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Abstract

Optical telescopes are an important tool for acquiring optical information about distant objects, and resolution is an
important indicator that measures the ability to observe object details. However, due to the effects of system
aberration, atmospheric seeing, and other factors, the observed image of ground-based telescopes is often degraded,
resulting in reduced resolution. This paper proposes an optical-neural network joint optimization method to
improve the resolution of the observed image by co-optimizing the point-spread function (PSF) of the telescopic
system and the image super-resolution (SR) network. To improve the speed of image reconstruction, we designed a
generative adversarial net (LCR-GAN) with light parameters, which is much faster than the latest unsupervised
networks. To reconstruct the PSF trained by the network in the optical path, a phase mask is introduced. It
improves the image reconstruction effect of LCR-GAN by reconstructing the PSF that best matches the network.
The results of simulation and verification experiments show that compared with the pure deep learning method, the
SR image reconstructed by this method is rich in detail and it is easier to distinguish stars or stripes.
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1. Introduction

Optical telescopes are widely used in astronomical observa-
tion, remote sensing, and optical surveillance, as an important
tool for obtaining optical information on long-range targets
(Wang et al. 2015, 2020; Mikhail et al. 2019; He et al. 2021).
The resolution reflects its ability to distinguish two adjacent
objects and is an important indicator that measures the ability to
observe the object details. Higher resolution often means richer
object detail. According to the Rayleigh criterion, the
resolution of the system can theoretically reach the diffraction
limit. However, due to the effects of system aberration,
atmospheric seeing, and other factors, the observed image of
ground-based telescopes is often degraded, resulting in reduced
resolution (Li et al. 2018). Super-resolution (SR) technology
can reconstruct high-resolution (HR) images from one or more
low-resolution (LR) observation images to improve image
resolution (Park et al. 2003). Among the mainstream image SR
algorithms, the algorithm based on interpolation operation has
a mediocre effect on the reconstruction of fine textures
(Lehmann et al. 1999). The algorithm based on prior learning
is sensitive to the selection of training samples, and cannot
recover the high and low-frequency information in the original
astronomical images at the same time (Yan et al. 2015). It is
difficult for Iterative Back Projection (Irani & Park 1991) and

Projection Onto Convex Sets (Youla & Webb 1982) to
reconstruct the texture features of astronomical images.
In recent years, with the vigorous development of deep

learning, a large number of neural networks continue to emerge.
Through the combination of different convolution layers, linear
layers, activation functions, etc., deep convolutional neural
networks can learn the most complex functional features and
thus solve unsolvable problems in many fields (Wang et al.
2023c). It is also widely used in telescopic systems, such as
denoising and SR (Rahman et al. 2020; Sweere et al. 2022). In
2022, Shoubaneh et al. used an improved generative adversarial
network model to improve the resolution of ground-based
images from the Subaru Hyper Suprime-Cam to that of the
Hubble Space Telescope (Shoubaneh et al. 2022). Most methods
based on convolutional neural networks require paired data for
supervised training, considering that the cost of producing paired
data in astronomical observation is usually high, and there are
some untrue details in the images synthesized by the algorithm,
which affects the generalization ability of the model. In contrast,
an unsupervised network breaks the limitation of a supervised
learning network that relies on LR–HR paired data to improve
image resolution (Chang & Wetzstein 2019). It can learn
distribution information from HR observation images with
similar celestial environments and use it as prior information to
improve the resolution of observation images of distant galaxies.
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From the perspective of the overall process of optical
imaging, the imaging process of optical systems is essentially
equivalent to optical calculation (Yuan et al. 2020; Wang et al.
2023a). The goal of the joint optimization method is to realize
the optimal matching between the optical system and the image
processing algorithm through the cooperative optimization of
“optical system” and “digital image post-processing,” so as to
obtain a better imaging effect. In 2019, Peng et al. from
Stanford University proposed an end-to-end design method
from optical system to image processing, which achieves
achromatic depth-of-field expansion and SR imaging (Peng
et al. 2015, 2019). In parallel to ours, Sun Q et al. use an end-
to-end framework to simultaneously optimize the single-lens
imaging system and a reconstruction network to reconstruct SR
images from raw measurement data (Sun et al. 2020).

This paper proposes an optical-neural network joint optim-
ization method to improve the resolution of observation images
of telescopic systems for known objects with basic outlines or
shapes, such as stars and nebulae. First, the deep learning
convolutional layer equivalent to the telescopic system point-
spread function (PSF) is integrated into the front end of the
neural network, and the PSF and network parameters are co-
optimized through the training process. After the training, a
phase mask is designed to reconstruct the PSF of network
training in the optical path. Considering the error between the
actual PSF of phase mask reconstruction and the PSF of
network training, it is necessary to add the phase mask to the
telescopic system and collect its observation image, and retrain
the network to fine-tune the network parameters. Finally, we
use Peak Signal-to-Noise Ratio (PSNR) and other indicators to
evaluate the quality of reconstructed images. In this paper, HR
observation images can be reconstructed quickly by designing
a high-performance unsupervised network and co-optimizing
the network parameters and the PSF of the telescopic system.

This paper is organized as follows: In Section 2, we give the
theoretical background of joint optimization methods. In
Section 3, we describe the unsupervised network structure
and loss function. In Sections 4 and 5, we evaluate the network
performance and the SR effect of the joint optimization
method. In Section 6, we conclude.

2. Theoretical Background

2.1. Incoherent Imaging Model and Cooperative
Optimization

First, we introduce the relationship between the incoherent
imaging model of telescope systems and the convolution layer
of deep learning. The illumination source of the telescope
system is usually incoherent light, which belongs to a kind of
passive imaging (Yang et al. 2022). When an object is imaged
incoherently by the telescope system, the linear spatially

invariant imaging model can be expressed as (Goodman 2005)

( ) ∣ ( )∣ ( ) ( )= *I u v H u v I u v, , , , 1im g
2

in which u and v are the spatial coordinates of the image plane,
Ig(u, v) is the ideal geometric irradiated image, and |H(u, v)|2 is
often referred to as the PSF, where ∗ denotes a two-
dimensional convolution. The imaging of the telescope system
can be modeled as a space-invariant convolution of the object
with the PSF of the system.
According to the theory, the incoherent imaging model for

monochromatic light illumination can be modeled as a
convolutional layer of deep learning (Chang et al. 2018). The
imaging of the telescopic system for monochromatic illumina-
tion discussed in this paper can be modeled as a convolution
layer: The flipped PSF is used as the convolution kernel of the
convolution layer, the number of input and output channels are
both 1, and the input and output feature map corresponds to the
object and image, respectively. Therefore, we use a single-core
convolutional layer to simulate the PSF of the optical system,
which is integrated into the front end of the neural network, as
diagrammed in Figure 1.
To improve the observation ability of the telescopic system on

distant celestial bodies, as depicted in Figure 1, HR stellar
images with similar celestial environments are used as the
original HR images. The HR image is input into the joint
optimization network for training, that is, the HR image is first
convolved with the equivalent convolution layer to synthesize
the LR image, which is equivalent to the incoherent imaging
process of the telescope system. Then the synthesized LR image
is input into the deep learning network to reconstruct the SR
image. The loss function between the SR image output by the
network and the HR image is calculated, and the parameters of
the network and the equivalent convolution layer (PSF of optical
systems) are updated simultaneously by gradient feedback. The
training process is repeated until an optimal match between the
optical system encoding and the neural network decoding is
achieved. After training, the parameters of the equivalent
convolution layer are derived as the PSF of the optical system.
Next, it is necessary to physically implement the PSF of

network training in the optical path to realize the joint
optimization of the optical-neural network in the physical
sense. In this paper, a phase mask is used to modulate the two-
dimensional phase distribution in the optical field, to obtain the
ideal PSF in the image plane.

2.2. Phase Mask Solution

In this paper, a double-glued telescopic objective (DGTO)
was used instead of the actual telescopic system to simplify the
derivation process. As is displayed in the lower-left corner of
Figure 1, a phase mask is placed immediately behind the
DGTO with the same net aperture as the DGTO. The detector is
placed in the image plane of the DGTO.
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Suppose that the light emitted by a point light source on the
surface of the object propagates to the telescope system, and
the initial amplitude of the light field formed on the surface
behind the last lens is U1(x1, y1) and the initial phase is ψ(x1,
y1), Suppose that the modulation phase of the phase mask is

( ) ( )( )f + -
+

x y,
ik x y

z1 1 2
1
2

1
2

1
, where ( )( )
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z2
1
2
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is the preset phase

part. z1 denotes the distance between the rear surface of the
telescope system and the image surface. Considering that the
phase mask is close to the rear surface of the telescope system
and generally has a small thickness, (x1, y1) denotes the
position coordinate of the rear surface of the telescopic system
and also represents the position coordinate of the phase mask.
According to the scalar diffraction theory (Goodman 2005;
Wang et al. 2023b), the complex amplitude of the light field in
the image plane is
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k 2 is the wavenumber. (x, y) denotes the position
coordinates of the image surface. Removing unnecessary
parameters and simplifying yields
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Equation (3) is essentially a Fourier transform; then the PSF
of the system can be expressed as

∣ ( )∣ ∣ ( ( ) )∣ ( )( ) ( )= µ y fFU x y U x y e ePSF , , . 4i x y x y2
1 1 1

, , 21 1 1 1

F denotes the operator of the Fourier transform. According to
Equation (4), we set the PSF of the telescope system as the PSF
of the network training. We set up the telescope system in the
non-sequential mode of optical design software, and then trace
one million grid rays from the point source. A detector is set on
the back surface of the system to record the coherent
superposition of complex amplitudes of the plane waves
corresponding to all rays, to obtain the initial light field of
Equation (2), ( ) ( )yU x y e, i x y

1 1 1
,1 1 .

Next, the Gerchberg–Saxton (GS) phase retrieval algorithm
is used to solve the modulation phase f(x1, y1). The GS phase
retrieval algorithm is a method to recover the phase of objects
by iteration. It has strong anti-disturbance ability, and is an
important tool for phase recovery (Gerchberg & Saxton 1972).
Finally, according to the equation that relates the phase

difference with the thickness of the diffraction optical element
(Wang et al. 2022; Xu et al. 2022), we design a mask about
the physical height on the substrate with the refractive index
n, which is the phase mask. As shown in the following
equation

( ) ( )
( )

( )f
p

l
= -x y n

h x y
, 1

2 ,
, 51 1

1 1

where λ is the wavelength of the point source. (x1, y1) denotes
the spatial position of the phase mask. Considering the error
between the actually recovered PSF and the trained PSF, the
manufactured phase mask is added to the telescopic system, the
observed image of the distant object is acquired as LR data, and
the network is retrained to fine-tune the parameters of the
reconstructed network.

Figure 1. The framework for joint optimization method and example of a telescope system solving for a phase mask.
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3. Unsupervised Image Super-resolution Network

The proposed joint optimization method based on deep
learning uses the designed unsupervised network Lightweight
Cascaded Residual Network Using Generative Adversarial
Network (LCR-GAN) as the basis for efficient reconstruction
of SR images. LCR-GAN has the advantages of light
parameters and fast reconstruction speed, which can be easily
applied to the real-time tasks of mobile low-cost devices, so it
is conducive to the practical application of the joint
optimization method. The model framework of LCR-GAN is
drawn in Figure 2, which consists of three parts: generator,
discriminator and loss function. These three parts are covered
in Sections 3.2 and 3.3.

3.1. Network Architecture

A generative adversarial network obtains realistic images by
game learning between generators that generate close to real
images and discriminators that distinguish false images. It is
one of the most promising methods of unsupervised learning
(Ledig et al. 2017). In this paper, a generative adversarial
network model is adopted to build an unsupervised network, as
depicted in Figure 2. Bicubic denotes the interpolated up-
sampling operation. The red boxes correspond to the mean
absolute error and the adversarial loss. To improve the
generator’s ability to extract detailed features, we add a detail
discriminator that enables the network to pay more attention to
high-frequency components in the input image, thus making
the reconstructed image texture clearer. For this purpose, a
Butterworth high-pass filter is introduced before the second
discriminator to filter high-frequency components from the
input image. A second discriminator is then used to distinguish
the spurious details generated by the generator.

In LCR-GAN, the generator extracts features of different
levels from the input image, fuses them through the upper
sampling layer, and reconstructs an image of the same size as
the ground truth image. The discriminator takes the recon-
structed image and the real image as input, and its function is to
distinguish the fake image generated by the generator. The two
discriminators have the same structure.

3.2. Generator and Discriminators

SR Using a Generative Adversarial Network (SRGAN) has
been widely investigated in the direction of image SR because
it can reconstruct fine texture details when the up-sampling
factor is large (Ledig et al. 2017). To this end, we build a new
SR network based on the SRGAN framework, as illustrated in
Figure 3, to achieve high-performance reconstruction of SR
images. SRGAN is modified as follows: First, the 16-layer
residual block in the SRGAN network is modified to the
7-layer cascading block (CB). The CB can make full use of the
feature information extracted at all levels and optimize and
extend the propagation path of information, thus reducing the
parameter redundancy of the network and improving the
reconstruction efficiency of the model. Second. The activation
function PReLU is replaced by the activation function GELU.
GELU has smoother nonlinear characteristics, which can
improve the performance of the model and accelerate the
convergence rate of the model.
As shown in Figure 3, the network is divided into three parts.

SFE Module, DFE Module, and Irec Module respectively
represent Shallow Feature Extraction Module, Deep Feature
Extraction Module, and Image reconstruction Module. K
denotes the number of CBs in the network, and PW denotes
pointwise convolution. After the LR image is input into the
network, the deep feature information is extracted using seven
CBs. Then the image reconstruction module fuses all the
extracted features to reconstruct the SR image.
The structure of the CB is depicted in Figure 3. Among them,

the residual block (ResBlock) is responsible for extracting
feature information from the input feature map, and the
concatenation operator collects feature information extracted at
different levels. The PW layer fuses the feature maps extracted
from previous layers and compresses the number of feature
channels, thus reducing the number of training parameters of the
residual block. The residual block first learns the feature
information on the feature graph F1 with input size
C×H×W. Then it is cascaded with feature graph F1 to obtain
feature image F2 with size 2C×H×W. After two processes of
point convolution layer compression feature channel number, the
residual block extraction feature information and the

Figure 2. General architecture of the proposed LCR-GAN.
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concatenation operator collection the output feature map of the
residual block, a deep feature with a size of C×H×W is
obtained by point convolution layer compression. To learn
deeper features, two tandem residual units are used to form a
residual block, as shown in the lower right of Figure 3.

Considering that PatchGAN trains the discriminator by
cutting the input image into small pieces to discriminate them
separately, which enhances the local texture details (Phillip
et al. 2017), we use PatchGAN as the discriminator, with both
discriminators having the same architecture. The network
model is visualized in Figure 4. BN represents the batch
normalization layer. k, n, and s denote the size of the filter
kernel, the number of output feature channels, and the stride of
the convolution layer, respectively. A convolution layer, a BN
layer, and an activation function LeakyReLU are integrated
into each dark blue box. As demonstrated in Figure 4, the input
passes through each convolution layer in turn and is mapped
into an N∗N matrix, where each point represents a patch in the
input image. Finally, a sigmoid activation function is used to
discriminate the probability that different patches are true.

3.3. Loss Function

To accurately reconstruct SR images, we use the following
loss function to train the generator

( )l l= + +L L LLoss . 6G p G G1
1

2
2

LossG is a weighted combination of the pixel loss Lp and the
generative adversarial loss LG

1 of the first discriminator, and the
adversarial loss LG

2 of the second discriminator. Here λ1 and λ2
are the weights of the two losses respectively. The expression
for the pixel loss Lp is as follows

∣ ∣ ( )å= -L
N

I B
1

. 7p
N

SR LR

Here, ISR represents the output image of the network, and BLR

represents the results of the bicubic upsampling operation of
the input LR image.
The expression for the generative adversarial loss LG

1 of the
first discriminator is as follows

∣ ( )∣ ( )å= -L
N

D I
1

1 . 8G
N

1
1 SR

ISR represents the output image of the network, and D1

represents the output result of the discriminator. The expression
for the generative adversarial loss LG

2 of the second
discriminator is as follows

∣ ( ( ))∣ ( )å= -L
N

D W I
1

1 . 9G
N

2
2 2 SR

D2 represents the output of the second discriminator, and W2

represents the weight of the convolution kernel of the
Butterworth high-pass filter.

Figure 3. Network structure of generator (G) in LCR-GAN.

Figure 4. Network structure of the PatchGAN discriminator.
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To better distinguish between the generator’s reconstructed
image and the HR images (label data), the first discriminator is
trained using the following loss function

⎛
⎝

⎞
⎠

∣ ( )∣ ∣ ( )∣ ( )å=
+ -

N

D I D I
Loss

1 1

2
, 10D

N

1 SR 1 HR
1

where IHR represents the HR images (label data), and other
parameters are as above.

To better distinguish the spurious detail features recon-
structed by the generator, the second discriminator is trained
using the following loss function

⎛
⎝

⎞
⎠

( )∣ ( ( ))∣ ∣ ( ( ))∣å=
+ -

11
N

D W I D W I
Loss

1 1

2
,D

N

2 2 SR 2 2 HR
2

where D2 represents the output result of the second
discriminator, and W2 represents the weight of the convolution
kernel of the Butterworth high-pass filter.

4. Simulation of Joint Optimization Method

To verify the performance of the joint optimization method,
we carried out SR reconstruction of degraded images by deep
learning and joint optimization, and evaluated the image
quality. Specifically, we first make the corresponding star atlas
data sets in two ways, and use the produced data sets to train
the two latest unsupervised image SR networks Direct
Unsupervised Super-Resolution Using Generative Adversarial
Network (DUS-GAN; Prajapati et al. 2021), Metric Learning
based Interactive Modulation for Real-World Super-Resolution
(MM-realSR; Mou et al. 2022), LCR-GAN and LCR-GAN of
the joint optimization method until the networks converge.
Then the degraded star atlas in the test set are input into the
trained network to reconstruct the deep learning SR image and
the jointly optimized SR image. Image quality evaluation
indexes PSNR, Structural Similarity Index Metric (SSIM), and

Learned Perceptual Image Patch Similarity (LPIPS) were used
to evaluate the reconstruction effect.

4.1. Data Preparation

The actual astronomical telescopic system was used for the
simulation test, which is utilized to identify and track the space
point target, and its optical path diagram is drawn in Figure 5.
The entrance pupil diameter is 250 mm, the focal length is
2990 mm, and the wavelength is 0.623 μm. When the object
height is set to 0.1° the image surface size is 5.23 mm ⨯ 5.23
mm. The pixel size is 192 ⨯ 192, then the spacing between
adjacent pixels is about 27.24 μm. Select 300 clear and easily
distinguishable HR star atlases on the NASA website.4 These
atlases are images of celestial objects captured by different
astronomical telescopes, ensuring the authenticity of the data.
The data are publicly available, and the data set can be
provided as an attachment. Convert them to grayscale images
as the original HR images.
Second, we introduce two methods for making degraded

images or LR images of deep learning and joint optimization
methods. Traditional deep-learning reconstruction methods
require LR star atlases. Therefore, we construct a 1:1 imaging
optical path of the actual astronomical telescopic system in
optical design software, set the corresponding basic parameters
according to the actual imaging scene, and use the image
simulation function to get the image plane image of the
telescopic system. For the joint optimization method proposed
in this paper, as described in Section 2.1, a learnable single-
core convolution layer (convolution kernel size is 23 ⨯ 23, step
is 1) is used as the PSF of the actual telescopic system, and
convolved with the HR image to generate an LR image to
match the incoherent imaging process of the telescopic system.

Figure 5. Optical path diagram of the astronomical telescopic system.

4 https://images.nasa.gov/
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The images obtained by the two methods are downsampled 4
times as the LR image to match the possible low sampling rate
detector. In this paper, in view of the large object distance of
the telescope system and the fact that astronomical stars are
difficult to reproduce in reality, weighing the fidelity of the data
against the cost of production, we use both methods to produce
the degraded data required for this article.

According to the degraded data production method of deep
learning above, 300 pairs of LR–HR paired star atlases can be
easily obtained. To gather enough data for training, we randomly
rotated by 90° and flipped for data augmentation. For the
obtained 1200 pairs of data, 960 pairs were extracted for the
training set, 120 pairs for the verification set, and 120 pairs for
the test set. Then we randomly cropped 48 ⨯ 48 and 192 ⨯ 192
unpaired patches from the training data set, for training the SR
network DUS-GAN, MM-realSR, and LCR-GAN.

According to the degraded data production method of the joint
optimization method above, the initial HR star atlas is randomly
rotated by 90° and flipped for data augmentation. The 1200
images obtained were randomly cropped into 192 ⨯ 192 unpaired
patches, such that 960 were used for the HR data of the training
set, 120 were used for the HR data of the verification set, and
120 were used for the HR data of the test set. The HR images in
the training set are convolved with a learnable single-core
convolution layer, and then the obtained images were down-
sampled 4 times to generate LR images, which were used to train
the image reconstruction network LCR-GAN of the joint
optimization method. As mentioned in Section 2.2, after the
training, the PSF recovered by the GS algorithm is taken as the
PSF of the actual telescopic system. The HR images in the test
set are convolved with this PSF, and then the LR images of the
test set are generated by 4 times down-sampling.

4.2. Simulation Result Analysis

Figure 6 displays the simulation results of the GS algorithm
implementation described in Section 2.2. The average absolute
error between the PSF generated by the algorithm and the PSF
trained by the network converges quickly. The final Root Mean
Square Error of the two is 0.0189, and the sum of squares due
to error (SSE) is 0.0097, which means that the modulation
phase obtained by the algorithm can more accurately realize the
PSF trained by the network.

In the training phase, 960 sets of two kinds of unpaired
images were used as the input pictures of their respective
unsupervised networks, and 300,000 iterations were carried
out. Of these, 960 are LR images and 960 are HR images. The
learning rate is 0.0001, batch size is 1 and epoch is 300. Our
implementation uses the PyTorch framework on a PC with the
GeForce RTX 4090 (NVIDIA).

After the training, 60 sets of data are randomly selected from
both the test sets of deep learning and joint optimization. The
LR images are input into the corresponding network to

reconstruct the SR star atlas. Three quantitative picture quality
indices are used for performance evaluation, including PSNR,
SSIM, and LPIPS.
Table 1 lists the average indicators of reconstructed images by

different methods. We observe that the PSNR and SSIM values
of LCR-GAN are better than MM-RealSR, and are comparable
to bicubic upsampling and DUS-GAN, which indicate that the
reconstructed images of LCR-GAN have less distortion, better
structural similarity, and higher image quality. The image
reconstruction time of LCR-GAN is much smaller than that of
the other two networks, and the ultra-fast reconstruction speed is
conducive to real-time reconstruction. Deep learning methods
and bicubic upsampling methods are significantly lower than
joint optimization methods in PSNR, SSIM, and LPIPS, which
indicate that the SR image reconstructed by the joint
optimization method is closer to the real image.
We compare the training parameters of several main

unsupervised networks, as shown in Table 2. The parameters
of LCR-GAN are smaller than those of other unsupervised
networks. The simplified model not only improves the speed of
image reconstruction but also can be deployed in low-cost
computing devices, which is conducive to the practical
application of deep learning.
Figure 7 shows the effect of the 4x super-resolved star atlas

reconstructed by the different methods. According to the
Rayleigh criterion, the diffraction limit of the system is about
9.12 μm, much smaller than the pixel spacing of 27.24 μm,
which means that the system can theoretically distinguish
between adjacent pixels. In Figure 7, the image in the image
plane was down-sampled 4 times (matching the low sampling
detector) to generate LR. It can be seen that due to the system
aberration and other reasons, as well as the loss of detail
information caused by 4x downsampling, the adjacent weak
star points in LR are difficult to distinguish. The adjacent weak
stars in the reconstructed image of LCR-GAN are easy to
distinguish, which indicates that LCR-GAN has a good image
SR effect. Compared with DUS-GAN and MM-realSR, the SR
star atlas reconstructed by LCR-GAN has relatively clear star
points and textures, and the weak star points are well preserved.
Compared with the LCR-GAN, the star atlas reconstructed by
the joint optimization method is rich in detail, with clearer
nebular texture, and adjacent faint stars are distinguishable. We
explain that the joint optimization method reconstructs the PSF
of the telescopic system, so that the system retains the optimal
information, and therefore the reconstruction results are closer
to the original HR image.

5. Verification Experiment

5.1. Experimental Setup

By using deep learning, Sun’s method (Sun et al. 2020) and
the joint optimization method in this paper, the SR reconstruc-
tion experiment of the resolution plate is carried out to verify
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the performance of the joint optimization method. The optical
path for the validation experiment is illustrated in Figure 8. The
light emitting diode emits scattered light with a central
wavelength of 623 nm, and then filters out 623 nm monochro-
matic light with a narrow band filter. The intensity of the beam

is adjusted by using the attenuator plate, and the beam forms
many scattered point sources through the aperture of the
resolution plate, simulating the light emitted by the star point.
A single lens is placed at a focal length from the resolution
plate to correct the light into parallel light, simulating an
infinite distance. The focal length of the lens is 100 mm. The
beam splitter prism splits the light into two beams, and one is

Figure 6. Results of the implementation of the GS phase retrieval algorithm. (a) PSF trained by the deep learning network; (b) PSF recovered by the GS algorithm; (c)
absolute error between (a) and (b); (d) the curve of the mean absolute error between (A) and (B) with iteration.

Table 1
Comparison of PSNR, SSIM, LPIPS, and Total Reconstruction Times for some

up-sampling Methods

Method PSNR SSIM LPIPS Total Time/s

Bicubic 28.17 0.85 0.32 0
DUS-GAN 27.86 0.83 0.28 4.11
MM-RealSR 21.76 0.77 0.13 4.63
LCR-GAN 27.35 0.82 0.21 0.32
Co-optimization 32.33 0.91 0.11 0

Table 2
Comparison of Unsupervised Network Parameters

Model CinCGAN USISResNet
DUS-
GAN

MM-
RealSR

LCR-
GAN

Param >43M 5.1M 15.9M 26.1M 3.7M

Note. M denotes a million.
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transmitted to the surface of the spatial light modulator, and
reflected back to the prism after phase modulation. Then the
prism deflects the reflected light to the perpendicular direction
of the incident light. The light is imaged by the DGTO in the
back focal plane, which is recorded by the low-illumination
camera. The focal length of the double-glued objective is
200 mm. The pixel size of the detector is 3.45 μm. The length
of the spatial light modulator is about 13 mm, and width is
about 8 mm.

In terms of waveform modulation, the telescopic system is
equivalent to a lens with an arbitrary modulated wave front
shape. In this paper, a non-ideal lens, a double-glued objective,
is used instead of the telescopic system to verify the joint
optimization method. As shown in Figure 8, since the light
incident on the DGTO is a plane wave and the thickness of the
double-glued lens is small, the spatial light modulator can be
placed in front of the double-glued objective. Since the fringe
width of the resolution plate is less than 30 μm, in order to
better characterize the performance of the joint optimization

method, the resolution plate is used instead of the star atlas in
the experiment. In addition, as described in Section 4.1, we add
two images of resolution plates to the original images and
retrain the corresponding network, to help reconstruct the SR
image of the resolution plate.
In order to verify the performance of the joint optimization

method, we generate a modulation phase mask according to the
method described in Section 2. According to the joint
optimization method based on the ideal lens proposed by Sun
Q., the corresponding phase mask is solved. The spatial light
modulator modulates the phase of the light field according to the
grayscale image of the phase mask. The image of the phase mask
is fed into the spatial light modulator. In the off and on state of
the spatial light modulator, the detector collects the images of the
phase-free mask, the phase mask with the Sun Q. method, and
the phase mask with the joint optimization method in this paper,
as the inputs of their respective networks. The SR images
corresponding to deep learning, the Sun’s method, and the joint
optimization method in this paper are all reconstructed.

Figure 7. Comparison of SR images reconstructed by deep learning and the joint optimal method.

Figure 8. Optical path diagram of the resolution plate validation experiment.
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5.2. Experimental Result Analysis

The experimental results are displayed in Figure 9. Panel (a)
is the image of the standard resolution plate actually taken by
the detector, and the red box corresponds to the reference
position of the control group. Panels (b), (c), and (d) are the
images without phase mask, phase mask with Sun method, and
phase mask with joint optimization method, respectively.
Panels (c), (f), and (g) are SR images reconstructed by LCR-
GAN, Sun’s method, and joint optimization method respec-
tively. According to the Rayleigh criterion, the lateral
diffraction limit of the system is about 11.69 μm, and the

longitudinal diffraction limit is about 19 μm. The fringe width
is about 8.3 pixels, or 28.64 μm, which is larger than the
diffraction limit, and theoretically, the system can distinguish
between light and dark fringes. Comparing Panels (b) and (e),
due to the system aberration, noise, and other reasons, it is
difficult to distinguish light and dark fringes in images captured
by the detector, and LCR-GAN has a certain SR effect.
Comparing Panels (d) and (g), it can be seen that the SR image
reconstructed by the joint optimization method in this paper is
rich in detail, and the fringes are clearly distinguishable, which
greatly improves the resolution of the observation image.

Figure 9. Experimental results of SR reconstruction of resolution plates.

Figure 10. The gray value curves corresponding to the fringe slices of several reconstructed images.
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Comparing Panels (f) and (g), it can be seen that the SR effect
of the image reconstructed by Sun’s method is lower than that
of the joint optimization method. We explain that the
modulation phase of the double-glued objective lens is different
from that of the ideal lens, and the phase mask solved by the
Sun method has an error, resulting in the loss of some high-
frequency information in the image plane. These results verify
the simulation results.

To quantitatively measure the SR effect, we take tangents to
the stripes in the reconstructed image, and the position
corresponds to the black line in Figure 9(a). The pixel position
is taken as the X-axis, and the gray value at the tangent line is
plotted. The legend in the upper right corner of Figure 10
shows the curves corresponding to different reconstruction
methods. For comparison, we performed a 4-fold bicubic
upsampling on the real image, to match the upsampling ratio of
other SR reconstruction methods. Since the stripes are equally
spaced, we measure the contrast of the fringe by calculating the
average absolute error between the seven pairs of clear crests
and troughs in Figure 10. The mean absolute errors of bicubic
upsampling, LCR-GAN, Sun’s method, and joint optimization
method are 17, 17.7, 68.7 and 71.4, respectively. The joint
optimization method in this paper has the highest contrast, and
the stripes in the reconstructed image are easier to distinguish.

6. Conclusions

In this paper, an optical-neural network joint optimization
method based on the telescopic system is proposed. First, the
deep learning convolutional layer equivalent to the telescopic
system PSF is integrated into the front end of the neural
network, and the PSF and network parameters are jointly
optimized through the training process. After the training, a
phase mask is constructed to reconstruct the trained PSF in the
telescopic system, the manufactured phase mask is added to the
system and the observation image is collected, and the network
is retrained to fine-tune the network parameters. This paper also
constructs an unsupervised network LCR-GAN, which has the
advantages of light parameters and fast reconstruction speed,
and is suitable for real-time tasks of mobile computing devices.
Simulation and experiments show that the reconstructed star
atlas is rich in detail and easy to distinguish, and the resolution
of the observed image can be improved without adding
complex hardware equipment. It is worth noting that since the
network in this paper is trained using a data set composed of

known star atlases, it can only be applied to the observation
images of known targets with basic outlines or shapes.
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