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Abstract

High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.
Polar motion is affected by a variety of excitation factors, and nonlinear prediction methods are more suitable for
polar motion prediction. In order to explore the effect of deep learning in polar motion prediction. This paper
proposes a combined model based on empirical wavelet transform (EWT), Convolutional Neural Networks (CNN)
and Long Short Term Memory (LSTM). By training and forecasting EOP 20C04 data, the effectiveness of the
algorithm is verified, and the performance of two forecasting strategies in deep learning for polar motion prediction
is explored. The results indicate that recursive multi-step prediction performs better than direct multi-step
prediction for short-term forecasts within 15 days, while direct multi-step prediction is more suitable for medium
and long-term forecasts. In the 365 days forecast, the mean absolute error of EWT-CNN-LSTM in the X direction
and Y direction is 18.25 mas and 15.78 mas, respectively, which is 23.5% and 16.2% higher than the accuracy of
Bulletin A. The results show that the algorithm has a good effect in medium and long term polar motion prediction.
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1. Introduction

The Earth Rotation Parameters (ERP) are the main
transformation parameters that link the Earth Reference Frame
and the Celestial Reference Frame (Kalarus et al. 2010). These
parameters include polar motion(PM), the difference between
universal Time (UT1) and Coordinated Universal Time (UTC),
and Length of Day (LOD) (Petit & Luzum 2010). With the
continuous development of modern geodesy, leading to a
significant improvement in the observation accuracy of ERP
(Dow et al. 2005). Currently, there is a growing demand for
real-time prediction of ERP in deep space exploration and
satellite navigation fields, However, existing measurement
techniques result in delays in ERP products (Bachmann et al.
2016), making high-precision ERP forecasting particularly
important, the Earth Orientation Center (EOC) at Paris
Observatory provides comprehensive EOP C04 series on a
regular basis (Bizouard et al. 2019), while the International
Earth Rotation and Reference Systems Service Rapid Service/
Prediction Center in Washington regularly provides Bulletin A
and Bulletin B reports, greatly facilitating research on Earth
rotation.

Polar motion is the instantaneous movement of the Earth’s
rotation axis relative to the Earth’s surface or the mean pole,
caused by the interaction between mass redistribution on the
Earth’s surface and material movements within the Earth

(Gross 2007; Sun et al. 2019; Dobslaw et al. 2010). Polar
motion consists of three significant components: long-term
drift, Chandler wobble (CW) (Chandler 1891; Zharkov &
Molodensky 1996), and annual wobble(AW). The long-term
drift rate is approximately 3.5 mas per year, Chandler wobble
varies in range from 100 to 200 mas, and annual wobble is
about 100 mas (Gross 2007; Su et al. 2014). Prediction
models for polar motion are typically divided into linear
prediction models and nonlinear prediction models, with the
classic Least Squares and Autoregressive (LS+AR) prediction
model belonging to linear prediction models. Nonlinear
prediction methods mainly include artificial neural networks,
wavelet decomposition algorithms, etc. Due to the influence of
various excitation factors on ERP and its strong occasional
abruptness, nonlinear prediction methods have better effects.
Artificial neural networks have great potential in long-term
prediction of ERP (Egger 1992), with results proving that
artificial neural networks can effectively predict Earth rotation
parameters (Schuh et al. 2002). Long Short-Term Memory
Network (LSTM) has been widely used in time series
forecasting, with some scholars applying LSTM models to
ERP forecasting as well (Gou et al. 2023). Convolutional
Neural Network easily captures potential features of multi-
dimensional data and effectively solves uncertainties brought
by original time series. IERS provides a large amount of
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historical polar motion data which requires more complex deep
learning models for predictions. For example, the hybrid deep
model CNN-LSTM has better prediction performance (Xue
et al. 2019; Khodabakhsh et al. 2020; Mehtab et al. 2020). This
paper proposes a combination method based on Empirical
Wavelet Transform, Convolutional Neural Network and Long
Short-Term Memory (EWT-CNN-LSTM), This model uses
EWT to decompose polar motion data into clusters containing
individual features, and then inputs these clusters into CNN,
followed by using LSTM for predictions.

The structure of this article is as follows: Section 2
introduces the process and theoretical basis of the EWT-
CNN-LSTM algorithm. Section 3 presents the data set and
detailed procedures, evaluation metrics used in the experi-
ments. In Section 4, recursive multi-step prediction and direct
multi-step prediction are employed for PM prediction using PM
data from IERS EOP 20C04 from 2008 to 2018. The accuracy

of PM results predicted by different models such as LSTM,
CNN-LSTM, and EWT-CNN-LSTM is compared with the
forecast results of IERS Bulletin A. To better analyze the
univariate forecasting performance of the models, this study
does not consider information such as the effective angular
momentum (EAM). Finally, a summary of the experiments is
provided in the last section.

2. Method

2.1. Construction of the EWT-CNN-LSTM Model

This paper proposes a hybrid prediction model based on
EWT-CNN-LSTM to optimize the extreme shift prediction
results, as shown in Figure 1. The main steps of the EWT-
CNN-LSTM algorithm are as follows:

(1) Empirical wavelet decomposition: The input PM time
series is decomposed into several component signals

Figure 1. Flowchart of the EWT-CNN-LSTM Prediction Model.
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using empirical wavelets, thereby reducing the complex-
ity of the original time series.

(2) K-means clustering: The component signals obtained in
step 1 are clustered into high-frequency, mid-frequency,

and low-frequency sub-sequences based on their entropy
values using K-means clustering.

(3) CNN-LSTM model training and prediction: The three
different frequency sub-sequences obtained in step 2 are
separately inputted into the CNN-LSTM model for
training and prediction. The predicted results are then
reconstructed to obtain the final prediction result.

2.2. Empirical Wavelet Transform

The Empirical Wavelet Transform is a method for proces-
sing non-stationary signals, proposed by Gilles in 2013
(Gilles 2013). It combines the adaptive decomposition
characteristics of Empirical Mode Decomposition (EMD) and
the advantages of the tight support wavelet transform theory.
EWT can flexibly select frequency bands, effectively solving
the mode mixing problem in EMD, and has lower computa-
tional complexity.

The specific procedures of the EWT algorithm entail initially
converting the original signal into the corresponding Fourier
spectrum. Simultaneously, the spectrum is rationally parti-
tioned in a prescribed manner to acquire a series of consecutive
intervals. Subsequently, a group of wavelet filter banks is
constructed based on the interval ranges, and this filter bank is
utilized to identify the positions of the characteristic informa-
tion within the spectrum, completing the filtering process of the
original signal. Consequently, a set of frequency-modulated
and amplitude-modulated components of the original signal is
adaptively obtained.

For a given signal, the first step is to perform Fourier
transform to obtain the normalized Fourier spectrum within the
range of 2π. The study range is [0, π], assuming that the signal
consists of N individual components. In the domain of Fourier,
it is divided into N continuous segments by ωn with ωn

representing the boundaries between each interval, totaling
N+ 1 boundaries where ω0= 0 and ωn= π .

Empirical wavelet is a bandpass filter defined on interval Λn,.
When constructing bandpass filters, Gilles adopts the ideas of
Littlewood-Paley and Meyer in constructing wavelets. When
n> 0, empirical wavelet function y wn
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⎜ ⎟

⎧

⎨
⎪

⎩
⎪

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥



 f w

w w t

p
b

t
w w t w t w w t=

+

- + + 2n

1

cos
2

1

2

0 others

n

n n

n
n n n n n ( )ˆ ( )

∣ ∣

(∣ ∣ ) ∣ ∣

After acquiring the bandpass filter, it is possible to construct
the frequency division signal of the original signal. The
empirical wavelet function and scale function are internally
integrated into the signal, followed by obtaining the empirical
wavelet coefficient and scale coefficient, ultimately resulting in
the decomposed mode.

2.3. Sample Entropy and K-means Clustering Algorithm

Sample Entropy (SampEn/SE) is a measure of the disorder
of data. Sample entropy has the advantage of being
computationally independent of data length and having better
consistency. Numerically, a lower sample entropy value
indicates higher self-similarity in a time series, while a higher
sample entropy value suggests greater complexity and less
obvious regularity in the sequence. In practical applications, it
can be used for feature selection, classification recognition,
clustering and other data processing to improve accuracy and
reliability in data analysis.
The k-means algorithm is based on the idea of clustering

data points in space around k centroids, classifying each point
to the nearest centroid, and iteratively updating the centroids
until the best clustering result is obtained. The algorithm
follows these steps:

(1) Determine the number of clusters, k, and set k points as
initial centroids.

(2) Calculate the distance between each element and the k
centroids, assigning each element to its closest cluster.

(3) Recalculate the centroids based on the new clustering
result and reassign elements to clusters.
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(4) Iterate step (3) until no new clustering results are
obtained.

2.4. CNN-LSTM

LSTM is a variant of recurrent neural network (RNN)
(Hochreiter & Schmidhuber 1997), compared to other network
models, the LSTM algorithm is specifically designed to handle
time series data by introducing structures such as forget gates,
input gates, and output gates. These structures enable the model
to have long-term memory capabilities, allowing it to forget
irrelevant information while effectively retaining and updating
important information (Gers et al. 2000; Gou et al. 2023), thus
avoiding the issues of vanishing and exploding gradients.
Figure 2 illustrates the basic structure of LSTM, where each
unit inherits information from the previous time step. As a
result, LSTM is more sensitive to long-term patterns and has
been widely applied in time series prediction tasks (Zhang et al.
2019; Karevan & Suykens 2020; Wang et al. 2021).

CNN is commonly used for image processing (Krizhevsky
et al. 2012). In PM time series, CNN can identify local features
hidden in the data and transform them to improve computa-
tional efficiency and model accuracy. Additionally, pooling
operations can reduce the number of features and alleviate
overfitting issues.

The combination of CNN-LSTM leverages the advantages of
both approaches. In time series prediction, it typically achieves
higher prediction accuracy than using LSTM alone by
effectively extracting features and utilizing temporal depen-
dencies. Furthermore, it demonstrates better generalization
capabilities across different data sets.

3. Design of PM Prediction Scheme

3.1. Data Description

This study primarily utilizes PM data, The training data is
sourced from EOP 20C04, and the results are compared using
Bulletin A. The EOP 20C04 series is composed of GNSS, SLR,
VLBI, and DORIS combinations and has been in existence
since 1962. The Bulletin A product is provided by IERS to
global users in the form of a bulletin for Earth orientation
parameter forecast measurements and prediction services. It is
solely composed of GNSS and VLBI combinations and is
regularly published by the IERS Rapid Service Center through
A and B bulletins. Bulletin A data is released weekly, including
leap seconds, measured values, predicted values, among other
information. Based on these characteristics, this study uses
EOP 20 C04 data as training data and employs Bulletin A data
for error verification in predicting results.

3.2. Design of Prediction Strategies and Period

In the time series prediction of deep learning, it is usually
divided into single-step prediction and multi-step prediction.
Single-step prediction means that only one future value is
predicted for each input window at a time. However, in
practical applications, the prediction task requires predicting
values for multiple future time steps, which is known as multi-
step prediction. Currently, the commonly used multi-step
prediction strategies are direct multi-step prediction and
recursive multi-step prediction. The direct method involves
developing a separate model for each time step to predict
multiple values. On the other hand, recursive multi-step

Figure 2. LSTM Structure Diagram.

4

Research in Astronomy and Astrophysics, 24:095019 (11pp), 2024 September Wang et al.



prediction essentially belongs to single-step prediction, where
multiple uses of single-step models are employed to achieve the
goal of predicting multiple values. In this approach, the
predicted value from the previous time step serves as the input
for predicting the next time step. As the range of predictions
increases, using predicted values instead of observed values
leads to accumulating errors in recursive.

To investigate the effectiveness of the two methods
mentioned above in polar motion prediction, different strategies
for predicting polar motion at different periods were deter-
mined. The LSTM direct method and recursive method were
used to predict different forecast lengths, and the prediction
cycle boundaries for the direct and recursive methods were
identified.

For medium to long-term polar motion prediction, four
schemes were designed for direct multi-step prediction using
LSTM, CNN, CNN-LSTM, EWT-CNN-LSTM to forecast
polar motion for 15, 30, 60, 90, 180, and 365 days. Bulletin A
product was also included for comparison.

Due to the higher uncertainty of early data compared to
recent data, early data was removed. The EOP 20C04 from
2008 January 1 to 2018 December 31 with a total of eleven
years’ worth of data was used as the base data set at a sampling
rate of one day. This provided a total of 4020 time series data
samples for model training and forecasting inputs.

Considering the possibility of interruptions or unavailability
of final Earth Orientation Parameters products provided by
IERS during the actual polar motion prediction process, it is
necessary to establish the prediction model using earlier
accurate data when the final products are not accessible for
some reasons. Therefore, a time interval of 60 days after the
training sample period is chosen for prediction. Although this
approach may reduce the accuracy of the prediction algorithm,
it can better test the universality of the algorithm and meet the
complexity in practical polar motion predictions. Hence, the
predicted time span is from 2019 February to 2021 June, in
order to better validate the performance of the model. Due to
the weekly update cycle of Bulletin A product, in order to
conduct an accurate comparison of prediction accuracy, all 70
files within the aforementioned forecast period for Bulletin A
product are saved. This includes 47 files from 2019 and 23 files
from 2022. Additionally, the EWT-CNN-LSTM algorithm and
comparative algorithms are used to generate 70 prediction files
for the same time period, with each prediction file covering a
forecasting period of 365 days.

3.3. Evaluation Criteria

The present experiment employs the common regression
evaluation indicators of absolute error (AE) and mean absolute
error (MAE) to analyze the accuracy of the prediction results.
The formulas are as follows:

= -y yAE 3∣ ˆ ∣ ( )

å= -
=n

y yMAE
1

4
i

n

i i
1
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Here ŷ represents the predicted value, y represents the actual
value, and n represents the total number of days for prediction.
In time series forecasting of deep learning, each prediction

result has randomness. To make the statistical error more
representative, all errors in this study are averaged over
multiple predictions.

4. Results and Discussion

4.1. Recursive and Direct Multi-step Prediction

Typically, recursive prediction is considered suitable for
short-term forecasting, while direct multi-step prediction is
more appropriate for medium to long-term forecasting. This is
due to the fact that recursive prediction utilizes the previous
time step’s forecast value as input for the next time step, which
can lead to error accumulation and a decline in prediction
accuracy. However, in cases of strong data correlation, the
effectiveness of short-term forecasting may surpass that of
direct multi-step prediction. Therefore, it is crucial in PM
prediction to determine which forecasting method is suitable
for different time spans and to use different methods for
different periods in order to ensure a scientifically sound
approach. As illustrated in Figure 3 from the experimental
results, overall MAE increases with the length of forecast days
for both methods; PMY’s MAE consistently remains smaller
than PMX’s. The MAE error of recursive prediction far
exceeds that of direct multi-step prediction. When focusing on
the initial few days’ results, it can be observed that within
15 days, the MAE error of recursive prediction is smaller than
that of direct multi-step prediction. Additionally, the error of
direct multi-step prediction gradually decreases within
1–30 days, indicating its inferior performance in short-term
forecasting. Therefore, it can be concluded that within a short-
term forecast range of 1–15 days, we should utilize recursive
multi-step predictions; beyond 15 days’ forecasts call for direct
multi-step predictions.

4.2. Recursive and Direct Multi-step Prediction

Taking PMX as an example, EWT decomposition is
performed on all PMX data containing training and testing
sets, due to the good adaptability of EWT decomposition, there
is no problem that different wavelet basis functions in wavelet
decomposition affect the decomposition results. Therefore,
when using EWT decomposition, only the number of
decomposition layers needs to be determined. The determina-
tion of the optimal number of decomposition layers needs to
consider multiple aspects. In this paper, the Sensitive IMFs
assessing index method is used to determine the initial number
of decomposition layers (Liu et al. 2022), and the decomposi-
tion effect is analyzed by viewing the decomposition results
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and the corresponding component spectrograms. Since the
subsequent clustering algorithm will classify the signals into
high-frequency, mid-frequency, and low-frequency categories,
it is advisable to set a larger number of decomposition layers in
order to achieve more accurate clustering results, the final
determination is to set the number of decomposition layers to 6.

Figure 4 shows the results of PMX Raw data decomposed by
EWT into six layers and the corresponding spectrum. Raw data
is PMX original time series, and IMF1-IMF5 is different
frequency components from high frequency to low frequency.
It can be seen that the subsequences retain the fluctuation
characteristics of the original characteristic variables, and no

Figure 3. Comparison of MAE between direct multi-step and recursive multi-step prediction results.

Figure 4. EWT Decomposition Diagram.
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mode aliasing occurs. The spectrogram shows that the original
sequence is well divided into components of different
frequencies, and the decomposition results are good. The
sample entropy of each decomposed signal component will be
calculated separately after decomposition, and k-means cluster-
ing will be conducted based on sample entropy. The clustering
results are shown in Figure 5, where it can be observed from
the frequency spectrum that the data has been effectively
classified into high-, mid-, and low-frequencies.

A multi-layer CNN-LSTM network can effectively delve
into target features, thereby enhancing prediction accuracy.
However, an excessively complex structure may result in
overfitting. Therefore, the model’s structure and selection
significantly impact prediction outcomes. The model para-
meters are as follows: Dropout rate is set at 0.1, the
optimization algorithm used is Adam, the epoch is set to 100,
the LSTM layer consists of 50 neurons, and the learning rate
gradually decays over time.

4.3. Analysis of AE in PM Prediction Results

The use of absolute error can reveal the discrepancy between
predicted values and actual values. Figure 6 shows the three-
dimensional graph of absolute error for the prediction results.
Specifically, (a), (c), and (e) represent the AE distribution of
PMX forecast results for LSTM, CNN-LSTM, and EWT-CNN-
LSTM schemes, while (b), (d), and (f) correspond to the AE
distribution of PMY forecast results. Overall, the prediction
results for PMY are superior to those for PMX. The variation
trends of each scheme exhibit certain similarities. In the three-
dimensional graph, the orange and red areas for EWT-CNN-
LSTM are minimal in comparison to the other two schemes,
with both average height and peak value being smaller than
those of the remaining two schemes. This indicates that this
scheme has a higher prediction accuracy compared to the other
two schemes. In order to verify the deviation between predicted

results and Bulletin A, we have compiled statistics on
maximum value, minimum value, and mean value of AE for
each time period as shown in Table 1.
From Table 1, it can be observed that in the short-term

forecast results from 1 to 7 days, the prediction results of EWT-
CNN-LSTM are generally similar to those of LSTM and CNN-
LSTM. The absolute error of Bulletin A is smaller. In the
medium-term forecast from 7 to 90 days, the average absolute
errors in the X and Y directions for this approach are 10.23 mas
and 5.51 mas, respectively, which are superior to the other two
approaches. Compared with Bulletin A, the difference in mean
values is within 1–2 mas, indicating overall similarity in

Figure 5. K-means clustering results and corresponding spectrogram.

Table 1
Statistical Information on the AE Values of Different Prediction Models(mas)

Time Span

EWT-
CNN-
LSTM CNNLSTM LSTM Bulletin A

1–6 x Max 17.83 18.87 21.91 7.15
Min 0.00 0.00 0.00 0.00

Average 5.04 5.61 5.03 1.03
y Max 12.75 18.71 13.51 3.50

Min 0.00 0.00 0.00 0.00
Average 4.65 5.05 4.15 1.04

7–90 x Max 41.26 64.11 59.31 30.84
Min 0.00 0.00 0.00 0.00

Average 10.23 15.61 16.24 9.13
y Max 22.24 39.73 28.26 20.91

Min 0.00 0.00 0.00 0.00
Average 5.51 6.82 6.45 4.12

91–365 x Max 51.16 73.14 63.91 59.41
Min 0.00 0.00 0.00 0.00

Average 20.41 25.43 25.51 21.63
y Max 37.86 44.11 48.72 45.12

Min 0.00 0.00 0.00 0.00
Average 12.51 14.44 14.53 13.81
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Figure 6. The 3D distribution of PM prediction result for LSTM, CNN-LSTM, and EWT-CNN-LSTM.
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prediction results. In the long-term forecast from 90 days to
365 days, PM has maximum AE values of 51.16 mas and
37.86 mas in both directions, corresponding to mean values of
20.41 mas and12.51 mas respectively, all smaller than those of
the other two approaches as well as Bulletin A. Therefore, we
can conclude that in mid-to-long term polar motion prediction,
the EWT-CNN-LSTM method outperforms the other two
methods and also exhibits improved accuracy compared to
Bulletin A.

4.4. Analysis of MAE in PM Prediction Results

Figure 7 presents the predicted results of PMX and PMY
under different schemes, with a prediction time of 365 days and
a base sequence of 11 yr. The red line in the figure represents
the true values provided by IERS EOP 20C04, while the blue,

green, purple, and orange lines represent the predictions of
LSTM, CNN-LSTM, EWT-CNN-LSTM, and Bulletin A
respectively. It can be seen from the figure that the prediction
results of LSTM and CNN-LSTM are similar. The proposed
EWT-CNN-LSTM method is superior to the former two
methods, and it is closer to the true values in medium- to long-
term predictions compared to Bulletin A.
The MAE of PMX and PMY predictions under different

schemes is illustrated in Figure 8. Overall, the EWT-CNN-
LSTM model exhibits the smallest error, particularly in the
medium to long term. This can be attributed to the enhanced
representation of overall trend and removal of interference
factors by low-frequency components after EWT decomposi-
tion and K-Means clustering, enabling LSTM to make more
accurate predictions. The CNN-LSTM model shows slightly

Figure 7. Comparison of 365 days forecast results from different prediction models.

Table 2
MAE Statistics for PMX and PMY Predictions Under Four Different Scenarios

No. PMX PMY

LSTM CNN-LSTM EWT-CNN-LSTM Bulletin A PCT LSTM CNN-LSTM EWT-CNN-LSTM Bulletin A PCT
7 1.25 1.09 1.12 0.92 −19.0% 1.49 1.31 0.96 0.73 −31%
30 2.79 1.26 4.71 4.2 −12.0% 4.7 5.23 2.08 1.63 −27.6%
60 6.19 2.65 6.19 5.89 5.0% 7.9 6.84 6.03 6.14 1.7%
90 12.56 8.16 6.58 8.14 19.1% 12.6 8.71 7.04 7.11 0.9%
180 31.72 26.91 16.44 18.04 8.90% 21.45 15.31 11.73 13.78 14.8%
365 26.42 22.66 18.25 23.87 23.50% 20.58 23.04 15.78 18.84 16.2%
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better performance than the LSTM model, but both still lag
behind Bulletin A in terms of accuracy. Table 2 presents
statistical MAE for various prediction periods, revealing that
the EWT-CNN-LSTM model outperforms Bulletin A in both X
and Y directions after approximately 60 days, with this
improvement becoming more significant as the number of
predicted days increases. However, within 60 days, Bulletin A
still demonstrates higher predictive accuracy. In a 365 days
forecast, the EWT-CNN-LSTM model achieves an MAE of
18.25 mas for PMX and 15.78 mas for PMY predictions
respectively—representing improvements of 23.5% and
16.2% over Bulletin A’s respective values of 23.87 mas and
18.84 mas.

5. Conclusion

The high-precision prediction of polar motion is of great
significance for satellite navigation and high-precision orbit
determination. According to different forecasting models, it is
mainly divided into linear forecasting models and nonlinear
forecasting models, with the latter mainly based on neural
networks. For time series prediction, the LSTM model is often
used. Based on this, we have constructed the EWT-CNN-
LSTM model, which decomposes the sequence through EWT,
calculates its sample entropy, obtains K-Means clustering
results, and decomposes the original data into high-frequency,

medium-frequency, and low-frequency data. These are then
separately trained and predicted using CNN-LSTM before
reconstructing and restoring the prediction results. The purpose
of this approach is to reduce the complexity of the data in order
to improve the prediction results of CNN-LSTM.
This study first analyzed the performance of recursive multi-

step prediction and direct multi-step prediction in PM forecast
within 15 days. The results showed that in short-term forecasts
within 15 days, recursive multi-step predictions outperformed
direct multi-step predictions. Furthermore, this study compared
four types of forecast results—LSTM, CNN-LSTM, EWT-
CNN-LSTM, and Bulletin A—over a two-year period using
IERS EOP 20C04 as a reference point. The experimental
results showed that the EWT-CNN-LSTM model had better
predictive accuracy in medium-to-long term PM forecasts
compared to Bulletin A forecast results; specifically improving
PMX by 23.5% and PMY by 16.2%.
This study primarily focused on analyzing deep learning

models with single-variable input for multiple-step output in
polar motion prediction. Future research will involve using
multivariable inputs considering Earth Atmospheric Motion
(EAM) to enhance polar motion prediction accuracy further.
Additionally, the combination of deep learning with traditional
linear forecasting models such as LS will be explored more
deeply in the field of high-precision PM forecast.

Figure 8. MAE of PMX and PMY predictions in four scenarios.
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