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Abstract

Stellar spectral classification is crucial in astronomical data analysis. However, existing studies are often limited by
the uneven distribution of stellar samples, posing challenges in practical applications. Even when balancing stellar
categories and their numbers, there is room for improvement in classification accuracy. This study introduces a
Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images. A
novel neural network, the Stellar Feature Network, is proposed for classifying these images. Stellar spectra from
Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9, encompassing five equal categories (B, A, F, G,
K), were used. Comparative experiments validate the effectiveness of the proposed methods and network,
achieving significant improvements in classification accuracy.
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1. Introduction

Stellar spectral classification is an important task in
astronomical research. The classification results directly reflect
the differences in stellar surface temperatures, which provide a
basis for studying stellar energy radiation, internal structures,
and their roles within galaxies. Stellar spectral classification
also helps astronomers understand the evolution of galactic
structures and the diverse effects of the interstellar medium,
and supports the verification of astrophysical theories.

The Morgan–Keenan classification system categorizes stars
into seven main spectral types based on surface temperature
(Morgan et al. 1942). These types are denoted by the letters O,
B, A, F, G, K, and M. Each type is further subdivided into 10
subclasses, represented by the numbers 0 through 9. This
classification method was soon recognized by various scientific
research teams upon its introduction. Over time, these teams
have developed many classification methods based on this
standard, which can be broadly categorized into two types:
template matching and machine learning, as shown in Figure 1.

Traditional methods such as template matching held a
significant position. Burbidge et al. (1957) analyzed the
elements inside stars in their pioneering work, marking the
beginning of using elemental analysis to explore further
astronomical questions. Brown et al. (2003) further expanded
the analysis of stellar spectra by adding methods such as Cross-
Correlation and “Line-by-line.” Smiljanic et al. (2014) released
the Gaia-ESO Survey, which detailed the complete spectral
analysis process, including Quality Control and Homogeniza-
tion. Kesseli et al. (2017) used the Sloan Digital Sky Survey
(SDSS) to establish an empirical template library, enhancing
the spectral analysis task.

Compared to the template matching method, machine
learning methods offer higher efficiency and are often more
favored. LaSala (1994) classified 350 type B stars using the
nearest neighbor method. Daniel et al. (2011) expanded the
range of astronomical data objects processed, using local
linear embedding to classify spectral data from the SDSS.
Díaz-Hernández et al. (2014) employed sparse representation
and dictionary learning methods to automatically classify
stellar spectral types, achieving higher accuracy at a lower
computational cost. Li et al. (2019) focused on spectra without
flux standards, using the random forest algorithm to classify
such spectra and demonstrating strong superiority in real-data
applications.
It is noteworthy that deep learning, as an important branch of

machine learning, now occupies an increasingly significant
position in astronomical research. Compared with traditional
machine learning methods, deep learning can automatically
discover and represent high-level features in complex spectral
data through end-to-end learning. Von Hippel et al. (1994) was
the first to classify 575 spectra using artificial neural networks
(ANN), marking the first application of deep learning in stellar
classification tasks. Navarro et al. (2012) classified stellar
spectra with low signal-to-noise ratios (SNRs), demonstrating
the high robustness of ANN. In the same year, Mahdi studied
classification of spectra from the ELODIE spectral library using
probabilistic neural networks to further increase training speed
(Mahdi 2008). In the face of the burgeoning volumes of
astronomical data, simple ANN have become increasingly
inadequate. Dieleman et al. (2015) used rotation-invariant
convolutional neural networks (CNNs) in the Galaxy Zoo
project to classify galaxy morphology. The success of this
network provided a great reference for subsequent researches.
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Kim & Brunner (2016) proposed a stellar-galaxy classification
framework based on deep CNNs (ConvNets),further proving
the feasibility of deep neural networks in various astronomical
tasks. Wang et al. (2017) used deep neural networks to extract
spectral features at different abstraction levels in various layers,
applying this method to spectral classification and defective
spectral restoration. Sharma et al. (2020) used CNNs for stellar
spectral classification, comparing them with ANN and tradi-
tional machine learning methods to demonstrate the advantages
of CNNs in this task. Shi et al. (2023) chose not to classify
based on stellar spectra but classified stellar luminosity images
using a designed CNN (SCNet), providing another promising
approach.

However, due to the differences in the timing of each team’s
research and the specific classification tasks, it is difficult to use
a single absolute standard to uniformly measure the perfor-
mance. Figure 2 illustrates the limitations in the selection of
research subjects in existing studies and the reason behind the
data set chosen for this study.

In the early days, limited by observational capabilities,
research teams often used only a small amount of data for their
studies. For example, LaSala (1994) used the minimum mean
method to classify only 350 type B stars, and in the same year,
Von Hippel et al. (1994) first applied neural networks in this
field but classified only 575 spectra. Although later, with the

rise and improvement of astronomical observation methods
such as SDSS (Almeida et al. 2023) and Large Sky Area Multi-
Object Fiber Spectroscopic Telescope (LAMOST; Cui et al.
2012), the ability to acquire stellar spectra has increased
significantly. Many teams still exhibit significant bias when
selecting their research subjects. For instance, Zhongbao Liu’s
team (Liu et al. 2016) only studied the classification of four
types of K stars, three types of F stars, and three types of
G stars. Liting Du’s team (Li-Ting et al. 2021) only classified
three subtypes of stars: F5, G5, and K5, within certain stellar
categories. Although such classification results are very high,
their application value still needs further exploration.Similarly,
there are significant disparities in the number of instances
among different stellar categories. Sharma et al. (2020)
uniformly classified seven types (O, B, A, F, G, K, M) within
the MK system, but spectra from F and G types alone
constituted over half of the total samples in the data set.
In our works, to mitigate the impact of data set imbalance on

experimental outcomes, we opted to categorize stars from
LAMOST Data Release 9 (DR9) into five abundant classes: B,
A, F, G, and K, ensuring an equal number of spectra for each
category. We introduced the Super Morlet (SMor) wavelet
function for continuous wavelet transformation (CWT) of
spectral data, converting spectra into images to facilitate feature
extraction by deep learning network models. Additionally, we

Figure 1. Common methods for stellar classification.

Figure 2. Comparison of research objects.
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developed the Stellar Feature Network (SFNet) specifically
designed for wavelet images of these stellar classes, which
enhanced the accuracy of the stellar classification tasks. Finally,
a series of comparative experiments were designed to
demonstrate the effectiveness of these methods.

The structure of this paper is as follows: Section 2 presents
the preprocessing methods including one-dimensional convo-
lution processing, CWT, and normalization, as well as the
architecture of the SFNet. Section 3 describes the source of the
data set, parameter settings for each preprocessing method and
model training strategies. Section 4 presents the analysis and
discussion of comparative experiments. Section 5 provides a
comprehensive summary of the research and outlines future
prospects.

2. Methods

In stellar classification, template matching methods typically
rely on the elemental composition of stars, using empirical
template libraries for reference. In contrast, machine learning
approaches often train directly on one-dimensional stellar
spectral data.

Many neural network models commonly used today, such as
CNNs, excel at extracting local features from data structured as
images for classification tasks. Consequently, using two-
dimensional images as inputs to neural networks often results
in superior performance compared to one-dimensional spec-
tral data.

This study proposes using CWT to convert preprocessed
one-dimensional stellar spectral data into two-dimensional
wavelet images. These images are classified using the
specifically designed SFNet. This approach preserves spectral
information and enhances the neural network model’s feature
extraction capabilities for classification tasks.

2.1. One-dimensional Convolution

One-dimensional convolution is a fundamental operation in
both signal processing and deep learning, typically used to
smooth input signals or reduce the impact of noise. This
technique is also prevalent in the analysis of spectral data
(LeCun et al. 1995). The mathematical representation is as
follows

( ) ( ) · ( ) ( )å= -
=-¥

¥

y t x a w t a , 1
a

where y(t) represents the output of the convolution operation, x(a)
denotes the value of the input signal at a position, and w(t− a) is
the weight of the convolution kernel at position t− a.

In our experiment, a moving average convolution kernel is
employed, where the convolution kernel is defined as [1, 1, 1].
This approach smooths the spectral data and reduces noise
impacts while ensuring the retention of key features.

2.2. Continuous Wavelet Transform (CWT)

The CWT is a commonly used time–frequency analysis tool
in signal processing (Torrence & Compo 1998). It employs
wavelet functions to analyze the local frequency characteristics
of a signal at various scales. Compared to other transformation
methods such as the Fourier transform, the CWT offers finer
resolution in the time–frequency domain, allowing for the
simultaneous acquisition of information in both time and
frequency aspects of the signal (Kaya et al. 2022).
For the task of stellar classification, converting one-

dimensional stellar spectral data into two-dimensional wavelet
images through CWT allows for more refined local information
transformation in the time–frequency domain. This process
provides a richer extraction of stellar features for subsequent
neural network training and enhances the efficiency of the
network. Such an approach demonstrates significant advan-
tages when processing spectral data on a large scale.
The fundamental concept of CWT involves convolving a

signal with a wavelet function that varies in scale. The scale
parameter adjusts the frequency of the wavelet function,
allowing the convolution results at different scales to provide
local information about the signal in the frequency domain. The
specific formula is as follows

⎛
⎝

⎞
⎠

( ) ( ) · ( )ò y=
-

-¥

¥
a b x t

t b

a
dtCWT , , 2*

where x(t) represents the input signal, ψ(t) is the wavelet
function, a is the scale parameter, b is the translation parameter,
which is automatically generated based on the input data and
covers all index positions of the data, and ψ* denotes the
complex conjugate of the wavelet function.
For CWT, the choice of the specific wavelet function is

crucial. Commonly used wavelet functions include the Morlet
wavelet, the Ricker wavelet (also known as the Mexican Hat
wavelet), the Haar wavelet, and the Daubechies wavelet.
The Morlet wavelet function exhibits superior frequency

smoothness, enabling the simultaneous preservation of fre-
quency and phase information (Shao et al. 2021). The Ricker
wavelet features excellent localization in the frequency domain,
making it particularly effective in detecting signal edges (Alpar
et al. 2022). The Haar wavelet is simple and rapid, and is better
suited for analyzing abrupt changes in signals (Guo et al.
2022). The Daubechies wavelet is compactly supported in the
time domain and exhibits good temporal localization char-
acteristics, commonly used in fields such as signal denoising
and compression (Mandala et al. 2023).
Based on the characteristics of various wavelet functions,

this study initially selects the Morlet wavelet function. The
Morlet wavelet is composed of the product of a Gaussian
function and a complex exponential function. This construction
endows the Morlet wavelet with localized features in both
the time and frequency domains, enabling the simultaneous
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analysis of temporal and frequency information in stellar
spectra.

The definition of the Morlet wavelet is as follows

( ) ( )y p= w- -t e e , 3i t1 4 t2
2 0

where ω0 represents the frequency parameter.
Figures 3 and 4 depict images of one-dimensional stellar

spectral data before and after the application of CWT using the
Morlet wavelet function respectively. In the wavelet image, the
index represents the position in the data and corresponds to the
length of the original spectral data (i.e., the number of sample
points). The scale denotes the range of the scale parameters,
which is set from 0 to 300 in this study. Magnitude represents
the absolute value of the transform results, indicating the signal
strength at specific scales and positions.

As shown in Figure 4, the wavelet images of stellar spectra
transformed using the standard Morlet wavelet function exhibit
dense information locally, but there are limitations in its ability
to distinctly express features where the data are most
concentrated. Consequently, there is a need to focus more on
local details in the actual transformation process and to adjust
the frequency bandwidth more flexibly to better adapt to areas
in the spectrum where frequency changes are relatively
significant, thus enriching the information displayed in the
wavelet images.

Therefore, this study introduces the SMor wavelet function,
an enhanced version of the Morlet wavelet. Building upon the
Morlet wavelet, the SMor wavelet incorporates a bandwidth
parameter, enabling the adjustment of the Gaussian window’s
parameters to better control localization characteristics in the
time–frequency domain. The definition of the SMor wavelet

function is as follows

( ) ( )( )y p s= s w- -t e e , 4
t

i t1
4 2

2

2 0

where ω0 represents the frequency parameter, and σ denotes the
standard deviation of the Gaussian window.
Compared to the Morlet wavelet, the SMor wavelet allows

for adjustment of the wavelet’s frequency bandwidth, provid-
ing greater flexibility in the frequency domain. When σ is
smaller, the SMor wavelet is more compact in the time domain
while exhibiting a broader presence in the frequency domain.
Conversely, when σ is larger, the SMor wavelet appears wider
in the time domain and more compact in the frequency domain.

Figure 3. Wavelength–Flux curve before CWT.
Figure 4. Wavelet image generated by CWT using Morlet wavelet function.

Figure 5. Wavelet image generated by CWT using SMor as the wavelet
function.
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Figure 5 displays the wavelet image of the same spectral data
after transformation using the SMor wavelet. Compared to
Figure 4, it is evident that the information in Figure 5 is more
abundant, providing improved conditions for subsequent neural
network training.

2.3. Normalization

In the conversion of one-dimensional stellar spectral data
into two-dimensional wavelet images via CWT, normalization
is an important operation. Different spectral data possess
varying amplitude ranges, and it would be impractical to
simply crop the images and input them into neural network
training without considering the differences in amplitude
values displayed by each wavelet image.

Therefore, we incorporate Min–Max Scaling in the CWT
process. Min–Max Scaling is a commonly used data normal-
ization method that linearly maps the stellar spectral data to a
specified range between minimum and maximum values. This
standardizes the magnitude of spectral data, thereby facilitating
the training and classification processes of deep learning
models (Ambarwari et al. 2020). The calculation formula for
Min–Max Scaling is as follows

( )=
-
-

X
X X

X X
, 5norm

min

max min

where Xmin represents the minimum value in the data set, Xmax

denotes the maximum value in the data set, and Xnorm is the
normalized data.

2.4. Stellar Feature Network (SFNet)

To enhance the classification of stellar spectral images
generated using the aforementioned methods, this study adopts
core components from the ConvNeXt-V2-Base model (Woo
et al. 2023) and integrates modules such as the Feature Pyramid
Network (FPN; Lin et al. 2017) to better handle multi-scale
features. This integration has led to the development of the
SFNet. Experimental results demonstrate that SFNet exhibits
superior performance in stellar spectral classification tasks,
particularly when dealing with data sets produced by CWT
using the SMor wavelet function.

The development of the Vision Transformer (ViT; Doso-
vitskiy et al. 2020) successfully adapted the Transformer
(Vaswani et al. 2017) architecture for image processing, where
it has consistently gained prominence, gradually achieving
parity with CNNs. To demonstrate that pure CNNs still possess
potential for research and development, and also because ViT
does not show clear advantages in tasks such as object
detection, Z. Liu et al. decided to adopt the design strategy of
the Swin-Transformer (Liu et al. 2021) and introduced the
ConvNeXt (Liu et al. 2022) network based on ResNet50 (He
et al. 2016). This was aimed at proving that, under equivalent

design and training strategies, pure CNNs still hold substantial
advantages in image processing. This was confirmed by
superior performance on multiple public data sets. Building
on this foundation, Sanghyun Woo further integrated the Fully
Convolutional Masked Autoencoder and Global Response
Normalization (GRN), refining the network and naming it
ConvNeXt-V2.
In the task of stellar spectral recognition, we observed that

wavelet images generated from different stellar categories often
exhibit distinct features at various scales. For instance, some
are more prominent in local details, while others are apparent in
broader global trends. Based on such a distribution of features,
this study chose to further incorporate the FPN. FPN primarily
establishes a top-down architecture, where the network can
utilize deep, high-level features and propagate these features to
shallower layers through upsampling.
Although FPN is more commonly applied in the field of

object detection, it is equally capable of capturing features at
various scales, from detailed to global, in wavelet images for
stellar spectral classification tasks. By aggregating wavelet
feature maps at different resolutions, FPN integrates features
from various depth levels, enabling simultaneous capture of
high-level semantic information and low-level detail. This
offers a significant advantage in understanding the multi-scale
structures present in wavelet images. Furthermore, by merging
information from different layers, FPN also enhances the
model’s robustness to variations in input image sizes, which is
particularly important when dealing with the diverse stellar
spectral data encountered in practical astronomical challenges.
The final design of SFNet is depicted in Figure 6. The

network inputs are images generated by CWT, which have
been cropped to remove axes. Initially, these images are
processed through a convolutional layer followed by Layer
Normalization (LN; Ba et al. 2016). Within the convolution
layer, a 4× 4 kernel and a stride of 4 are used, transforming the
input image from 384× 384× 3 to a 96× 96× 256 output
feature map. This operation reduces the image size while
increasing the channel count, thereby elevating the level of
feature abstraction necessary for initial feature capture.
Subsequently, the process flows through four SFNet Blocks,

with the detailed internal structure of each block shown on the
right side of the figure. Each block comprises a submodule and
a convolution layer. The submodule contains N operations,
each consisting of a convolution layer, GRN, and Drop Path
(Huang et al. 2016), connected in a residual structure. GRN
standardizes and applies nonlinear transformations to features,
significantly enhancing the model’s capability to process global
information, thus improving the network’s expressiveness and
stability. Drop Path is a regularization technique that randomly
omits certain paths within the neural network, reducing
overfitting and enhancing the network’s generalization
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capacity. Residual connections help alleviate the vanishing
gradient problem by introducing skip connections that directly
transmit information from previous layers, speeding up training
and enhancing the performance of deeper network layers
(Qi et al. 2023). In this experiment, N is set to 3 in SFNet
Blocks 1, 2, and 4, and N is set to 27 in SFNet Block 3.

The feature map’s input into each SFNet Block has lateral
outputs in Blocks 1, 2, and 3, and vertical outputs in Blocks 1,
2, 3, and 4. Each lateral output, derived from the submodule
within the block, undergoes LN and downsampling to reduce
the dimensions of the feature map before being fed into the
next block for further feature extraction. These lateral outputs
are marked with green arrows in the diagram. After processing
through the submodule, each block passes the data through a
convolution layer with a kernel size of 1× 1 and a stride of 1,
aimed at maintaining each vertical output feature maps channel
count at 256.

Subsequently, the vertical outputs from Blocks 2, 3, and 4
are upsampled and laterally connected. Using the vertical
output from Block 1 as the reference size, bilinear interpolation
is employed to upsample these outputs to this size and merge
them. This procedure enables effective fusion of features from
different levels, leveraging diverse feature information pro-
vided at various stages to better capture comprehensive features
from fine-grained details to high-level semantics. Following
fusion, each output undergoes Global Average Pooling
(Lin et al. 2013), where an averaging operation is performed
across all spatial positions of each convolutional feature map,
compressing the two-dimensional spatial information into a
single scalar. This application not only reduces dimensionality
but also helps in mitigating overfitting. Finally, the classifica-
tion of stellar types is output through a fully connected layer.

3. Experiment and Analysis

3.1. Data Acquisition

In this study, we utilized data from the ninth data release
(DR9 v2.0) of LAMOST as the source for our stellar spectral
classification data set. LAMOST, also known as the Guo
Shoujing Telescope, is located in Xinglong, Hebei Province,
China, and is operated by the National Astronomical
Observatories of the Chinese Academy of Sciences. It
combines the advantages of a large aperture and a wide field
of view, featuring a primary mirror with a diameter of 4 meters
and a secondary mirror with a diameter of 1.75 m, covering a
sky area of 20 square degrees. Capable of simultaneously
acquiring spectra from up to 4000 celestial bodies, its design
makes it exceedingly efficient in conducting large-scale
astronomical surveys, such as those measuring galaxies,
quasars, and stellar spectra.
In the LAMOST DR9 v2.0 data set, there are as many as

10,809,336 spectral records covering a variety of celestial
objects including galaxies, stars, and quasars. This study
focuses on the classification of stellar types. For the spectral
data, we required that the selected spectra have an SNR greater
than 20. The number of spectra meeting the SNR criterion are
as follows: 56 for O-type stars, 5,823 for B-type, 128,121 for
A-type, 476,112 for F-type, 341,477 for G-type, 17,217 for
K-type, and 244 for M-type.
Due to the limited number of spectral data for O and M-type

stars, this study focuses primarily on the classification of five
stellar types: B, A, F, G, and K. To mitigate the effects of
uneven data distribution, the data set was configured to match
the number of the least represented of these categories, B-type
stars. Consequently, 5000 spectra were selected for each of the
B, A, F, G, and K categories to form the data set.

Figure 6. SFNet architecture.
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3.2. Preprocessing Details

The preprocessing component of this study primarily
consists of one-dimensional convolution processing, CWT,
and Min–Max Normalization.

Initially, the spectral data in FITS format undergo one-
dimensional convolution processing, where the convolution
kernel is set to [1, 1, 1], the stride is set to 1, and padding is set
to 1.

Subsequently, CWT is performed. Each spectral sample is
first converted into a one-dimensional array, followed by scale
mapping. In our study, the scale parameter a in Equation (2) is
set to range from 1 to 300. This selection is based on a
comprehensive consideration of the effects of different scales.
Through a series of experimental comparisons, we found that
transformations at smaller scales (below 200) often fail to
capture the global features of the signal, resulting in the loss of
important trends that could reflect stellar categories. Addition-
ally, experiments have shown that excessively large scales
(above 400) can capture low-frequency information but result
in poor temporal locality, making it difficult to finely resolve
transient features and subtle differences in the signal, such as
spikes and abrupt changes. By choosing a scale mapping range
of 1–300 for the CWT, a balance is achieved between the
temporal and frequency locality of the transformation, ensuring
that while global trends of the signal are captured, key local
details are not lost, thereby effectively enhancing the model’s
predictive and feature extraction capabilities.

In addition to scale mapping, the key parameters for the
Smor wavelet are set as follows: the frequency parameter is set
at 6.0 to optimize frequency resolution; the scale parameter is
set at 0.8, adjusting temporal resolution to capture key
frequency information while maintaining sufficient temporal
locality. For color mapping, viridis is chosen over options like
jet, as viridis provides a consistent and continuous color
gradient, avoiding misleading color jumps and enhancing the
continuity of visual interpretation. The interpolation method
selected is bilinear interpolation, which, compared to nearest
neighbor interpolation, reduces the staircasing effect and
provides a smoother image texture without introducing
excessive computational complexity.

Finally, the results of the CWT are subjected to Min–Max
Scaling for amplitude normalization, standardizing the magni-
tudes of transformations across all scales to a range between 0
and 1. This process outputs the images generated by the CWT.

3.3. SFNet Training Results

This study was conducted on a computing platform equipped
with an Intel(R) Xeon(R) Platinum 8352V CPU and an
NVIDIA RTX 4090 (24GB) GPU, utilizing Ubuntu 20.04 as
the operating system. All experiments were performed within a
Python 3.8 and PyTorch 1.11.0 environment. The network
model employed was the SFNet, with the final model having a

total parameter count of 90.363 million and a total number of
floating-point operations of 52.907 billion. This computation-
ally complex setup contributed to achieving high accuracy in
the classification results.
The experimental data set encompasses five categories, with

images from each category processed through the following
standardization steps: First, image dimensions are resized to
384× 384 pixels. Subsequently, normalization is applied using
a mean of [0.485, 0.456, 0.406] and a standard deviation of
[0.229, 0.224, 0.225]. This configuration is based on the
statistical mean and standard deviation of RGB images from
the publicly available ImageNet data set in the field of
computer vision. Such preprocessing helps to standardize the
input wavelet images, thereby improving the training stability
and transfer learning performance of the model.
In terms of model configuration, the model did not utilize

pre-trained weights and training commenced from random
initialization. The normalization layer utilizes LN technology,
with the epsilon value set at 1e-06; the output layer is a fully
connected layer configured with 256 input features and
5 output categories, including bias terms. Further details of
the remaining layer structures are presented in Section 2.4.
For training, we set a Drop Path Rate of 0.35, effectively

reducing the risk of model overfitting. The training process
employed the AdamW optimizer (Loshchilov & Hutter 2017),
with an initial learning rate set at 3e-5 and a weight decay
coefficient of 0.08, which aids in maintaining model stability.
A warm-up strategy for the learning rate was applied during the
first training epoch and was dynamically updated based
on training progress. The overall training plan included
100 epochs, with each batch processing 8 images, ensuring
sufficient training depth and data coverage.
The performance of the model is evaluated through

accuracy, precision, and recall, with the calculation formulas
as follows:

( )=
+

+ + +
Accuracy

TP TN

TP TN FP FN
, 6

( )=
+

Precision
TP

TP FP
, 7

( )=
+

Recall
TP

TP FN
. 8

Performance data were recorded and visualized using Tensor-
Board, with the accuracy and loss variation curves displayed in
Figures 7 and 8 respectively. These curves illustrate the
performance changes of the model during the training and
validation processes. As training progressed, the Train Accur-
acy eventually converged to 1, while the Validation Accuracy
reached 95.22%.
The confusion matrix, along with the precision and recall for

each category, is presented in Figure 9, further elucidating the
performance of the SFNet in stellar classification tasks. It is

7

Research in Astronomy and Astrophysics, 24:095023 (11pp), 2024 September Fu et al.



evident that the recall for B-type stars is the highest, reaching
98.20%, while the recall for F-type stars is the lowest, still
achieving 93.50%. Overall, the experiments achieved a final
accuracy of 95.22% on the test set, demonstrating the
significant effectiveness of the preprocessing techniques, such
as CWT using SMor as the wavelet function, and the SFNet
model in feature extraction and classification generalization.
The balanced accuracy displayed across different categories
further corroborates the model’s capability and stability in
handling diverse data sets. These results validate the potential
of our methodology for practical applications and highlight the

prospects of deep learning approaches in stellar classification
tasks.

4. Discussions

We conducted a series of comparative experiments involving
several classifiers, including the SGDClassifier, Random
Forest, VGG19, and ViT. These methods include traditional
machine learning techniques and two representative types of
networks from deep learning approaches, enabling the evalua-
tion and comparison of their effectiveness and efficiency in
stellar image classification tasks.
The Stochastic Gradient Descent (SGD; Bottou 2010)

classifier is an incremental learning method based on stochastic
gradient descent. The classifier is configured with a hinge loss
function combined with L2 regularization, overall representing
an approximate implementation of Support Vector Machines
(Cortes & Vapnik 1995).
The Random Forest classifier (Breiman 2001) is a powerful

method based on ensemble learning, which enhances prediction
accuracy and stability by constructing multiple decision trees
and aggregating their outputs at the ensemble layer. The
classifier is configured with 100 decision trees and handles
large-scale image data sets through batch processing
(1024 images per batch), ensuring efficient data management
and computation.
VGG19 (Simonyan & Zisserman 2014) is a widely used

deep CNN. In the experiments, the image size was adjusted to
384× 384 pixels, and the data were augmented by random
horizontal flipping with a probability of 0.5, followed by
normalization. Model training was conducted on a CUDA-
accelerated device using the AdamW optimizer with an initial
learning rate set at 2e-5 and a weight decay of 5e-2.
Throughout the training process, a total of 100 epochs were
set, processing 16 images per batch.

Figure 7. Accuracy curve.

Figure 8. Loss curve.

Figure 9. Confusion matrix.
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The ViT model (Dosovitskiy et al. 2020) employs a deep
learning architecture based on the self-attention mechanism.
During the data preprocessing stage, images are resized to
224× 224 pixels and enhanced through random horizontal
flipping and normalization to augment the model’s general-
ization capability. The model training utilizes the AdamW
optimizer, combined with a learning rate scheduler to optimize
the training process. The initial learning rate is set at 2e-5 with
a weight decay of 5e-2. Over the course of 100 epochs, the
learning rate is gradually reduced and a warm-up strategy is
implemented at the beginning of training, effectively balancing
convergence speed with training stability.

For these classification methods, our comparative experi-
ments are divided into three parts.

In the first part of our study, we opted for the Short-Time
Fourier Transform (STFT) method (Li-Ting et al. 2021),
commonly used in the spectral domain and previously applied
to stellar classification tasks, with specific parameter settings
consistent with those used by Liting Du. We retained the other
preprocessing methods and data loading techniques to illustrate
the impact of different transformation methods on the final
classification accuracy. The results, as shown in Table 1,
indicate that the accuracy of the five classification methods
ranged from 90.72% to 94.26%. Notably, the SFNet designed
in this study is more suited to classifying wavelet images

generated by CWT and does not exhibit a feature extraction
advantage with images produced by STFT.
In the second part of our study, we modified the

preprocessing approach by employing the CWT, utilizing the
commonly used Morlet wavelet function, while maintaining
other preprocessing methods such as one-dimensional con-
volution processing and normalization unchanged. The specific
results, as shown in Table 2, demonstrate that the accuracy of
the five classification methods ranged from 82.98% to 91.76%
across the same data set. The experimental outcomes indicate
that the CWT method using only the Morlet wavelet function
does not exhibit competitive performance. However, compared
to the STFT method, the SFNet designed in this study
demonstrates advantages in classifying stellar spectral images
generated by CWT.
In the third part of our experiment, we utilized the SMor

wavelet function proposed in this study as the wavelet function
for CWT, while all other preprocessing methods remained
unchanged. The specific results, as presented in Table 3, show
that the accuracy of the five classification methods ranged from
91.69% to 95.22%. Each classification method experienced
improvements in classification performance with images
generated by CWT using the SMor wavelet function. Notably,
the Random Forest method saw an increase in accuracy of
9.06%, while the other classification methods also exhibited at

Table 1
Results of Various Classifiers for Images Generated by Short-Time Fourier Transform (STFT)

Results of Various Classifiers for Images Generated by STFT

Classifier SGDClassifier Random Forest VGG19 Vision Transformer SFNet
Objects B, A, F, G, K B, A, F, G, K B, A, F, G, K B, A, F, G, K B, A, F, G, K
Other Methods 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm
Accuracy 90.72% 91.52% 94.26% 93.42% 93.88%

Table 2
Results of Various Classifiers for Images Generated by Continuous Wavelet Transform (CWT) Using the Morlet Wavelet Function

Results of Various Classifiers for Images Generated by CWT-Morlet

Classifier SGDClassifier Random Forest VGG19 Vision Transformer SFNet
Objects B, A, F, G, K B, A, F, G, K B, A, F, G, K B, A, F, G, K B, A, F, G, K
Other methods 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm
Accuracy 82.98% 84.88% 91.58% 90.12% 91.76%

Table 3
Results of Various Classifiers for Images Generated by Continuous Wavelet Transform (CWT) Using the Super Morlet (SMor) Wavelet Function

Results of Various Classifiers for Images Generated by CWT-SMor

Classifier SGDClassifier Random Forest VGG19 Vision Transformer SFNet
Objects B, A, F, G, K B, A, F, G, K B, A, F, G, K B, A, F, G, K B, A, F, G, K
Other methods 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm 1D-Conv, Norm
Accuracy 91.69% 93.94% 94.70% 93.72% 95.22%
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least a 3% increase in accuracy. These experimental results,
superior to those using the Morlet wavelet function for CWT,
indicate that the SMor wavelet function proposed in this study
is more effective in retaining information beneficial for
classification in the transformation of stellar spectra. Addition-
ally, the accuracies of all five classifiers were also higher than
those achieved with the STFT method, demonstrating the
feasibility of the CWT approach.

It is noteworthy that when comparing the CWT method
using the SMor wavelet function with the STFT method,
although the SMor approach resulted in increased accuracy
across all classification methods, the improvements for the deep
learning models VGG19 and ViT were relatively modest, at
only 0.44% and 0.3%, respectively. In contrast, the SFNet
demonstrated a more significant increase of 1.34%. This
indicates that the SFNet designed in this study has a distinct
advantage in handling classification tasks involving the
conversion of stellar spectra to images using CWT. Figure 10
shows the accuracy of various classifiers with different
methods.

5. Conclusion

In this paper, we aim to classify stars using deep learning
methods. Initially, we analyzed the number of spectra for each
stellar category, selecting five types of stars (B, A, F, G, and K)
for our study and ensuring equal experimental numbers for
each. This approach was taken to eliminate the potential
impacts of data set imbalance and enhance the persuasiveness
of the results. Furthermore, we propose the use of CWT to
convert stellar spectra into wavelet images, introducing an
SMor wavelet function specifically designed for stellar spectra,
which preserves more spectral features and improves classifi-
cation accuracy. Lastly, we designed the SFNet, a model that
optimizes multi-scale feature extraction from local to global
levels. This model demonstrates advantages in feature

extraction for images generated using the SMor wavelet
function, further enhancing classification accuracy. In the
experimental phase, we compared the results of three methods
(STFT, CWT-Morlet, and CWT-SMor) across five classifiers
(SGDClassifier, Random Forest, VGG19, ViT, and SFNet),
validating the superiority of the proposed SMor wavelet
function and SFNet in the task of stellar classification.
In summary, this study has enhanced preprocessing steps

through innovative wavelet functions and improved deep
learning models to better suit feature extraction tasks for
wavelet images, ultimately increasing the accuracy of stellar
classification tasks. In future work, we aim to further enhance
classification performance and subdivide the data set into more
detailed stellar subcategories for experimental research.
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