M. J., & Tyson, J. A. 2011, PASP, 123, 596

Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460

Krist, J. 1993, in ASP Conf. Ser. 52, Astronomical Data Analysis Software
and Systems II, Vol. 52, ed. R. J. Hanisch, R. J. V. Brissenden, & J. Barnes
(ASP), 536

Krist, J. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software
and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes, 349

Krist, J. E., Hook, R. N., & Stoehr, F. 2011, Proc. SPIE, 8127, 81270J

Liaudat, T., Bonnin, J., Starck, J.-L., et al. 2021, A&A, 646, A27

Liaudat, T. L., Starck, J.-L., & Kilbinger, M. 2023, FrASS, 10, 1158213

Libralato, M., Argyriou, 1., Dicken, D., et al. 2024, PASP, 136, 034502

Lindegren, L., Hernandez, J., Bombrun, A., et al. 2018, A&A, 616,
A2

Lupton, R., Gunn, J. E., Ivezic, Z., Knapp, G. R., & Kent, S. 2001, in ASP
Conf. Proc. 238, Astronomical Data Analysis Software and Systems X, ed.
F. R. Jr. Harnden, F. A. Primini, & H. E. Payne (San Francisco, CA:
ASP), 269

Mandelbaum, R. 2018, ARA&A, 56, 393

Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005, MNRAS, 361,
1287

Mandelbaum, R., Miyatake, H., Hamana, T., et al. 2018, PASJ, 70, S25

Mighell, K. J. 2005, MNRAS, 361, 861

Ngole, F., Starck, J.-L., Okumura, K., Amiaux, J., & Hudelot, P. 2016, InvPr,
32, 124001

Rhodes, J., Refregier, A., & Groth, E. J. 2000, ApJ, 536, 79

Rowe, B. T., Jarvis, M., Mandelbaum, R., et al. 2015, A&C, 10, 121

Schmitz, M. A. 2019, PhD thesis, Université Paris Saclay (COmUE), https://
www.theses.fr/2019SACLS359

Stetson, P. B. 1987, PASP, 99, 191

Tan, M. 2019, in Proc. of the 36th Inte. Conf. on Machine Learning,
97, (PMLR)

Wu, Y., Li, J., Liu, C., et al. 2023, ApJS, 268, 37

Zhan, H. 2011, SSPMA, 41, 1441

Zuntz, J., Sheldon, E., Samuroff, S., et al. 2018, MNRAS, 481, 1149


https://orcid.org/0000-0003-2477-6092
https://orcid.org/0000-0001-5912-7522
https://orcid.org/0000-0003-3243-464X
https://doi.org/2016wfc..rept...12A
https://doi.org/10.1086/316632
https://ui.adsabs.harvard.edu/abs/2000PASP..112.1360A/abstract
https://doi.org/10.1117/12.2560805
https://ui.adsabs.harvard.edu/abs/2020SPIE11448E..0AB/abstract
https://ui.adsabs.harvard.edu/abs/2020SPIE11448E..0AB/abstract
https://doi.org/10.1086/338085
https://ui.adsabs.harvard.edu/abs/2002AJ....123..583B/abstract
https://doi.org/10.1051/0004-6361:20052717
https://ui.adsabs.harvard.edu/abs/2005A&A...437..369B/abstract
https://ui.adsabs.harvard.edu/abs/2011ASPC..442..435B/abstract
https://doi.org/10.1051/aas:1996164
https://ui.adsabs.harvard.edu/abs/1996A&AS..117..393B/abstract
http://www.ascl.net/1609.011
https://doi.org/10.1016/S0079-6638(07)51006-1
https://ui.adsabs.harvard.edu/abs/2008PrOpt..51..349B/abstract
https://ui.adsabs.harvard.edu/abs/2008PrOpt..51..349B/abstract
https://doi.org/10.1093/mnras/sty1997
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480.2178C/abstract
https://doi.org/10.1051/0004-6361:20010013
https://ui.adsabs.harvard.edu/abs/2001A&A...366..717E/abstract
https://doi.org/10.1051/0004-6361/202141847
https://ui.adsabs.harvard.edu/abs/2022A&A...666A.162G/abstract
https://doi.org/10.1111/j.1365-2966.2012.20468.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.2355H/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.2355H/abstract
https://doi.org/10.1046/j.1365-8711.2003.06683.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.343..459H/abstract
https://ui.adsabs.harvard.edu/abs/2018AAS...23115036H/abstract
https://doi.org/10.1086/658162
https://ui.adsabs.harvard.edu/abs/2011PASP..123..107H/abstract
https://doi.org/10.1093/mnras/staa3679
https://ui.adsabs.harvard.edu/abs/2021MNRAS.501.1282J/abstract
https://doi.org/10.1086/524849
https://ui.adsabs.harvard.edu/abs/2007PASP..119.1403J/abstract
https://doi.org/10.1086/660137
https://ui.adsabs.harvard.edu/abs/2011PASP..123..596J/abstract
https://doi.org/10.1086/176071
https://ui.adsabs.harvard.edu/abs/1995ApJ...449..460K/abstract
https://ui.adsabs.harvard.edu/abs/1993ASPC...52..536K/abstract
https://ui.adsabs.harvard.edu/abs/1995ASPC...77..349K/abstract
https://doi.org/10.1117/12.892762
https://ui.adsabs.harvard.edu/abs/2011SPIE.8127E..0JK/abstract
https://doi.org/10.1051/0004-6361/202039584
https://ui.adsabs.harvard.edu/abs/2021A&A...646A..27L/abstract
https://doi.org/10.3389/fspas.2023.1158213
https://ui.adsabs.harvard.edu/abs/2023FrASS..1058213L/abstract
https://doi.org/10.1088/1538-3873/ad2551
https://ui.adsabs.harvard.edu/abs/2024PASP..136c4502L/abstract
https://doi.org/10.1051/0004-6361/201832727
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...2L/abstract
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...2L/abstract
https://ui.adsabs.harvard.edu/abs/2001ASPC..238..269L/abstract
https://doi.org/10.1146/annurev-astro-081817-051928
https://ui.adsabs.harvard.edu/abs/2018ARA&A..56..393M/abstract
https://doi.org/10.1111/j.1365-2966.2005.09282.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.361.1287M/abstract
https://ui.adsabs.harvard.edu/abs/2005MNRAS.361.1287M/abstract
https://doi.org/10.1093/pasj/psx130
https://ui.adsabs.harvard.edu/abs/2018PASJ...70S..25M/abstract
https://doi.org/10.1111/j.1365-2966.2005.09208.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.361..861M/abstract
https://doi.org/10.1088/0266-5611/32/12/124001
https://ui.adsabs.harvard.edu/abs/2016InvPr..32l4001N/abstract
https://ui.adsabs.harvard.edu/abs/2016InvPr..32l4001N/abstract
https://doi.org/10.1086/308902
https://ui.adsabs.harvard.edu/abs/2000ApJ...536...79R/abstract
https://doi.org/10.1016/j.ascom.2015.02.002
https://ui.adsabs.harvard.edu/abs/2015A&C....10..121R/abstract
https://www.theses.fr/2019SACLS359
https://www.theses.fr/2019SACLS359
https://doi.org/10.1086/131977
https://ui.adsabs.harvard.edu/abs/1987PASP...99..191S/abstract
https://doi.org/10.3847/1538-4365/ace9be
https://ui.adsabs.harvard.edu/abs/2023ApJS..268...37W/abstract
https://doi.org/10.1360/132011-961
https://ui.adsabs.harvard.edu/abs/2011SSPMA..41.1441Z/abstract
https://doi.org/10.1093/mnras/sty2219
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.1149Z/abstract

	1. Introduction
	2. Data Sets and Methodology
	2.1. Mock PSF Images of CSST
	2.2. PSF Modeling and Measurement

	3. Analysis of PSF Reconstruction
	3.1. Impact of Image Size on PSF Modeling Accuracy
	3.2. Impact of Sampling Rate on PSF Modeling Accuracy
	3.2.1. PSF Modeling from Mock CSST Images
	3.2.2. PSF Modeling from Gaussian PSF Images

	3.3. Source Selection Effects
	3.3.1. Impact of Binary Fraction
	3.3.2. Impact of Binary Separation


	4. Toward Accurate PSF Parameter Calibration
	4.1. Source Selection
	4.1.1. Network Architecture
	4.1.2. Model Performance

	4.2. Empirical Correction of Measured PSF Parameters
	4.2.1. Correction of PSF Sizes
	4.2.2. Correction of Ellipticity

	4.3. A Combined Approach for Improving PSF Modeling Accuracy

	5. Discussion and Conclusion
	References



