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Abstract

The automatic detection and analysis of sunspots play a crucial role in understanding solar dynamics and predicting
space weather events. This paper proposes a novel method for sunspot group detection and classification called the
dual stream Convolutional Neural Network with Attention Mechanism (DSCNN-AM). The network consists of
two parallel streams each processing different input data allowing for joint processing of spatial and temporal
information while classifying sunspots. It takes in the white light images as well as the corresponding magnetic
images that reveal both the optical and magnetic features of sunspots. The extracted features are then fused and
processed by fully connected layers to perform detection and classification. The attention mechanism is further
integrated to address the “edge dimming” problem which improves the model’s ability to handle sunspots near the
edge of the solar disk. The network is trained and tested on the SOLAR-STORM1 data set. The results demonstrate
that the DSCNN-AM achieves superior performance compared to existing methods, with a total accuracy
exceeding 90%.

Key words: Sun: magnetic fields – Sun: flares – (Sun:) sunspots – DSCNN – Attention mechanism – Edge
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1. Introduction

Sunspots represent temporary blots on the photosphere of the
Sun which are darker than the surrounding regions. These are
linked to solar activity levels and could reflect space climate
status. The detection and classification of sunspots is of great
importance in space weather prediction (Ndacyayisenga et al.
2021; Lee et al. 2012; Guo et al. 2014; Yi et al. 2021; Prasad
et al. 2022) and in satellite operation and telecommunications
(Kucuk et al. 2017; Abed et al. 2021). Despite the use of deep
learning (Goodfellow et al. 2016) and other machine learning
methods for sunspot group detection and classification,
accurately identifying and classifying sunspots remain challen-
ging particularly with large data sets or images with complex
backgrounds (Schuh & Angryk 2014; Junior & Luisir 2019).
Addressing these challenges is crucial as highlighted by Jaeggli
& Norton (2016) who identified significant gaps in our
understanding of solar active region (AR) statistics.

The edge dimming effect of sunspots is an important factor
affecting the accuracy of sunspot identification and classifica-
tion. It is caused by factors such as projection when a sunspot
group approaches the edge of the solar surface. As a result, the
characteristics of the white light map of the sunspot group

become blurred and the accuracy of magnetic field measure-
ment decreases.
The Mount Wilson classification scheme is a classification

scheme on the magnetic pole distribution of sunspot groups
which is of high value as it shows the relationship between the
complex magnetic pole structure of sunspot groups and the
formation of solar storms. The Mount Wilson classification
scheme requires a comprehensive analysis of different dimen-
sions of feature information to determine the magnetic type of a
sunspot group. The process begins with observing the structure
of the sunspot group using a white light map followed by
examining the magnetic pole distribution on the corresponding
magnetic map. These observations are then combined to
determine the magnetic type of the sunspot group.
To address the challenges of the “edge dimming” problem in

sunspot detection and classification, we propose a dual stream
convolutional neural network (DSCNN) method inspired by
the Mount Wilson scheme. One branch of the network is
dedicated to extracting features from white light images while
the other branch extracts features from magnetic maps. These
distinct types of features are fused in the fully connected layer.
The dual stream architecture allows the model to capture both
fine-grained details and broader contextual information, leading
to better generalization across diverse sunspot appearances.
Our model is optimized for real-time processing, ensuring that
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it can be deployed in operational settings where timely
detection is critical.

The attention mechanism (Xu et al. 2016; Anderson et al.
2018) is a fine tuning technique for tuning weights. It allows
the model to focus on the most relevant parts of the input data,
ensuring that critical information such as sunspot edge details is
adequately considered. The attention mechanism is adopted in
this paper to mitigate the “edge dimming” issue by ensuring
that edges receive appropriate attention, leading to an improved
overall performance.

The rest of the paper is organized as the following: Section 2
discusses methods from related work highlighting previous
studies and their methodologies and how our work builds upon
and differs from them. Section 3 focuses on the SOLAR-
STORM1 data set detailing its composition. Section 4 presents
the architecture of the DSCNN including the attention
mechanism and its implementation. Section 5 delves into the
experiment and discussion describing the experimental setup,
results, comparisons with existing methods and the impact of
the attention mechanism on performance. Finally, Section 6
concludes the paper by summarizing the key findings,
contributions and potential future work directions.

2. Related Work

In recent years an increasing number of space missions have
led to a rapid accumulation of solar activity data. With the
development of automatic sunspot recognition technology, an
increasing number of studies are devoted to the automatic
classification of sunspots. The proposed methods can be
roughly categorized into traditional methods and deep learning
methods.

Traditional methods include machine learning methods and
other statistics-based method. Nguyen et al. (2005) proposed a
system combining rough set theory and hybrid methods to
preprocess and classify sunspot images, leveraging domain
knowledge to improve standalone methods. Though feasible,
the method suffers from complexity when faced by an
increased workload. Moreover, (Majed et al. 2010) introduces
an automated method for classifying sunspot groups using
Support Vector Machines (SVMs). The technique involves
several phases: extracting the solar disk from full-disk images,
binarizing and smoothing the image, segmenting sunspots and
grouping them, extracting attributes from each group and
finally classifying the sunspot groups using a one-against-all
SVM approach. Similarly, Nguyen et al. (2006) used decision
trees and clustering methods which despite their historical
significance require manual feature extraction making them
slower and more labor-intensive. This shortcoming was
also faced by Colak & Qahwaji (2008) who developed a
hybrid system integrating the McIntosh classification method
with image processing and neural networks to detect and
classify sunspots. Their approach enhanced both accuracy and

efficiency of sunspot detection by leveraging statistical
techniques including fractional-order calculus, thresholding
and attribute extraction. Even though it led to more accurate
identification of sunspots, the method is complex and requires
more computational time. Similarly, Veeramani & Sudhakar
(2024) blended global and local thresholding to improve
accuracy and robustness in the detection and classification of
sunspots. While the traditional approaches can offer some
advantages in terms of detection precision, they also face
challenges related to parameter tuning and implementation and
do not have the ability to process complicated solar images.
Recent advancements in deep learning have significantly

improved the performance of detection and classification of
sunspots. Stenning et al. (2012) utilized mathematical morphology
for feature extraction in automated classification systems combining
traditional image processing techniques with modern machine
learning algorithms to handle the complex shapes of sunspots. Fang
et al. (2019) developed a deep learning algorithm that achieved
high classification accuracy using white light images. More so,
Ling et al. (2020) further improved upon these methods by
combining reprocessing, thresholding and morphological opera-
tions for detection and comprehensive feature extraction for
detailed analysis and detection of sunspots. Nevertheless, this
approach remains sensitive to threshold settings it is computation-
ally complex. Tang et al. (2021) took these advancements further
by developing an ensemble model using multiple deep-learning
algorithms, leveraging diverse perspectives from different models
to uncover new insights. However, this approach still required
substantial computational resources. Herrera et al. (2021) created a
unique model that gave insights into the various patterns of the
sunspots’ magnetic dynamo that drives solar activity maxima and
minima. They applied machine learning algorithms to the World
Data Centers newly constructed annual sunspot time series.
Additionally, Chola & Benifa (2022) focused on utilizing deep
convolutional neural networks (CNNs) for the detection and
classification of sunspots in solar images. Despite offering
significant advantages in terms of accuracy and automation this
method presented challenges related to threshold sensitivity, noise
sensitivity, computational complexity as well as feature selection.
Mourato et al. (2024) introduced a hybrid method that leveraged
deep learning techniques to identify and delineate sunspots. Though
this method provides a detailed and pixel-level classification of
sunspots, the model requires substantial computational resources
including high-performance GPUs for both training and inference.
The deep learning methods provide a promising approach for

sunspot detection and classification. With massive solar data
sets being crafted, deep learning methods have achieved far
better performance than traditional methods. The main issue for
the deep learning methods is to further improve classification
accuracy currently. As mentioned earlier, the “edge dimming”
phenomenon significantly impacts classification accuracy and
this paper aims to address it using a deep learning approach.
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3. Dataset

The data set we used is the SOLAR-STORM1 sunspot group
data set provided by the space environment artificial intelligence
early warning innovation workshop, Observational Image Magn-
etic Classification Dataset (Fang et al. 2019). This data set is based
on the magnetic type classification scheme of the Mount Wilson
sunspot group and is divided into two parts: white light images
and magnetic images. Each white light image part or magnetic
image part contains three types: Alpha, Beta and Betax. It can be
downloaded publicly from the Tianchi Experiment. The data set
consists of images from the Helioseismic and Magnetic
Imager (HMI) labeled as space-weather HMI active region
patches (SHARP) captured at 720 s intervals. Each file follows
the naming convention: hmi.sharp_720s.num.YYYYMMDD_
hhmmss_TAI.magnetogram.Fits, where “Fits” stands for
Flexible Image Transport System which is a digital file format
used to store, transmit and manipulate scientific images. To ensure
no object intersection occurs between the test set and the training
set after data set division, the experimental data in this study are
divided into the test set and the training set according to the
observation objects. The data set consists of a total of 14,469 data
samples, each containing two images: magnetic and white light
maps. These include:

1. 4709 magnetic field maps and white light maps of Alpha
sunspots: accounting for 32.54% of the data set.

2. 7353 magnetic field maps and white light maps of Beta
sunspots: accounting for 50.82% of the data set.

3. 2407 magnetic field maps and white light maps of Betax
sunspots: accounting for 16.64% of the data set.

Due to the slow evolution of the sunspot groups, the sunspot
groups maintain the same magnetic type within a certain period
of time. Consequently, most of the sunspot groups exhibit high
magnetic similarity when observed, posing challenges for the
model’s classification accuracy. Figure 1 below shows some of
the sunspots that one can find in our data set.

4. Method

To address the edge dimming problem often encountered in
sunspot images, a DSCNN-AM architecture is proposed for the
group classification of sunspots. This method integrates the
ResNet50 model as the backbone and then incorporates
attention mechanisms. The model is built using a pre-trained
model in Keras, which includes 10 pre-trained models for
image classification trained on ImageNet data. The construction
process involves creating the ResNet50 branches (loading
ImageNet weights) for extracting features from white light and
magnetic images named the white light feature branch and the
magnetic image feature branch respectively. After feature
extraction, the two feature sets are concatenated, flattened and
input into a fully connected layer with L2 regularization. The

output then passes through another fully connected layer with
Dropout before being classified using Softmax.

4.1. Network Architecture

The network structure is displayed in Figure 2 illustrates the
DSCNN structure. We input the white light image and the
magnetic image separately into the network, each entering
different branches without sharing CNN weights. This results
in two distinct feature vectors which are then concatenated and
passed through a fully connected layer. The red arrows indicate
the shortcut connections that bypass certain layers connecting
earlier layers directly to later layers within the convolutional
stages. These connections represent the residual units typical in
a ResNet architecture which help improve gradient flow during
training. Softmax is subsequently used for classification.

4.2. DSCNN-AM

In order to further enhance the classification accuracy of the
DSCNN and mitigate the negative impact of edge dimming, we
incorporate an attention mechanism into the model. This allows
the network to assign greater weight to the sunspot group areas
when processing images, effectively filtering out the effects of
the edge dimming phenomena. In our modified model drawn in
Figure 3, ResNet50 is integrated with the attention mechanism.
Specifically, ResNet50 is integrated with both Squeeze-and-

Excitation Network (SE-Net) and Convolutional Block Atten-
tion Module (CBAM) attention mechanisms. The SE-Net
introduces channel-wise attention, while CBAM combines both
channel-wise and spatial attention, ensuring that the model can
focus on the most relevant parts of the input images. This
integration enhances the model’s ability to emphasize impor-
tant features leading to improved classification accuracy.

4.2.1. ResNet Unit Combined with Squeeze-and-Excitation
Network (SE-Net)

The Squeeze-and-Excitation Network, first introduced by Hu
et al. (2018), introduces channel-wise attention that recalibrates
feature responses by explicitly modeling the interdependencies
between the channels of convolutional features. The ResNet
network is composed of multiple residual units. The process of
images entering each residual module is the process of feature
extraction. In order to use the attention mechanism in each
feature extraction process, the attention mechanism must be
integrated into the residual module. The structure of the
residual module combined with SE-Net is illustrated in
Figure 4. When the feature map X enters the residual module,
it is processed by SE-Net to form a refined feature map X̃ . This
refined feature map is then added to the initial feature map to
produce the final feature map. This integration ensures that the
network focuses more on relevant areas thereby improving the
accuracy of sunspot classification.
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4.2.2. ResNet Unit Combined with Convolutional Block
Attention Module (CBAM)

CBAM was first introduced by Woo et al. (2018). CBAM is
a lightweight module that combines both spatial and channel-
wise attention mechanisms to refine feature maps. In the same
process as the residual module combined with SE-Net, the
CBAM module is integrated into each residual module. The
structure of the residual module combined with CBAM is
depicted in Figure 5.

It can be seen from the figure that when the feature map
enters the module, it will first pass through channel attention
and then pass through spatial attention. The process can be

summarized as

U M F F, 1C= Ä( ) ( )

X M U U. 2S= Ä( ) ( )

Among them, X is the feature map after convolution, Mc is the
channel attention, while assuming U is the feature map after
channel attention processing, and ⊗ is the multiplication of
corresponding elements. Ms is spatial attention, and we also
assume F is the feature map after spatial attention processing.
The main changes are in the feature extraction section of the
residual module and the skip connection remains unchanged.

Figure 1. Sample data set, to the left are continuum images and to the right are magnetogram images.
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4.2.3. Model Construction

During the model construction, attention mechanisms are
integrated into the residual units of the ResNet50. The specific
construction process involves first building separate branches:
one incorporating SE-Net for channel-wise attention and
another with CBAM for combined channel and spatial
attention. Next, ResNet50 branches (SE-Net or CBAM) are
created for extracting features from white light and magnetic
images, named branch 1 and branch 2 respectively. The
outputs, out1 and out2, from these branches are then spliced
and processed with Flatten. The processed features are input
into the fully connected layer with L2 regularization followed
by the fully connected layer with Dropout. Finally, the
features are fed into Softmax for classification. This
construction is followed by training with ten-fold cross-
validation to ensure robust evaluation and performance.

4.2.4. Model Evaluation and Fusion

Model evaluation and fusion employ a ten-fold cross-
validation to ensure objective evaluation of model performance
by mitigating the risk of improper data slicing. This technique
divides the data set into ten parts using nine parts for training
and one part for testing in each iteration, ultimately providing a
robust assessment of the model’s accuracy.
After training, predictions from three dual stream models,

ResNet50, ResNet50 with SE-Net and ResNet50 with CBAM, are
evaluated. This process provides the classification performance
and corresponding results for the fused models, demonstrating
superior performance compared to non-fused models.

5. Experiment and Discussion

In this section we discuss the experimental setup and results.
The first group of results is of three main models: dual-stream

Figure 2. Structure diagram of dual-stream CNN adopted.

Figure 3. Structure diagram of DSCNN-AM.
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ResNet50, dual-stream ResNet50 combined with SE-Net and
dual-stream ResNet50 combined with CBAM. The models
were trained and evaluated using both white light and magnetic
images separately and in combination.

5.1. Before Model Fusion

Here we evaluate the performance of different dual-stream
ResNet50 models before applying model fusion techniques.
The aim is to establish a baseline for comparison and
understand the impact of integrating the attention mechanism
on the models’ performance. Baseline Dual-stream ResNet50
uses the standard ResNet50 architecture with dual input
streams for white light and magnetic maps. It provides a
reference point for evaluating the effectiveness of adding the
attention mechanism. The Dual-stream ResNet50 with SE-Net
integrates SE-Net to improve feature recalibration by weighting
the importance of different features. We investigate whether
this addition brings any improvements to the performance
metrics. The Dual-stream ResNet50 with CBAM introduces
both channel and spatial attention mechanisms to refine feature
extraction. This variant aims to enhance the model’s ability to
focus on relevant features in the input data. Table 1 summarizes
the experimental results for each of these models providing
accuracy, recall and F1-score. The goal is to analyze how the
integration of SE-Net and CBAM affects the model’s
performance in comparison to the baseline ResNet50 model.
The inputs for the ResNet50 model are white light and

magnetic images. It showed accuracy of 84.93%, recall of
84.93% and an F1-score of 84.87%. This model serves as a
reference point to evaluate the performance improvements
introduced by integrating SE-Net and CBAM. The SE-Net
model achieved an accuracy of 84.87%, recall of 84.87%, and
an F1-score of 84.41%. Compared to the baseline ResNet50
model, the SE-Net integrated model showed no significant
improvement. This could be due to the equal contribution of

Figure 4. Residual module combined with SE-Net.

Figure 5. Residual module combined with CBAM.
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feature maps in the classifier’s view, indicating that SE-Net
may not effectively enhance the classification performance for
this specific task. The CBAM model achieved an accuracy of
88.53%, recall of 88.53% and an F1-score of 88.22%. This
represents a significant improvement over the baseline model,
with an accuracy increase of 3.6% and an F1-score increase of
3.35%. The spatial attention mechanism in CBAM likely
contributed to these improvements by allowing the model to
better focus on the relevant features in the images.

5.2. Model Fusion

For model fusion we used outputs from the dual-stream
ResNet50, dual-stream ResNet50 (SE-Net) and dual-stream
ResNet50 (CBAM) models. We performed 10-fold cross-
validation and fused the results from ten small models. The
results are shown in Table 2.

Comparing Tables 2 and 1, we see improvement in all
indicators post-fusion. The accuracy and weighted F1-scores
for the dual-stream ResNet50 improved by 5.68% and 5.7%,
respectively. The dual-stream ResNet50 (SE-Net) displayed a
3.39% increase in accuracy and a 3.54% increase in weighted
F1-scores. The dual-stream ResNet50 (CBAM) exhibited a
4.22% increase in accuracy and a 4.35% increase in weighted
F1-scores. This indicates that model fusion enhances classifica-
tion ability likely due to better utilization of the data set and the
integration of various sub-model classification capabilities.

The improvements observed in the CBAM-integrated model
and the fusion results highlight the importance of attention
mechanisms and model fusion in enhancing classification
performance of the proposed model. The spatial attention
provided by CBAM allows the model to focus on the most
relevant features in the sunspot images leading to better
classification accuracy. Additionally, model fusion leverages

the strengths of different sub-models, providing a more robust
and comprehensive classification capability.

5.3. Attention Mechanism Visualization

To provide an intuitive understanding of the role of the
attention mechanism in the model, we include a heatmap

Table 1
Experimental Results of Each Dual-stream Model

Model Data Accuracy Recall F1-Score

Dual-stream ResNet50 White light map and magnetic map 84.93% 84.93% 84.87%

Dual-stream ResNet50 (SE-Net) White light map and magnetic map 84.87% 84.87% 84.41%

Dual-stream ResNet50 (CBAM) White light map and magnetic map 88.53% 88.53% 88.22%

Table 2
Fusion Experiment Results of Each Dual-stream Model

Model Data Accuracy Recall F1-Score

Dual-stream ResNet50 Fusion White light map and magnetic map 90.61% 90.61% 90.57%

Dual-stream ResNet50 (SE-Net) Fusion White light map and magnetic map 88.23% 88.23% 87.95%

Dual-stream ResNet50 (CBAM) Fusion White light map and magnetic map 95.8% 96% 98%

Figure 6. Heatmap of the attention mechanism output. The heatmap highlights
the areas of the image that the attention mechanism focuses on, illustrating its
contribution to the model’s improved classification performance.
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visualization of the attention mechanism’s output. This
heatmap helps illustrate how the attention mechanism focuses
on different regions of the input images, thereby improving the
model’s classification performance. Figure 6 shows the results
of the heatmap.

In this figure, four different indices of input images are
displayed. For each input image, the corresponding heatmap
visualizations of the attention mechanism’s “Predict” and
“Output” stages are shown. These visualizations demonstrate
how the attention mechanism emphasizes different areas within
the input image, helping to enhance the model’s ability to
accurately classify the images.

We take Betax class object 2048 as an example, as featured
in Figure 7. The left image is a white light map of the sunspot
group where features are blurred due to dimming effects and a
black background. The right image is a magnetic field map
(magnetogram) which also shows decreased accuracy in
magnetic field strength measurement because of these effects.
As sunspots progress toward the edge of the solar surface
projection, edge dimming effects further blur the white light
map features and reduce magnetic field measurement accuracy.
When the sunspot group approaches the edge of the solar disk,
image quality degradation can cause poor model classification
accuracy. In cases of misclassification, the transient appearance
and evolution-related disappearance of sunspots are challen-
ging to handle manually. However, the attention mechanism in
our model can mitigate the impact of these effects, including
edge dimming and black background interference, thus
improving classification accuracy.

We also take Alpha class object 1360 as an example, as
depicted in Figure 8. The object was consistently displayed as a
unipolar sunspot group over three days (a–f) and the model
classification was correct. However, if on any other day another

sunspot had appeared near one of the sunspots in the group, the
features of the sunspot group might have been classified
differently, potentially as Beta or Betax. This demonstrates that
brief appearances of additional sunspots during the modeling
process can lead to misclassification. The dual-stream CNN
with attention mechanisms (SE-Net and CBAM) incorporated
in our method helps to mitigate this issue. The attention
mechanisms allow the model to focus on the most relevant
features and spatial regions, reducing the impact of edge
dimming effects and background interference. As a result, the
model achieves more accurate classifications even when the
sunspot features are blurred or evolve over time.
Additionally, we can take the Beta class object 3120 as an

example, as shown in Figure 9. The initial sunspot group is
clearly bipolar but during the evolution process the right
sunspot gradually dissipates while the left sunspot remains.
Consequently, when the image of the sunspot group at this later
stage is input into the model, it is likely to be incorrectly
identified as Alpha. This blurred type feature formed due to the
evolution of the sunspot group may be a significant reason for
the model’s poor classification accuracy. In summary, the
image demonstrates the challenge of classifying evolving
sunspot groups. The clear initial bipolar structure evolves into a
less distinct single sunspot, leading to potential misclassifica-
tion. Attention mechanisms can help by focusing on the most
relevant features at different stages and incorporating temporal
information can further enhance the model’s ability to correctly
classify evolving sunspot groups.
Using the false positive rate as the horizontal axis and the

true positive rate as the vertical axis, we can draw the Receiver
Operating Characteristic (ROC) Curve as shown in Figure 10.
Blue lines represent the ROC curves for the dual flow
ResNet50, red lines represent the ROC curves for the dual

Figure 7. White light and magnetic map at the end of object No. 2048.
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Figure 8. White light and magnetic maps of object No. 1360 in 2010 July.

Figure 9. White light and magnetic maps of the early and late stages of object No. 3120.
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flow ResNet50 (SE-Net) and black lines represent the ROC
curves for the dual flow ResNet50 (CBAM). Ideally, all
categories are correctly classified as (0, 1) points so the
classification results of each category in each model should be
as close as possible to (0, 1). The ROC curves plot the true
positive rate (vertical axis) against the false positive rate
(horizontal axis) at various threshold settings. A larger Area
Under Curve (AUC) indicates stronger classification perfor-
mance. The dual flow ResNet50 (CBAM) shows significant
improvement in AUC values for the Alpha and Betax classes
compared to the other models, although the Beta class
performance decreases, likely due to complex magnetic pole
distributions in some Beta images. This suggests that the
attention mechanism might not fully cover the magnetic pole
areas, leading to biased feature extraction.

Taking the image of Betax class 6975 from the data set as an
example, this image is input into the models of dual flow
ResNet50, dual flow ResNet50 (SE-Net) and dual flow
ResNet50 (CBAM) fusion, and the probability distribution of
Softmax is directly output. The results are shown in Table 3.

From Table 3, it can be seen that the object 6975 with edge
dimming is determined as Beta by both dual flow ResNet50
and dual flow ResNet50 (SE-Net) with decision probabilities
above 90%. This indicates that the network with SE-Net added
only gives channel weights to the feature map which is not

sufficient to extract effective classification features. On the
other hand, the dual-stream ResNet50 (CBAM) correctly
classifies the image as Betax with a probability of 75.43%,
which is significantly higher than the probabilities for Alpha
and Beta. This suggests that when dealing with images
featuring edge dimming, spatial attention can better capture
features conducive to accurate classification.

5.4. Comparative Analysis of Sunspot Detection and
Classification Methods

The methods by Chola & Benifa (2022), Veeramani &
Sudhakar (2024) and the proposed approach all aim to improve
the accuracy and reliability of sunspot detection and
classification.
This study aims to compare these methods based on their

classification accuracy, precision, recall, F1-score and other
relevant metrics. By evaluating these approaches, we were able
to identify the strengths and limitations of each method, thus
providing valuable insights into the effectiveness of different
techniques in the field of sunspot detection and classification.
This comparative analysis will contribute to ongoing efforts to
develop robust and reliable systems for solar activity monitor-
ing and research.
Table 4 highlights the strengths and weaknesses of each

method. Chola et al.ʼs approach using AlexNet-based deep
convolutional networks achieves outstanding classification
performance with near-perfect accuracy, precision, recall and
F1-score values. Veeramani et al.ʼs method which relies on a
pre-processing and differencing approach also demonstrates
excellent performance with high accuracy, specificity, sensi-
tivity, precision and F1-score as well as a low Dice loss. The
proposed method, using dual stream ResNet50 with SE-Net
and CBAM attention mechanisms shows robust performance in
solving the edge dimming cases with the CBAM variant
providing the best results in terms of accuracy and F1-score.
The Recall and F1-score Curve as shown in Figure 11

highlights the trade-offs between recall and F1-score for each
method.
The bar chart in Figure 12 shows the accuracy comparison

for each method.
By integrating these results into a comprehensive evaluation,

we better understand the capabilities and limitations of each

Table 3
Experimental Results of Each Dual-stream Model

Model Data Accuracy Recall F1-Score

Dual-stream ResNet50 White light map and magnetic map 84.93% 84.93% 84.87%

Dual-stream ResNet50 (SE-Net) White light map and magnetic map 84.87% 84.87% 84.41%

Dual-stream ResNet50 (CBAM) White light map and magnetic map 88.53% 88.53% 88.22%

Figure 10. ROC images of the three models.
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method, facilitating the development of more effective and
accurate models for solar activity monitoring.

6. Conclusion

We improve on the dual flow ResNet50 by adding SE-Net
and CBAM respectively to the residual network, thus forming
two new models and comparing them with the dual stream

ResNet50. The accuracy, F1-score, recall and ROC curve are
used to evaluate the advantages and disadvantages of the
model. As noted, the added CBAM has better classification
performance because it contains spatial attention. The exper-
imental results also show that model fusion helps improve the
performance of the model.

7. Future Work

In this paper, deep learning is applied for classifying the
magnetic types of sunspot groups. Despite progress, training
time remains long with each epoch training taking 4 hr due to
network complexity. Future work should focus on reducing
network complexity without compromising accuracy. Addi-
tionally, since only the circular area of the Sun image is
relevant and the rest is black, solutions to mitigate the impact of
this black background are needed.
For more accurate predictions, high-quality data are crucial

as magnetic type classification impacts solar storm prediction.
Future research should involve creating a large high-quality
data set of sunspot magnetic types.
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