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Abstract

We use particle-in-cell, fully electromagnetic, plasma kinetic simulation to study the effect of external magnetic
field on electron scale Kelvin–Helmholtz instability (ESKHI). The results are applicable to collisionless plasmas
when, e.g., solar wind interacts with planetary magnetospheres or a magnetic field is generated in AGN jets. We
find that as in the case of magnetohydrodynamic (MHD) KHI, in the kinetic regime, the presence of an external
magnetic field reduces the growth rate of the instability. In the MHD case, there is a known threshold magnetic
field for KHI stabilization, while for ESKHI this is to be analytically determined. Without a kinetic analytical
expression, we use several numerical simulation runs to establish an empirical dependence of ESKHI growth rate,
Γ(B0)ωpe, on the strength of the applied external magnetic field. We find the best fit is hyperbolic,

( ) ( ¯ )B A BB0 pe 0 pe 0w wG = G + , where Γ0 is the ESKHI growth rate without an external magnetic field and
B̄ B B0 0 MHD= is the ratio of external and two-fluid MHD stability threshold magnetic field, derived here. An
analytical theory to back up this growth rate dependence on the external magnetic field is needed. The results
suggest that in astrophysical settings where a strong magnetic field pre-exists, the generation of an additional
magnetic field by the ESKHI is suppressed, which implies that nature provides a “safety valve”—natural protection
not to “over-generate” magnetic field by the ESKHI mechanism. Remarkably, we find that our two-fluid MHD
threshold magnetic field is the same (up to a factor 0g ) as the DC saturation magnetic field, previously predicted
by fully kinetic theory.
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1. Introduction

Electron scale Kelvin–Helmholtz instability (ESKHI) is a
relatively new offspring (Gruzinov 2008; Alves et al. 2012;
Grismayer et al. 2013; Alves et al. 2014, 2015; Miller &
Rogers 2016; Mahdavi-Gharavi et al. 2020; Yao et al. 2020) of
the classical version of instability that has been known since
1868 (Helmholtz 1868; Kelvin 1871). The instability occurs
due to a velocity difference (i.e., shear) at an interface. The
interface can be between either (i) different parts of a single
fluid or (ii) two different media, as long as there is said velocity
difference. As this is a mature field of research, vast amounts of
literature exist on the subject. The instability can occur in the
medium that is (i) magnetized or unmagnetized, i.e., with or
without an external magnetic field. (ii) Also, the description
and the properties of the instability significantly differ in
kinetic or fluid-like regimes. We mostly focus our considera-
tion on the kinetic description of the instability.

In general, there are two contexts for this study: collisionless
plasmas found in situations were (i) solar wind interacts with
planetary magnetospheres (Delamere et al. 2011; Foullon et al.
2011; Johnson et al. 2014; Delamere et al. 2021) or (ii) when a
magnetic field is generated in astrophysical scenarios, such as

active galactic nuclei or gamma-ray bursts (GRBs) (Gruzinov
2008; Alves et al. 2012; Grismayer et al. 2013; Alves et al.
2014, 2015).
Accepted models of GRBs rely on the presence of a

background magnetic field. It appears that magnetic field energy
and kinetic energy of the accelerated particles are in equiparti-
tion. This implies that the aforesaid magnetic field needs to be
somehow generated (Gruzinov 2008). Alves et al. (2012)
presented the first self-consistent 3D particle-in-cell (PIC)
simulations of ESKHI. The main findings of this work include
establishing the saturation levels of maximum equipartition
values of EB/Ep≈ few× 10−3, where EB= ∫B2/(2μ0)dV and
Ep= ∫ρv2/2dV are the volume integrated magnetic and particle
kinetic energy densities, respectively. Alves et al. (2012) found
what factors prescribe the level of saturation of the magnetic
field generated by the ESKHI, which typically occurs on electron
scales, i.e., approximately 100 electron plasma periods. Set up of
Alves et al. (2012), which considers a regime of equal speed
electron counter-flow layers of equal number density across the
interface, is relevant to GRB shocks (Piran 2005), where density
shells have similar number densities and the relativistic factor is
in the range 1� γ0� 10. PIC numerical simulations presented
by Alves et al. (2014) established the generation of a sizable,
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EB/Ep≈ few× 10−3, and large-scale direct current (DC) magn-
etic field component, not predicted by a linear, fluid-like
description and only appearing in the kinetic regime. Alves
et al. (2014) showed that the generated magnetic field appears
due to the thermal expansion of electrons of one flow into the
other across the shear interface. At the same time, in Alves et al.
(2014) ions stay motionless due to the large mass. This electron
expansion was found to form current sheets, which generate the
magnetic field. Alves et al. (2014) extended previous work by
Gruzinov (2008), by considering different number densities
across the shear flow interface and derived a new dispersion
relation. Alves et al. (2014) also considered smooth shear flow
profiles such as ( ) ( )v x c x L0.2 tanh0 = and found that
smoother shears produce smaller ESKHI growth rates. Alves
et al. (2014) in this way provided a generalization of the
magnetohydrodynamic (MHD) result by Miura & Pritchett
(1982), who in turn found that, in the compressible case, the
growth rate is a function of the magnetic Mach number and the
modes with kL< 2 are unstable. Miura & Pritchett (1982) also
found that the most unstable modes have their wavelength
comparable to the width of the shear layer 2kL; 1. A very
important distinction between kinetic and MHD regimes is
underscored by Alves et al. (2014), on page 9, which we quote
without an alteration: “shear flow instabilities in initially
unmagnetized conditions with fast drift velocities (relative to
the temperature) can only develop on the electron-scale.” This
underscores the importance of kinetic effects which is one of the
main motivations for this study in the Kelvin–Helmholtz
instability (KHI) context. Alves et al. (2015) studied a new type
of kinetic instability, so-called mushroom instability (MI),
named so because of the mushroom-shaped features found in
the electron number density. The difference between ESKHI and
MI is that, for ESKHI ( )v x Oy0  , while for ESKHI, ( )v x Oz0  .
Alves et al. (2015) studied how the growth rates of ESKHI and
MI scale with β0= v0/c and γ0, and found that ESKHI has
higher growth rates than MI for sub-relativistic settings.
However, the MI growth rate decays with 0

1 2g- , slower than

that of ESKHI, which decays with 0
3 2g- (see Figure 1 from

Alves et al. 2015). Thus they concluded that ESKHI dominates
for γ0≈ 1 for sub-relativistic flows, while MI dominates for
γ0? 1. Because of this reason, i.e., we would like our results to
be applicable to both (i) collisionless plasmas when the solar
wind interacts with planetary magnetospheres or (ii) magnetic
field is generated in places, such as active galactic nuclei and
GRBs with relatively moderate γ0 values, this paper focuses
mostly on ESKHI with β0= v0/c= 0.2 (γ0= 1.02)—this is the
value also considered by Alves et al. (2014).

We mention in passing that, while the above discussion was
for the electron-proton plasmas, a body of work exists on
electron-scale kinetic, relativistic shear instabilities, where
similarly, the magnetic field generation is seen but in
electron-positron plasmas (Liang et al. 2013a). A comparison

of the electron-positron results to electron-proton plasmas
(Liang et al. 2013b; Nishikawa et al. 2014) or dependence of
the growth rate on the ion-to-electron mass ratio has been also
studied (Nishikawa et al. 2013).
Miller & Rogers (2016) extended the analysis of Gruzinov

(2008), Alves et al. (2012, 2014, 2015) by considering warm
plasmas and found that the growth rate is significantly, up to a
factor of 3, larger for the case of large temperatures. This
analytical calculation conclusion by Miller & Rogers (2016) is
supported by the multi-dimensional PIC simulations of
Grismayer et al. (2013). Yao et al. (2020) also analyzed the
role of electron thermal motion effects on the generation of the
magnetic field. Yao et al. (2020) found an increase in the
growth rate with the increasing plasma temperature. Mahdavi-
Gharavi et al. (2020) studied the instability growth rate of the
excited electromagnetic modes for the relativistic and non-
relativistic cases of solar wind, interacting with the interstellar
plasma medium with an emphasis on the effect of the viscosity
of plasma.
The above introductory comments were all in the kinetic

regime. In the fluid-like description of KHI, the first paper that
considered the effect of the external magnetic field on KHI was
Michael (1955). It should be noted, it was Michael (1955) who
first derived the dispersion relation for the simple case of an
incompressible plasma with a discontinuous flow shear with the
perturbations to the interface between two conducting media,
with velocities U0 and U1 and constant magnetic fields B0 and
B1 that are parallel to the interface. Many published works
wrongly attribute this result to Chandrasekhar (1961), which is
a later work. Blandford & Pringle (1976) studied linearized
KHI with a calculation that generalized previous treatments to
include relativistic relative motion and relativistic internal
sound speeds. The study was performed in the context of beam
models of extragalactic radio sources.
The motivation for the present work is two-fold: (i) To

extend the MHD analysis of Michael (1955) to the kinetic
regime of ESKHI; and (ii) To extend the kinetic analysis of
Alves et al. (2014) by adding the effect of an external magnetic
field to ESKHI.
The paper is organized as follows: Section 1 provides an

introduction to the subject of ESKHI. Section 2 discusses prior
analytical and numerical findings about ESKHI. Section 3
provides the details of our model. Section 4 reveals the main
results of this study. Section 5 lists the main conclusions of
this work.

2. Prior Analytical and Numerical Findings about
ESKHI

An analytic calculation by Gruzinov (2008) provides the
growth rate of ESKHI in 2D. A limited, relevant number of
components of background relativistic shear flows and number
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densities

( ( ) ) ( ) ( )v v x n n x0, , 0 , , 10 0 0 0= =

as well as electromagnetic field perturbations

( ( ) ( ) ) ( ( )) ( )E BE x E x B x, , 0 , 0, 0, , 2x y z1 1 1 1 1= =

with the perturbation wavevectors having only y-component
and harmonic time dependence as ˜ ( ) ( )f f x ei k y t

1 1
y= w- were

considered. Gruzinov (2008) established that for equal speed
electron counter-flow layers of the same number density across
the interface, i.e., for v0(x)= v0sign(x) and ( )n x const0 = , the
growth rate is

⎛

⎝
⎜

⎞

⎠
⎟ ( )k v k v

2
1 8 1 2 . 30

2 pe
2 2

0
2

pe
2

2
0
2

pe
2

w

w w
G = + - -

Equation (3) then implies that the condition for the ESKHI is
|kv0|< ωpe. Figure 3 from Alves et al. (2014) gives a graphical
representation of the growth rate of ESKHI versus wavenum-
ber. It appears like an upside down parabola, with skewed to
the right maximal growth rate of

( )
2 2

0.35 , 40
pe

pe
w

wG = »

at the most unstable wavenumber

( )kv
3

2 2
0.61 . 50

pe
pe

w
w= »

Note that in the above equations, k and ωpe include the

relativistic factor v c1 10 0
2 2g = - dependence. However,

Grismayer et al. (2013) give a useful, explicit dependence on
the relativistic factor γ0, and draw a distinction between k⊥ and
k∥ of the form ˜ ( ) ∣ ∣ ( )f f x e ek x i k y t

1 1
= w- -^ :

⎛

⎝
⎜

⎞

⎠
⎟ ( )

k v k v

2
1 8 1 2 , 60

2 pe
2

0
3

2
0
2

0
3

pe
2

2
0
2

0
3

pe
2

 w

g

g

w

g

w
G = + - -

( )1

2 2
0.35 , 70,max 0

3 2
pe 0

3 2
peg w g wG = »- -

( )k v
3

2 2
0.61 , 8,max 0

0
3 2

pe
0

3 2
pe

g w
g w= »

-
-

with ( )n e me epe
2

0w e= being electron plasma frequency for
γ0= 1.0, strictly.

Alves et al. (2012) performed self-consistent 3D PIC
simulations to study ESKHI. They found that the saturation
levels of maximum equipartition values are EB/Ep≈ 2× 10−3

for the sub-relativistic scenario, and EB/Ep≈ 7× 10−3 for the
relativistic scenario. In their terminology, sub-relativistic means
γ0= 1.02 (i.e., v c 1 1 0.1971 0.20 0

2/ /g= - = » ) and relati-

vistic means γ0= 3 (i.e., v c 1 1 0.9428 0.90 0
2/ /g= - = » ).

Also, Alves et al. (2012) and Grismayer et al. (2013)
established what prescribes the level of saturation of the

magnetic field generated by the ESKHI, which typically occurs
on “electron scales” approximately ≈100/ωpe with the
saturation magnetic field given by

( )B
m

e
. 9

e
DC

pe
0 0

w
b g

Note that in Equation (9), BDC is in SI units while Grismayer
et al. (2013) uses CGS, hence the conversion of magnetic field
and charge yields a factor of c4 4 10 0 /m p pe´ = .

3. Description of the Model

3.1. Theoretical Considerations

Because our motivation for the present work is, on one hand,
to extend the MHD analysis of Michael (1955) to the kinetic
regime of ESKHI and, on the other hand, to extend the kinetic
analysis of Alves et al. (2014) by adding the effect of an
external magnetic field to ESKHI, we need to somehow fix the
relevant magnetic field scale. It is common knowledge that
usually in many space and astrophysical plasma situations
“MHD works where it should not,” so in the absence of an
analytical theory of ESKHI with an external magnetic field, we
fix the relevant magnetic field scale as a two-fluid MHD
stability threshold magnetic field, based on the calculation
given in Appendix. In particular, Michael (1955)ʼs dispersion
relation, for an incompressible plasma with a discontinuous
flow shear and perturbations to the interface between two
conducting media, with velocities U1 and U2 and constant
magnetic fields B1 and B2 that are parallel to the interface, reads
as

( ) ( )
k

U U B B U

2 2 4
, 101 2 1

2
2
2

0

2w
m r

= -
+


+

-
D

where ΔU=U1−U2 is the flow velocity difference across the
interface. Equation (10) thus suggests the existence of stability
threshold magnetic fields that satisfy

( ) ( )B B U

2 4
. 111

2
2
2

0

2

m r
+

=
D

Special cases are: (i) a case without external magnetic field
B1= B2= 0 that recovers the KH result that the current sheet is
always unstable as long as there is a velocity difference; and (ii)
a case of U1=−U2= v0 and B1= B2= B0 considered in this
paper, then the stability threshold magnetic field is

( )B v

2 2
, 120

2

0

0
2

m
r=

which physically means that the threshold magnetic field is
achieved when the magnetic field energy density is equal to
counter-flow kinetic energy density.
In the kinetic description, the electron dynamics is crucial,

while massive ions essentially provide a neutralizing background.
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For example, the Alves et al. (2014) calculation pertains to
moving electrons only. We therefore make an important change
to Equation (12), namely, ρ→ ρe= neme. This means switching
to a two-fluid MHD with v ve , i.e., opposite to a single fluid
MHD in which electrons and ions are “glued” to each other and
act as a single fluid. Thus, for the purposes of this paper, based
on Equation (12), we set

( )B m n v . 13e eMHD 0 0m=

Using the definition of electron plasma frequency pew =

( )n e me e
2

0e and the expression c 1 0 0m e= , Equation (13)
can be rewritten in the notations of Equation (9) as

⎛
⎝

⎞
⎠

( )B
m

e

v

c

m

e
. 14

e e
MHD

pe 0 pe
0

w w
b= =

It is remarkable that Grismayer et al. (2013)ʼs Equation (9) and
our (14) are the same, up to a factor of 0g . In other words, a
two-fluid MHD threshold magnetic field, derived here—see
Appendix for the derivation of the extended version of
Equation (10)—which suppresses the KH instability, is the
same (up to a factor of 0g which is 1.02 for the present paper)
as the DC saturation magnetic field predicted by the kinetic
theory and simulations of Grismayer et al. (2013).

We specifically refrain from using the terms electron MHD
or electromagnetohydrodynamic (EMHD) which have a more
specific meaning. Instead, we refer to “two-fluid MHD,” as it
would be more precise, but too cumbersome to use the term
“two-fluid MHD with stationary ions.” The following discus-
sion explains why: According to Lyutikov (2013), who in turn,
based his discussion on Gordeev et al. (1994), within the
framework of EMHD, the entire electric current is carried by an
electron fluid: J vene e= - , ions only provide a neutralizing
background and do not move, i.e., do not contribute to pressure
or mass (inertia). For the case of infinite conductivity, the
magnetic field is frozen into electron fluid and thus an electric
field satisfies the condition

( )E v B 0. 15e+ ´ =

Hence, the magnetic field induction equation is of the form

( ) ( )B
v B

t
. 16e

¶
¶

=  ´ ´

In the EMHD approximation, the next crucial step is replacing
ve in Equation (16) using the current expression ( )v J ene e/= - ,
where J B 0/m=  ´ , i.e., ( )v B ene e0/ m= - ´

⎡
⎣⎢

⎤
⎦⎥

( ) ( )B B
B

t e n

1
. 17

e0m
¶
¶

= -  ´
 ´

´

Cho & Lazarian (2009) provide a rigorous physical interpreta-
tion for the EMHD approximation, by considering MHD, Hall
MHD, and EMHD at appropriate spatial scales. They use ion
inertial length, di= c/ωpi, for their ordering of terms (see
discussion around their Equations (8)–(13)). We instead use

electron inertial length, de= c/ωpe. In the Hall MHD approx-
imation, one has

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )B
v B

B
B

t e n

1
. 18

e0m
¶
¶

=  ´ ´ -  ´
 ´

´

Note that in Equation (18) the first term contains the bulk plasma
velocity v, not the electron one ve. In Equations (17) and (18) the
factor 1/(μ0ene) can be written as ( )en d e m1 e e e0

2m = . Now
expressing e/me using Equation (14) we get ( )en1 e0m =

( )d v B ce
2

pe 0 0w . Hence with the substitution in Equation (18)
of v v0 , ∇; 1/L0, and ∇t; 1/T0, the different term ordering
is

⎜ ⎟
⎛
⎝

⎞
⎠

( )B

T

B v

L

d

L

B v

L
. 19e0

0

0 0

0 0

0 0

0
 -

Thus, from Equation (19) it follows that for spatial scales much
larger than electron inertial length L0? de, usual single fluid
MHD applies while on scales de= L0 EMHD applies. But
ESKHI is not at that scale, rather it is at a scale of L0; de. That
is why we refrain from the use of the term EMHD.
We also mention a useful notation of the magnetic field

induction in the EMHD approximation provided by Zhao et al.
(2010)

( ) ( ( ) ) ( )B
v B

d

t
d

1
1 . 20e

e e

2 2
2 2¶ - 

¶
=  ´ ´ - 

Note that Equation (20) reduces to Equation (16) with
d d L 1e e

2 2 2
0
2  = .

With this distinction clearly stated, we refrain from using the
induction equation in the form of Equation (17), and we stick
with Equation (16) rewritten as in Michael (1955). In the
Appendix, we provide a calculation similar to Michael (1955),
but with different densities on either side of the shear interface
and with the substitution v ve and ρ→ ρe, since only
electrons move and stationary ions cannot contribute to the
mass (inertia). We now state the main, starting equations of
two-fluid MHD with stationary ions:

( ) ( ) ( )B
v B B v

t
, 21e e

¶
¶

+ ⋅  = ⋅ 

( ) ( ) ( )v
v v

B B
t

p
, 22e

e e
e

e e0r m r
¶
¶

+ ⋅  = -


+
 ´ ´

( )v B0, 0. 23e ⋅ =  ⋅ =

In the Appendix we derive the two-fluid MHD dispersion
relation for the different electron densities, ρe1 and ρe2, on
either side of the interface, where we obtain:

( )
( )

( ) ( )
( )

k

U U B B U
,

24

e e e e

e e e e

e e e

e e

1 1 2 2

1 2

1
2

2
2

0 1 2

1 2
2

1 2
2

w r r
r r m r r

r r
r r

= -
+
+


+
+

-
D

+

where ΔUe=Ue1−Ue2.
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For the same electron density ρe on either side of the
interface, we obtain

( ) ( )
k

U U B B U

2 2 4
, 25e e

e

e1 2 1
2

2
2

0

2w
m r

= -
+


+

-
D

and further still with Ue1=−Ue2= v0, i.e., ΔUe= 2v0 and
B1= B2= B0 considered in this paper, we obtain

( )
k

B U
0

4
. 26

e

e0
2

0

2w
m r

=  -
D

Defining the electron-scale Alfvén speed as V BAe e0 0m r= ,
then according to Equation (26) the stability threshold is

( )U V v V2 or . 27e Ae Ae0D > >

We also note that for the above conditions, the real part of
frequency is zero, ωr= 0.

A word of caution is that we are fully aware of the fact that
Equations (21)–(23) ignore the displacement current which means
that relativistic effects are ignored because in fluid theory ratio
of electric field and magnetic forces is of the order
(| | | |)E j B v ce 0

2 2/ /r ´ . The numerical runs presented in this

paper are for v c 0.2 0.04 10
2 2 2 = = so the above equations

are valid. We are also aware that a proper calculation should follow
a similar approach as Alves et al. (2014, 2015) where the electric
field (the displacement current) effect is explicitly present. Hence,
we remark that an analytical theory to back up the growth rate
dependence on the external magnetic field is outstanding and still
needed. We stress that we only use the calculations based on
Equations (21)–(23), and their outcomes just set the scale of the
two-fluid (non-relativistic) MHD stability threshold magnetic field,
given by Equations (13) and (14).

3.2. Numerical Simulation Considerations

In this work, we use the 2.5D version of the PIC code
EPOCH. This is a 1.5, 2.5, and 3D, fully electromagnetic, PIC
code (Arber et al. 2015). In order to be able to use periodic
boundary conditions throughout, which we remark, are the most
precise boundary conditions for the numerical implementation,
we implement a “sandwich” with three layers of plasma with the
following properties: two down-flow layers satisfying
x/Lx< 0.25 or x/Lx> 0.75 with velocity v0/c=−0.2 and one
up-flow layer with 0.25< x/Lx< 0.75 with velocity v0/c= 0.2
in between and v0 being parallel to Oy axis. The system size is
(Lx, Ly)= (10c/ωpe, 5c/ωpe) which is resolved with a 200× 100
grid. This means each grid cell has a size of 1/20 of c/ωpe, i.e.,
Δx=Δy= 0.05c/ωpe. The maximal temperature is set as

( )T m c k0.005 148239.77e Be,i, max
2= = K. This ensures a

cold plasma approximation because v k T mB eth,e e,i,max= =
c v c0.005 0.20 = . The reason we refer to the maximal

temperature is because it actually varies across the x-axis.
This is because as in Tsiklauri (2023) we keep pressure

balance by making ( ) ( )p n x kT x conste,i e,i e,i= = , i.e., ( )T xe,i =
[ ( )] ( )T n n x n x1e,i,max 0 e,i e,iµ . With the magnetic field

being uniform ¯ ¯B B B B m n ve ey0 0 MHD 0 0 0m= = , given by
Equation (13), this means that total initial pressure
balance ( )p B 2 conste,i

2
0m+ = is satisfied. The factor B̄0 =

0, 0.5, 1.0, 5.0, 7.5, 10.0, 15.0 provides a variation of the
external magnetic field, with By0/BMHD= 0, < 1, 1, ?1. The
electron and ion number densities are set as follows: For the
down-flows

⎧
⎨⎩

( )
( ) ( )

( )n x
n x L x L

n

, if 0.25 or 0.75

10 , otherwise
. 28x x

e,i
0

2
0

=
< >

-

For the up-flow, vice versa

⎧
⎨⎩

( ) ( ) ( ) ( )n x
n x L x L

n
10 , if 0.25 or 0.75

, otherwise
. 29x x

e,i

2
0

0
= < >-

The factor 10−2, while dropping density to nearly zero, stops
EPOCH from slowing down for numerical reasons. In EPOCH
code physical quantities are in SI units, so we fix n0=
1015 particles per m−3, typical of many collisionless astro-
physical plasmas. The terms up-flow and down-flow only refer
to motions figurally up and down the Oy axis, as there is no
gravity present in our simulations or calculations. The plasma
consists of electrons and protons with the realistic mass ratio
mp/me= 1836. Both electrons and ions are mobile throughout
the simulation. At t= 0 electron and ion velocities are set as
described above, i.e., a “sandwich” with three layers of plasma.
This ensures that initially there is zero net current. We force
the initial zero-net-current condition because when ions are
stationary (these results are not included here), strong
oscillations with electron plasma frequency ωpe appear, e.g., in
(EB− EB(0))/Ep(0) and (Ep− Ep(0))/Ep(0), in Figures 3 and 5,
respectively. Thus, the zero-net-current condition is necessary
to study a clear effect of the external magnetic field on
ESKHI, not marred by the said oscillations. In the EPOCH
implementation we effectively load four plasma species,
electron and proton up-flows, and down-flows as specified by
Equations (28) and (29). We use 200 particles per cell for each
species. so in total, we have 4× 200× 200× 100= 1.6× 107

particles. One numerical run takes approximately 40 minutes
on 12 processor cores. In this paper, we only show snapshots of
electron number density ne and the magnetic field Bz

component generated by ESKHI normalized on BMHD=
(meωpe/e)(v0/c). The length is normalized by c/ωpe. The end
simulation time is set to 150/ωpe.

4. The Results

In Figure 1 we display snapshots of electron number density ne,
which is the sum of down and up-flowing electrons. The row of
panels (a), (b), and (c) shows ne/n0 for Run 0 at times t= 20, 25,
30/ωpe respectively. The row of panels (d), (e), and (f) shows
ne/n0 for Run 2 at times t= 20, 25, 30/ωpe respectively. The row

5

Research in Astronomy and Astrophysics, 24:095021 (12pp), 2024 September Tsiklauri



of panels (g), (h), and (i) shows ne/n0 for Run 6 at twice the times
t= 40, 50, 60/ωpe respectively. We gather from Figure 1 that in
the case of zero external magnetic field (Run 0), the elongated,
rotating vortices are progressively generated. We note significant
similarities of panels corresponding Run 0 to a similar numerical
run with the same number density across the shear interface from
Alves et al. (2014), see their Figure 6. The vortices start as narrow
elongated flow structures with under-dense cores ne/n0; 0.5 and
strongly over-dense edges ne/n0; 2. Note the values on the color
bar. As the time progresses from 20 to 30/ωpe, the vortex core-
edge contrasts deepen even further and the width of vortices grows.
Such large values of under- and over-density indicate strongly
nonlinear evolution of these ESKHI-generated vortices. As the
external magnetic field is increased (Run 2) the values of under-
and over-density in the vortices drop initially. In the case of
B̄ B B 10 y0 MHD = (Run 6), vortices disappear altogether and
only linear amplitude waves can be seen generated in the vicinity

of the shear interfaces x/L= 0.25 and 0.75. As can be seen in
Figure 1, panels (a)–(f), the simulation results are not affected by
the periodic boundary conditions used, because across x-axis
vortices never reach boundaries, but they simply leave and re-enter
at the top and bottom boundaries across the y-axis.
We also note that in Figure 1, the electron number density has

spatial variations in both the x- and y-directions. This is because the
vortices formed by ESKHI are rotating in the xOy plane. The
theoretical model presented in the Appendix only considers
x-variation for the perturbations. Strictly speaking, our theoretical
model should also have y-variation. However, we retain only
x-variation for simplicity, because, as explained in the conclusions,
we only use Equations (21)–(23), and what follows from them just
to set the scale of two-fluid (non-relativistic) MHD stability
threshold magnetic field, given by Equations (13) and (14), which
we use in our PIC simulation as a relevant scale, BMHD.

Figure 1. Snapshots of electron number density ne. The row of panels (a), (b), and (c) shows ne/n0 for Run 0 at times t = 20, 25, 30/ωpe respectively. The row of
panels (d), (e), and (f) shows ne/n0 for Run 2 at times t = 20, 25, 30/ωpe respectively. The row of panels (g), (h), and (i) shows ne/n0 for Run 6 at twice the times
t = 40, 50, 60/ωpe respectively. See Table 1 for details.
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Figure 2 has the purpose of quantifying how the out-of-plane
magnetic field Bz is generated by the ESKHI. We see in Figure 2
that in the case of zero external magnetic field (Run 0) DC
(although with a corrugated shape) magnetic field Bz is
progressively generated in the vicinity of the shear interfaces
x/L= 0.25 and 0.75. The values, judging from the color bar, range
±(0.4–0.6)BMHD and they grow as the time progresses from the
left to right panels. Again, we mention that significant similarities
can be seen in panels corresponding to Run 0, a similar numerical
run with the same number density across the shear interface from
Alves et al. (2014), see their Figure 7. For the further increased
(increased from zero) external magnetic field, for Run 2, we see
that the generated values of Bz are about a factor of two smaller
compared to Run 0. Also, gaps in the generated DC field appear, as
these structures further narrow down across the shear interfaces at
x/L= 0.25 and 0.75. For Run 6, the values of Bz drop to 0.005
near the shear interfaces at x/L= 0.25 and 0.75.

In Figure 3 we show the time evolution of perturbation
equipartition energy (EB− EB(0))/Ep(0). It is crucial that we
subtract EB(0) because we want to separate the pre-existing
magnetic field energy contribution from the ESKHI-generated
magnetic field energy. We calculate this quantity in the
following way: at every time step, we load the data and
calculate the following quantity

∬
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( ) ]
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Figure 2. Snapshots of out-of-plane magnetic field Bz generated by the ESKHI. The numerical runs and the snapshot times are in direct correspondence to Figure 1.
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Note that in Equation (30) the numerical integration is done by
the midpoint rule (also known as the rectangle rule). In Figure 3
black, red, green, blue, cyan, gold, and thick solid curves show
(EB− EB(0))/Ep(0) using numerical simulation data from Run0
—Run 6 applying Equation (30). We gather that ESKHI
rapidly grows the magnetic perturbation equipartition energy
on the timescales of 30 to 120/ωpe depending on the strength of
the background external magnetic field. This exponential
growth phase is followed by a plateau which, as explained
by Alves et al. (2014), is due to the magnetic field component
Bz generated by ESKHI that blocks the flow of electrons across
the shear interfaces at x/L= 0.25 and 0.75. We also see that as
B̄ B B0 y0 MHD= increases from 0 to 15, the growth rate of
ESKHI decreases considerably. The open diamonds of the
same color, as stated above, show our fit using the following
method. We use Interactive Data Language (IDL)ʼs built-in
function called poly_fit to calculate r[0]i and r[1]i that
appear in Equation (31), where i= 0,K, 6 for each of the Run0
—Run 6. Effectively, this function fits a 1st order polynomial
to the natural logarithm of (EB− EB(0))/Ep(0) with r[0]i and
r[1]i being the 0th and 1st order fit coefficients to the
polynomial respectively. This fit then enables plotting with
open diamonds, visualizing the data fit using Equation (31)

( )[ ] [ ]e e . 31r r t0 1i i pe´ w

The values of ri[1] are quoted as the 3rd column of Table 1.
Effectively these values are the growth rates of ESKHI
( )pe DiamwG =r_i[1] shown with multi-color open diamonds in
Figure 3. “Diam” is the abbreviation for diamonds from Figure 3.

In Figure 4 we would like to deduce the effect of external
magnetic field on ESKHI in a functional dependence form. In
other words, we would like to know what function can be fitted
to ( )pe DiamwG . Various plausible functions were attempted. Only
a small fraction of fit functions is displayed in panels
(a)–(f) in Figure 4. We gather from Figure 4 that in panel (c)
we have the best fit with the smallest errors. Thus
we conclude that the best fit is hyperbolic, ( )B0 pewG =

( ¯ )A BB0 pe 0wG + , where 1 8 0.350 pewG = = is the ESKHI
growth rate without external magnetic field and B̄0 =
B B0 MHD is the ratio of external and two-fluid MHD stability
threshold magnetic field. The hyperbolic fit numerical values of
the growth rate are quoted for reference as the 4th column in
Table 1. Indeed, as can be deduced both from Figure 4(c) and the
3rd and 4th columns in Table 1, the fit graphically and
numerically is rather good. The factor, which is the x-axis in

Figure 3. Black, red, green, blue, cyan, gold, and thick solid curves show (EB − EB(0))/Ep(0) using numerical simulation data from Run0—Run 6 using
Equation (30). The open diamonds with the same multi-colors are showing the fit using Equation (31).

Table 1
Table of Numerical Runs Considered

Run B̄ B B0 y0 MHD= ( )pe DiamwG = r_i[1] ( )pe FitwG

0 0.0 0.3667 0.3663
1 0.5 0.3138 0.3061
2 1.0 0.2504 0.2629
3 5.0 0.1340 0.1234
4 7.5 0.0834 0.0927
5 10.0 0.0690 0.0742
6 15.0 0.0668 0.0531

Note. See text discussing Figure 3 for the explanation of the notation used.
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Figure 4, with B̄ 0, 0.5, 1.0, 5.0, 7.5, 10.0, 15.00 = provides a
variation for the external magnetic field. Paradoxically, for the
growth rate predicted by Equation (26) which is supposed to be
the best fit, the fit does not even converge due to large errors.

In Figure 5, we show the time evolution of particle
perturbation kinetic energy (Ep− Ep(0))/Ep(0) using numerical
simulation data from Run0—Run 6 with the same multi-color
curves as in Figure 3. We deduce two observations from

Figure 4. Various plausible functions fitted to ( )pe DiamwG values, i.e., the best possible functional fit to the 3rd column of Table 1.
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Figure 5: (i) The magnetic field generated by ESKHI comes at
the expense of a reduction in particle kinetic energy; (ii) The
strongest reduction in the kinetic energy is seen for the case of
Run 0, a zero background external magnetic field when the
ESKHI growth rate is the largest. As the external magnetic field
is increased, this arrests the flow of electrons across the shear
interfaces and we see lesser and lesser reduction in the kinetic
energy, as a result of this.

In Figure 6, we plot the total energy (Ep+Ef)/(Ep(0)+ Ef(0))
in a similar manner to Figure 5. Note that Ef denotes the total
electromagnetic (EM) field energy, automatically calculated by
EPOCH as data.TOTAL_FIELD_ENERGY, which includes
contribution from both magnetic and electric fields, while in
Figure 3 we had to calculate perturbation equipartition energy
(EB−EB(0))/Ep(0) manually, using Equation (30). We gather
from Figure 6 that the total energy conservation in all our
EPOCH numerical runs is superb and the relative errors are
contained within a small margin of±0.0000001 i.e.,±0.00001%.

5. Conclusions

ESKHI can be of importance in many collisionless plasmas,
e.g., when solar wind interacts with planetary magnetospheres,
a magnetic field that is generated in AGN jets, or shocks and
flows found in GRBs (Gruzinov 2008; Alves et al. 2012;
Grismayer et al. 2013; Alves et al. 2014, 2015). The aim of this
paper is to study the effect of an external, background magnetic
field on ESKHI. Thus we use PIC, fully electromagnetic
plasma simulation as the main tool for this purpose. This study
finds that in the kinetic regime, the presence of an external
magnetic field reduces the growth rate of the instability—a
result similar to the well-known analog—MHD KHI. While in

MHD there is a known threshold magnetic field for KHI
stabilization as first shown by Michael (1955), for ESKHI this
is yet to be determined by an appropriate analytical calculation
that would extend the approach used in Alves et al.
(2014, 2015) by adding the external, background magnetic
field. Such calculation is rather complex if all three components
of velocity vx, vy, vz are considered. Note that in EPOCH, in all
versions: 1.5, 2.5, 3D, all three components of velocity are
always present. Instead, for the purposes of this paper, we only
use the calculations based on Equations (21)–(23), and their
outcomes to set the scale of a two-fluid MHD stability
threshold magnetic field, derived in the Appendix and given by
Equation (14). As it stands, without a fully kinetic analytical
expression for the growth rate, we decided to use several
numerical simulation runs to find an empirical dependence of
ESKHI growth rate, Γ(B0)ωpe, on the strength of the applied
external magnetic field. Our results show that the best fit is
hyperbolic, ( ) ( ¯ )B A BB0 pe 0 pe 0w wG = G + . We note an urgent
need for an analytical theory to back up the said growth rate
dependence on the external magnetic field. The first peculiar
and important result that follows from our study is that in
astrophysical objects where a strong magnetic field pre-exists,
the generation of an additional magnetic field by the ESKHI is
suppressed. The latter suggests that with this, nature provides a
“safety valve”—natural protection not to “over-generate”
magnetic field. The second peculiar result is that we show
that a two-fluid (non-relativistic) MHD threshold magnetic
field, calculated in Appendix, (Equation (13) or equally
Equation (14)) is the same (up to a factor of 10g » ) as
the DC saturation magnetic field, predicted by the fully kinetic
theory (Equation (9)) established by Grismayer et al. (2013),
Alves et al. (2014).
This work was completed when the author became aware

(G.P. Zank, 2024, private communication) of Che & Zank
(2023). The calculation expressed in our Appendix and also our

Figure 5. Time evolution of particle perturbation kinetic energy (Ep − Ep(0))/
Ep(0) using numerical simulation data from Run 0—Run 6 with the same
multi-color curves as in Figure 3.

Figure 6. Similar to Figure 5 but now for the total energy.
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Equation (27) appear to be similar to that of Che & Zank
(2023). However, it is clear that neither Equation (41) of Che &
Zank (2023) nor our Equations (24)–(26) agree with the best fit,

( ) ( ¯ )B A BB0 pe 0 pe 0w wG = G + , established by the present
work. This disagreement means that a new analytical calcul-
ation for the same number density across the shear interface as
in Alves et al. (2014) with added external magnetic field B0

along the shear interface is needed. Further, the results from
Table 1 can be used to check the validity of the said growth rate
yet to be analytically determined. Such analytical theory to
back up what is established here by PIC simulation growth rate
dependence on the external magnetic field is urgently needed.
We stress again that we only use the calculations based on
Equations (21)–(23) and their outcomes to set the scale of two-
fluid (non-relativistic) MHD stability threshold magnetic field,
given by Equations (13) and (14), used in our PIC simulation as
a relevant scale, BMHD.
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Appendix

Starting with the equations of two-fluid MHD with stationary
ions (21)–(23), we consider two magnetized electron flows
with properties ρe1, pe1, Ue1, B1 for y< 0 and ρe2, pe2, Ue2, B2

for y> 0 with the interface at y= 0. We only consider the xOy
plane. This calculation extends that of Michael (1955) two-
fold: (i) we consider the situation where the bulk flow velocity
is replaced by electron velocity, v ve , and ρ→ ρe; and (ii) the
densities across the interface are different. For y< 0 we have
the following linearized equations in the component form:
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where vex,ey and bx,y are the perturbations of background values
of Ue1 and B1. Next, we substitute in Equations (A1)–(A5) a
Fourier ansatz of the form ˜ ( )f f ei kx t= w+ and omit the tilde
signs:
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Equations (A6)–(A11) can be combined into one master
equation for vey:
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Following a similar approach to Michael (1955), from
Equation (A12) we have a solution for y< 0 (medium 1)
vey1=C11e

ky+C12e
− ky. For a solution that approaches zero as

y→−∞ we have vey1= C11e
ky. Likewise, in the region with

y> 0 (medium 2), for a solution that approaches zero as y→∞
we have vey2=C22e

− ky.
Let ξ(x, t) be displacement of the interface satisfying a

condition ξ= 2π/k= λ. As in Michael (1955), based on
the definition vey1= ∂ξ/∂t+Ue1∂ξ/∂x and vey2= ∂ξ/∂t+
Ue2∂ξ/∂x, we demand continuity of ∂ξ/∂t:
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which at the interface y= 0 yields
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We also have to fulfill the condition for the pressure balance
( )p B 2 conste

2
0m+ = , substituting pe= pe0+ pe1 and B=

B1,2+ b1,2, at the interface, at a linear order. Omitting the
quadratic terms, at the interface y= 0 we obtain
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and similar expressions for medium 2
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into Equation (A15) and after multiplying both sides by k, we
obtain
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The next step is to make use of Equation (A14) to obtain
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Further, simple algebra leads us to a quadratic equation
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Equation (A22) is a quadratic equation with respect to ω, which
has the solution given by Equation (24).
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