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Abstract

The China Space Station Telescope (CSST) is a telescope with 2 m diameter, obtaining images with high quality
through wide-field observations. In its first observation cycle, to capture time-domain observation data, the CSST is
proposed to observe the Galactic halo across different epochs. These data have significant potential for the study of
properties of stars and exoplanets. However, the density of stars in the Galactic center is high, and it is a well-
known challenge to perform astrometry and photometry in such a dense star field. This paper presents a deep
learning-based framework designed to process dense star field images obtained by the CSST, which includes
photometry, astrometry, and classifications of targets according to their light curve periods. With simulated CSST
observation data, we demonstrate that this deep learning framework achieves photometry accuracy of 2% and
astrometry accuracy of 0.03 pixel for stars with moderate brightness mag= 24 (i band), surpassing results obtained
by traditional methods. Additionally, the deep learning based light curve classification algorithm could pick up
celestial targets whose magnitude variations are 1.7 times larger than magnitude variations brought by Poisson
photon noise. We anticipate that our framework could be effectively used to process dense star field images
obtained by the CSST.
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1. Introduction

The China Space Station Telescope (CSST) is China’s
cutting-edge space telescope, with a 2 m aperture and a field of
view (FOV) exceeding 1.1 square degrees.4 The CSST is
designed to observe from near-ultraviolet to optical band,
delivering a remarkable point-spread function (PSF) with the
radius of 80% energy concentration (REE80) smaller than 0 15.
With an unparalleled combination of a large FOV and high
spatial resolution, the CSST anticipates making groundbreak-
ing discoveries. One of its potential scientific projects is a time-
domain survey of the Galactic center, conducting observations
over several weeks. The time-domain survey focuses on dense
star fields, providing an unprecedented level of spatial
resolution and temporal cadence. The observational data will
encompass light curves and positions for millions of stars.
These light curves hold paramount importance, offering
insights into the nature, structure, composition, and evolution
of celestial objects. Characteristic features within light curves
of diverse phenomena, including supernovae, Cepheid vari-
ables, and eclipsing binaries, enable astronomers to measure

cosmic distances, refine cosmological models, and probe the
internal structure and nuclear processes of stars. Furthermore,
periodic variability in light curves is pivotal for the detection
and study of transiting exoplanets, as well as understanding the
rotational dynamics of asteroids and comets.
Prior to deriving any further scientific insights, our initial

phase involves obtaining positions and magnitudes of celestial
objects and subsequently identifying potential celestial object
candidates based on the time-domain data of the magnitudes
and positions. As is widely acknowledged, we face three
significant challenges during the process: the detection of
celestial objects, the photometry analysis of these objects, and
the classification of celestial objects based on their light curve
patterns. Due to the subpar performance of classical detection
and photometry methods in the dense star fields observed by
CSST, both detection and photometry are susceptible to
interference from neighboring targets. The study carried out
in this paper primarily seeks to assess the effectiveness of
various detection and photometry techniques, encompassing
classical detection methods (Bertin & Arnouts 1996), the PSF
photometry approach, and machine learning based detection
and photometry methods (PNet, Sun et al. 2023).
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In our pursuit of uncovering the potential advantages and
disadvantages of different photometry and detection
approaches, we further employ a deep learning based light
curve classification method. The light curve classification
problem has been widely discussed in different papers.
Building upon existing knowledge, Strope et al. (2010) started
on a comprehensive investigation of nova light curves. They
initiated observations and detailed analyses, encompassing
both graphical and tabular representations of their findings.
This study not only documented several key attributes,
including peak brightness and corresponding dates, but also
significantly advanced our understanding of the morphological
characteristics and properties of nova light curves. The
advancement of machine learning techniques has seen a
growing trend in utilizing these algorithms for light curve
classification. Richards et al. (2011) employed Random Forest
classifiers for this purpose, Hinners et al. (2018) utilized
bidirectional Long Short-Term Memory Recurrent Neural
Networks (bidirectional LSTM RNNs) as a representation
learning method for prediction and classification of Kepler light
curves. Similarly, Olmschenk et al. (2024) employed Con-
volutional Neural Networks (CNNs) to efficiently identify
short-period variable stars in the Transiting Exoplanet Survey
Satellite (TESS) all-sky image data. In this work, we present an
improved astromodel-based CNN (Shallue & Vanderburg 2018;
Yu et al. 2019) This CNN is integrated into our framework for
light curve classification (Basri et al. 2010). Compared to the
CNN network model in the Olmschenk et al. (2024) work, the
CNN model presented in this paper incorporates auxiliary
features in addition to light curve inputs with the aim of
enhancing its classification accuracy.

In summary, this paper proposes a detection, photometry and
light curve classification framework for a dense stellar field
observed by the CSST as diagrammed in Figure 1. In dense star
fields, traditional photometry and detection algorithms are more
prone to interference from neighboring targets, thus affecting
the accuracy of photometry and detection. However, the PNet
model integrated in our framework significantly enhances the

precision and recall rate of the results. Furthermore, when
integrated with the deep learning based light curve classifica-
tion algorithm, our framework obtains an improved accuracy of
light curve classification results. The paper is structured as
follows. In Section 2, we outline the methodology for
generating time-domain observation data of the dense star
field obtained by the CSST. Section 3 details the design of the
deep learning based pipeline for detecting and measuring
magnitudes of celestial objects within dense star fields, as well
as the classical method for performance comparison. In
Section 4, we present the light curve classification algorithm
used in this paper, which can effectively identify celestial
objects that exhibit periodic magnitude variations. Based on the
detection capability, photometry accuracy, and light curve
classification results, we will estimate the potential of the CSST
in discovering celestial objects with periodic magnitude
variations. Finally, in Section 5, we draw our conclusions
and outline prospects for our future endeavors.

2. Simulation of the CSST Dense Star Field
Observation Data

In this section, we show the process of generating a catalog
for a specific sky region of interest and simulating observation
images obtained by the CSST. Within a target sky area
spanning 0.01 square degrees and centered at coordinates R.A.
17h 56m 51s, decl. –29d 34m 45s (J2000), situated in the halo
near the bulge region, we utilize galaxy model TRILEGAL
(Vanhollebeke et al. 2009) and Gaia Data Release 3 (DR3) data
to construct the input catalog for generation of simulated
images. To ensure the completeness of our input data, we
consider the decreasing completeness of Gaia DR3 data
(Cantat-Gaudin et al. 2023) in dim stars and keep stars in the
input catalog with G magnitude less than 20. Additionally, we
calculate the magnitude of the average flux density in the g and
i bands for the TRILEGAL data to maintain consistency with
the Gaia G magnitudes. We also ensure that the fraction of
average magnitudes greater than 20 is retained in the
TRILEGAL data. It is worth noting that parameters such as

Figure 1. Framework for astrometry, photometry, and light curve classification of dense star field images obtained by CSST.
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stellar density remain relatively stable within the target region,
allowing us to expand the catalog data to cover 0.792 square
degrees, corresponding to the FOV of 18 chips (u, g, r, i, z, y,
NUV) of the CSST.

To validate the effectiveness of the preceding work, we
present several figures depicting parameter distributions, as
detailed below. In Figure 2, the G band magnitude distribution
clearly exhibits a coherent pattern around a magnitude of 20.
Prior research (Wang et al. 2023) has indicated that when
mi= 16, the photometry signal-to-noise ratio (S/N) reaches
approximately 600, after considering jitter noise. A straightfor-
ward algorithm yields photometry precision of 1% at mi= 22,
which is sufficient for detecting a hot Jupiter. Considering a
limiting magnitude around 25.9 in i band, we have established
a cut-off at mG= 26, although it is possible to set a higher
limiting magnitude in the TRILEGAL model. Furthermore, we
have estimated the number of background galaxies, which is
less than 1% of all stars, therefore, we neglect the background
galaxies.

The stellar physical characteristics within the target region
are depicted in Figures 3 and 4. Approximately 87% of the
stars fall within the main sequence. The distribution of spectral
types is detailed in Table 1. It is also worth mentioning that
M-type stars only account for 5%, due to the limiting
magnitude setting not being sufficiently high. We employ the
CSST simulation code to generate simulated images,5 taking
into account instrumental effects such as dark currents and
readout noise. As our goal is to analyze time-domain
observation data, we generate time series images, based on
time variable catalogs, including eclipsing binaries, variables

and transiting exoplanets with fractions of 1%, 0.02%, and 1%,
respectively. The periods of eclipsing binaries satisfy a
Gaussian distribution (Duquennoy et al. 1991), while the other
two are consistent with a uniform distribution within 1.45 to
2.95 days. Finally, we simulate 1000 images captured in the i-
band with an exposure time of 300 seconds per frame, resulting

Figure 2. The distribution of stars with different magnitude within the target region. As demonstrated in left panel, the distribution of stars keeps a coherent pattern
between the Gaia catalog and TRILEGAL model. Right panel shows the corresponding i band distribution obtained by CSST simulation code within a 500×500 pixel
region, and all below analysis are based on i band simulation image.

Figure 3. The Hertzsprung–Russell (H-R) diagram of stars in the catalog. As
displayed in this figure, around 87% of all stars are main sequence stars.

5 https://csst-tb.bao.ac.cn/code/csst_sim/csst-simulation
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in a data set of 1000 frames (the time spanning is about
3.5 days) that will be used for subsequent analysis.

3. The Data Processing Framework for CSST Dense
Star Field Observations

Processing data from a dense star field presents a known data
processing challenge, characterized by three key difficulties. First,
the high density of stars within the field makes it particularly
challenging to distinguish individual stars from the observational
data due to overlapping. Second, the measurement of a single
star’s flux is significantly influenced by its proximity to
neighboring stars. Third, errors stemming from the detection
and photometry steps pose a considerable obstacle to the
effectiveness of the light curve classification algorithm. Therefore,
it is imperative to assess the performance of various methods and
develop a comprehensive end-to-end framework for processing
dense star field observational data obtained by the CSST.

In this section, we will introduce both the traditional method
and the deep learning based algorithm for identifying and
conducting photometric measurements on stars within dense
star fields. We will evaluate the performance of these two
approaches and select the most suitable method for

constructing the framework. Additionally, as scientists require
the identification of interesting targets, such as flare events,
binaries, or exoplanets, for further investigation, we have
incorporated a deep learning based light curve classification
algorithm into the framework. In summary, the framework
described in this section assists scientists in generating catalogs
from each observation image and in identifying celestial
objects with periodic light curves for subsequent analysis.
Further details of the framework will be discussed below.

3.1. Classical Target Detection and Photometry
Algorithm for Dense Star Fields

3.1.1. Classical Target Detection Algorithm

Typically, scientists employ classical algorithms for both
detection and photometry tasks. One commonly utilized
software for these purposes is Source Extractor (SExtractor).
SExtractor identifies celestial objects by detecting local peaks
in brightness and consolidates these detection results to
produce the final results (Bertin & Arnouts 1996). In scenarios
with sparsely populated star fields, SExtractor performs
admirably, effectively identifying a majority of stars. However,
in denser star fields, the intricacy of target detection increases,
and the performance of SExtractor may be affected. Conse-
quently, we continuously fine-tune parameters of SExtractor
based on its performance tested with simulated data. The final
configuration we adopt is detailed in Table 2.

3.1.2. Classical Photometry Algorithm

Two classical photometry methods are commonly used:
aperture photometry and PSF photometry. Aperture photo-
metry is typically used for processing images of sparse star
fields. It involves employing a fixed-size aperture to calculate
the flux of celestial objects. On the other hand, PSF photometry

Figure 4. The distribution of effective temperature, surface gravity and metal abundance of stars in the simulated data, from left to right respectively.

Table 1
The Distribution of the Teff Interval (Pecaut & Mamajek 2013) and Percentage

of Stars with Different Spectral type in Simulated Data

Spectral Type M K G F

Teff <3865 3865–5310 5310–5980 5980–7320
Proportion 5% 73% 16% 4%

Note. For a typical M-type star, considering L ∼ 0.04Le, d ∼ 8 kpc, and an
extinction coefficient around 2–3 mag, we can assess that at i magnitude of 26,
the M-type star is just starting to show up, which explains the small fraction of
the M-types quantitatively.
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is a technique used for measuring the brightness of stars in
astronomical images by fitting the light distribution with the
PSF (Stetson 1987; Starck et al. 1998). PSF photometry can be
applied to both dense and sparse star fields. However, it
necessitates stable observation conditions and prior knowledge
of PSFs, making it more suitable for images acquired by space
telescopes (Holtzman 1990; Anderson & King 2006). Past
studies have demonstrated the successful application of PSF
photometry to data obtained by the Hubble Space Telescope
(Dolphin & Kennicutt 2002; Holtzman et al. 2006; Garcia et al.
2015). Given the observation conditions of the CSST, we
propose to use PSF photometry in this study.

We adhere to the standard PSF photometry procedures for
preprocessing the observational data. Initially, we partition the
observation images into smaller units, each comprising 100 by
100 pixels. Subsequently, we apply a smoothing filter and
compute the median values within each unit as estimates for the
sky background. Finally, we subtract the sky background from
the observation images. These processed images are then
forwarded to the PSF photometry algorithm for magnitude
estimation. In the PSF photometry algorithm, we fit the PSF
provided by the simulation code with images of celestial objects
and calculate the flux of celestial objects with Equation (1)

∬ ( ) · ( ) ( )=flux PSF x y I x y dx dy, , , 1

where PSF(x,y) represents the normalized grey scale values of
celestial objects in different positions defined by the PSF
model, and I(x,y) denotes the brightness distribution of the
target. The target flux and magnitude are then converted using
the formula

( ) ( )= - +flux bmag 2.5 log , 210

where the constant b is obtained through flux calibration.

3.2. Deep Learning Based Target Detection and
Photometry Algorithm—PNet

3.2.1. The Structure of PNet

In recent years, deep learning has experienced rapid growth and
has been applied in various domains, including natural language
processing, image recognition, and image classification. Among

these applications, deep learning has been extensively explored in
the realm of target detection algorithms. This exploration
encompasses two-stage detection algorithms such as Fast
R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 2015), and
Cascade R-CNN (Cai & Vasconcelos), as well as single-stage
detection algorithms such as YOLO (Redmon et al. 2016), SSD
(Liu et al. 2016) and RetinaNet (Lin et al. 2017). The principles
underpinning these target detection algorithms in the field of
computer vision align with those of target detection and
photometry algorithms in astronomical image analysis. They
share the common goal of determining the positions of celestial
objects and calculating their properties. However, when dealing
with celestial objects, we often need to perform regression to
estimate their magnitudes, whereas general purpose target
detection algorithms primarily focus on classifying objects.
Building on this concept, numerous deep learning-based target
detection algorithms have found extensive applications in
astronomy. For instance, Faster R-CNN has been employed for
astronomical target detection and classification in wide-field
small-aperture telescopes (Jia et al. 2020), while YOLO has been
used for the detection and identification of galaxies (González
et al. 2018).
To meet the demands of precise photometry and effective

detection of celestial objects in dense star-field images, we have
chosen to employ PNet in this study (Sun et al. 2023). PNet is a
deep learning neural network, which is developed for detection,
astrometry, and photometry of celestial objects, leveraging the
framework proposed in Jia et al. (2020). The architecture of
PNet is illustrated in Figure 5. The initial image undergoes a
feature extraction process within a neural network to generate
feature maps. Following this, a fully convolutional analysis
network processes these feature maps, determining the central
positions of stars and relevant flux-related data. PNet is built
upon CenterNet (Zhou et al. 2019) and incorporates a
specialized photometry branch. To tailor it for star detection
and measurement, certain adjustments have been implemented.
For more comprehensive information regarding PNet, we refer
readers to the original paper (Sun et al. 2023). Given that PNet
was originally designed for processing images of sparse star
fields obtained by ground-based time-domain surveys, which
are quite different from the dense star fields discussed in this

Table 2
Parameters for SExtractor

Parameter Name Value Description

DETECT TYPE CCD CCD (linear) or PHOTO (with gamma correction)
DETECT MINAREA 3 min. # of pixels above threshold
DETECT THRESH 1.6 〈sigmas〉 or 〈threshold〉, 〈ZP〉 in mag arcsec–2

ANALYSIS THRESH 10 〈sigmas〉 or 〈threshold〉, 〈ZP〉 in mag arcsec–2

DEBLEND NTHRESH 60 Number of deblending sub-thresholds
DEBLEND MINCONT 0.001 Minimum contrast parameter for deblending
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paper, we have implemented specific adjustments to tailor PNet
for our purposes. First, we have removed the downsampling
module. In dense star field images, pixels corresponding to
different stars tend to merge into a single pixel, if we apply the
downsampling module. While this modification does increase
computational demands, it notably bolsters PNet’s capability to
detect and measure objects in dense star fields. Second, to
ensure high-precision magnitude calculations, we have transi-
tioned the neural network’s precision from half precision
floating point numbers to single precision floating point
numbers. Despite the augmented computational resources
required, this adjustment results in a more stable training
process and increased accuracy in magnitude measurements.

3.2.2. Training of PNet

As simulating time-domain observation images demands
substantial computational resources, we only create observation
images for a single sky area as mentioned in Section 2. This
region contains 5000× 5000 pixels with a pixel scale of 0.074
pixels per arcsec. A total of 631,475 stars are contained in the
simulated images. We have produced 1000 images of this sky
area and each of them are captured at different epochs.
Subsequently, we have subdivided the sky area into stamp
images, each sized at 128× 128 pixels. Notably, 98.69% of
these stamp images are earmarked for the training data set,
while the remaining 1.31% constitute the test data set. The
latter comprises 4038 stars for evaluation. Due to the faintness
of targets with magnitudes of 25 and above, they are not taken
into consideration during network training and detection. When
validating the detection and photometric accuracy of the neural
network for individual images, we use the entire image as the
test set to ensure an adequate amount of data.

Based on our experience, achieving convergence with PNet
is challenging due to its two distinct branches, particularly the
photometry branch, which requires an extensive amount of
time for convergence. As a result, we employ a transfer
learning strategy during the training phase. We utilize pre-
trained weights provided by Sun et al. (2023) and further train
the neural network with the Focal Loss (Lin et al. 2017) as the
loss function for target detection. The Focal Loss defined in this

paper is expressed in Equation (3),

( ) ( ) ( ) ( )a= - - gp p pFocalLoss 1 log , 3t t t t

where αt is the weighting factor used to adjust the weights of
positive and negative samples, pt is the output of the network,
and γ> 0 is an adjustable focusing parameter. We set γ as 2 in
this paper. With the focal loss, we can obtain a balance of
detection abilities between bright and dim targets. We further
use the Mean Absolute Error (MAE) loss and the Mean Square
Error (MSE) loss to evaluate the astrometry and photometry
error. The MAE is used to estimate astrometry error, while the
MSE loss is used to evaluate photometry error. They are
defined in Equation (4),
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The Focal Loss, MAE and MSE will be added together as a
loss function for PNet. With the loss function defined above,
we further employ the Adam Optimizer (Kingma & Ba 2014)
to train the neural network. The neural network is trained in a
computer with configurations defined in Table 3 and it will take
approximately 10 minutes to train the neural network with
batch size of 10. After approximately 200 epochs of training,
the network achieved an acceptable performance in detection,
astrometry and photometry of celestial objects.

Figure 5. The architecture of PNet.

Table 3
Hardware Specifications Used in Our Study

Parameter Name Value

GPU GeForce RTX 3090 × 3
CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz
GPU Memory 24 GB × 3
RAM 256 GB
CUDA Version 11.7
CuDNN Version 8.6
PyTorch Version 1.10.0+cu11.3
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3.3. Performance Comparison between the Classical
Method and the Deep Learning Based Method

In this section, we will assess the performance of both the
classical method and the deep learning based method in
detection and photometry of celestial objects. To cross-check
the detection results, we set the centering error threshold as 0.1
pixels. This implies that we will consider detection results as
true positives if the distance between their positions and the
ground-truth positions is less than 0.1 pixels. Subsequently, we
will evaluate the magnitudes of the detected targets and
compare them to the ground-truth magnitude values. These
results will serve as the basis for comparing these two methods.
Further details regarding these results will be discussed below.

3.3.1. Comparison of the Detection Abilities

We first compare the detection capabilities of these two
methods. The number of detected targets is depicted in
Figure 6. As illustrated in this figure, there is not a significant
disparity in performance between these two detection methods
for bright targets (with magnitudes ranging from 14 to 20).
However, when it comes to dim and densely distributed targets,
the deep learning based method outperforms the classical
approach. To provide a more comprehensive assessment, we
have calculated both the recall rate and precision rate for each
of these methods. The recall rate is defined as the number of
true positives divided by the sum of true positives and false
negatives. The precision rate is defined as the percentage of
true positive predictions among all positive predictions made
by the model. The classical method achieves a recall rate of
51% and a precision rate of 83%, whereas PNet boasts a recall
rate of 89.9% and a precision rate of 95%. The F1 score is the

harmonic mean of precision and recall, which can be used as a
direct evaluation criterion for the detection algorithm. The F1
score for the classical method is 0.635, while the F1 score for
PNet is 0.924. As shown in Figure 7, the F1 score of PNet is
significantly larger than that of the classical method, particu-
larly for dim stars.

3.3.2. Comparison of the Photometry Abilities

In dense star fields, where stars are close to each other, PSF
photometry encounters challenges. This is because, when stars
are in close proximity, the PSF photometry tends to over-
estimate magnitudes. This occurs because the PSF photometry
fits the PSF for each candidate and derives their magnitudes
and photons from nearby stars, which will introduce noises to
photometry results. In contrast, PNet is capable of learning
complex functions to estimate the magnitudes of stars with
varying spatial distributions. For instance, considering that
PNet processes the entire image with multiple spatial scales, in
cases where stars are in close proximity, the PNet can identify
nearby stars and determine magnitudes using distinct strategies
tailored to specific situations. This capability helps mitigate the
influence of nearby stars on photometry results, ultimately
enhancing the accuracy of photometry.
As depicted in Figure 8, the photometry results obtained by

PNet surpass those of PSF photometry, indicating that the
estimated magnitudes closely align with the true values. The
mean error for the PSF photometry results is 0.399 mag,
whereas the mean error for the PNet is 0.055 mag. These
results signify the capability of PNet to deliver more consistent
and stable photometry results for dense star fields. Furthermore,
we illustrate the variance in photometry results obtained by
PNet and the PSF photometry method in Figure 9. As shown in

Figure 6. The number of celestial objects detected by different methods. As
shown in this figure, our method has better ability in detection of dim targets.

Figure 7. The F1 score of different methods. As shown in this figure, our
method has higher F1 score in detection of dim targets.
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this figure, PNet achieves a photometry error as low as
0.001–0.003 mag for stars with magnitudes ranging from 17 to
20. Even for fainter stars, PNet continues to provide reliable
results, with a photometry error of approximately 0.43 mag for
stars with a magnitude of 23.5.

4. The Light Curve Classification Algorithm

By conducting detection and photometry on 1000 sets of
simulated time-domain images from the CSST, we can obtain
light curves for celestial objects. These light curves provide direct
evidence for the identification of various types of celestial objects,
facilitating further exploration. Light curve classification is a
crucial area of research in astronomy, focused on categorizing and
studying changes in the brightness of celestial objects over time
(Mandel & Agol 2002; Tey et al. 2023). These variations can
result from internal processes like stellar pulsations, eruptions, and
rotations, as well as external factors such as gravitational
interactions between celestial bodies, matter accretion, and
collisions. The analysis of light curves offers valuable insight
into the structure, evolution, physical mechanisms, and interac-
tions of celestial objects. To enhance our understanding and
categorization of different types of light curves, astronomers have
developed various methods and criteria. The primary goal of light
curve classification is to group and compare these curves based on
their distinctive features and behaviors, enabling a deeper
understanding of their physical characteristics and evolutionary
processes. These classification approaches often consider aspects
like curve shape, periodicity, duration, and amplitude.
In this paper, our primary focus is on a specific and

straightforward scenario known as macro-classification. Here,
our objective is to assess the effectiveness of our pipeline. In this
particular context, we aim to categorize celestial objects based
on the periodic variations observed in their light curves. To be
more precise, we group binaries, stars with exoplanets, and
variable stars into the “variable stars” category. Meanwhile, all
other stars, including those with flare events or longer-period
magnitude variations that extend beyond the observation epochs,
are classified as “non-periodic variable stars.” To accomplish
this task, we employ a deep learning based algorithm for light
curve classification. To rigorously evaluate the algorithm’s
performance, we execute the pipeline to obtain the final results.
These results are then compared with the input catalog to
determine the accuracy and recall rate of the pipeline. In this
evaluation process, a star that is detected and correctly classified
in terms of periodicity is considered a true positive classification
case. Cases where a non-target is mistakenly identified as a star
or a star with constant magnitude is misclassified as a variable
star are designated as false positive classification cases. Stars
exhibiting true periodic variability but not effectively detected
are categorized as false negatives, while all other stars are
classified as true negatives. Further elaboration on these aspects
will follow in the subsequent discussion.

4.1. The Data Preprocessing Step

Data preprocessing stands as a critical initial step in the analysis
of light curve data. This essential process involves refining and
reformatting the raw data to ensure that subsequent analysis is
both accurate and meaningful. In their raw form, light curve data

Figure 8. The distribution of photometry errors for stars of varying magnitudes
is presented in this figure. It is evident that PNet consistently provides more
consistent and stable photometry results, while the PSF photometry method
tends to yield comparatively less accurate results. Specifically, the PSF
photometry method often overestimates magnitudes for the majority of stars, a
phenomenon driven by the influence of nearby sources, while simultaneously
underestimating magnitudes for brighter stars.

Figure 9. The distribution of standard deviation of photometry results obtained
by different methods is depicted in this figure. It is evident that PNet yields
more consistent and stable photometry results. For stars brighter than 16, the
precision could be smaller than 7 × 10−4 and is not shown in this figure.
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can often exhibit issues such as missing values or outliers. To
address these concerns, we implement a series of procedures.
First, we apply the 3σ rule to identify and manage outliers,
utilizing linear interpolation techniques to fill in any gaps resulting
from missing values. Subsequently, we standardize the light curve
by normalizing it in relation to the peak magnitude value.

Additionally, we employ a median filter to enhance the quality
of their light curves and fold the data according to their periods
calculated by the BLS algorithm (Kovács et al. 2002; Hartman &
Bakos 2016). To accommodate the requirements of our deep
learning algorithm, which demands inputs of a fixed size, we
uniformly sample the light curve to create a vector of consistent
dimensions. We divide the light curve into two components: a
global view, consisting of 201 data points, and a local view,
comprising 61 data points. This division is essential for the
subsequent light curve classification algorithm. Ultimately, we
compile all data into a CSV file, which includes not only the
light curve data but also critical details that could be obtained
from other sources, such as spectral type of star, period, eclipse
depth, and duration of the light curve. This consolidated file
serves as the input data set for our neural network.

4.2. The Light Curve Classification Model

We employ a deep neural network proposed within the
Astromodel (Shallue & Vanderburg 2018; Yu et al. 2019) for light
curve classification. The Astromodel represents a versatile
framework designed for defining models utilized in the analysis
of astronomical data. Within this context, we leverage the
Astromodel to formulate a straightforward CNN tailored for light
curve classification. The structural layout of this neural network
can be found in Figure 10. It adeptly processes both the light
curve data and celestial target information by utilizing a
hierarchical convolutional structure. Below, we present both the
input and output of this light curve classification neural network:

1. First input: Zero or more time series features (e.g., light
curves)

2. Second input: Zero or more auxiliary features (e.g.,
orbital period, transit duration)

3. Output: An integer feature with two possible values
(0= variable stars, 1= non-periodic variable stars)

4. Output: The predicted probabilities for each class.

The input of the neural network consists of several components,
including the time series data, which comprise both the global
and local views of the aforementioned light curves. Additionally,
this input incorporates supplementary details such as period and
duration. As a light curve passes through a convolutional block,
it is transformed into a one-dimensional tensor, which can be
concatenated with the other information. Subsequently, a pre-
logits operation is executed, encompassing various processes
like activation functions and normalization techniques to fine-
tune the distribution of data for optimal transmission to the fully
connected layer. Following this, the input features are mapped to
the output results via the fully connected layer. Ultimately, this
layer outputs logits, which are then utilized in conjunction with a
sigmoid classifier to facilitate the classification process and
generate the final classification results.

4.3. Analysis of Light Curve Classification Results

In this section, we train the light curve classification models
with light curves separately obtained by PNet and the classical
method. The light curve classification model with PNet is used
as a deep learning based pipeline, while the light curve
classification model with the classical method is used to build a
classical pipeline. The cross-entropy function is used as a loss
function and we use the Adams method as the optimization
algorithm for the light curve classification algorithm. After
training, we use the light curves from the test set to test the
performance of our algorithm. The results are shown in
Figure 11. As affirmed by this figure, results obtained by PNet
have higher precision (around 97.6%) and higher recall rate
(around 93%), while results obtained by the classical method
are relatively low.

Figure 10. The structure of the CNN for light curve classification.
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We step forward to examine the classification outcomes for
various celestial objects. In this study, we have considered four
distinct categories of targets: stars hosting transiting exopla-
nets, binary systems, variable stars, and stars with consistent
brightness. To clarify, we categorize stars with fixed periods as
“periodic variable stars,” while other stars fall into the “non-
periodic variable stars” category. Therefore, stars hosting
transiting exoplanets, binary systems, and variable stars are
classified as “periodic variable stars,” whereas the rest are
classified as “non-periodic variable stars.” For periodic variable
stars, the distinction between magnitude variations caused by
photon noise and those resulting from astronomical events
significantly impacts the classification outcomes. We establish
the theoretical S/N of a light curve as the ratio between the
power (rms) (assuming it follows a Poisson distribution) and
the variations caused by astronomical events

( )/ =S N
Power of Signal

Power of Noise
. 5

In the case of variable stars and binary systems, the
classification accuracy on CSST data can reach 97% under
different noise levels. However, for transits, due to their
relatively smaller amplitude variations, classification becomes
more challenging, leading to a reduction in the overall
classification accuracy. Figure 12 provides the classification
accuracy of transits under different noise levels. As depicted in
this figure, the classification accuracy is lower than 0.2, when
the S/N is below 1.7. However, when the S/N is larger than 2,
the classification accuracy could reach 95%.

To better investigate the difference between light curve
classification results obtained by different methods, we have also
identified a subset of light curves. These light curves are
accurately classified by the deep learning-based pipeline but are
misclassified by the classical method in Figure 13. From the

figure, it can be seen that PNet is capable of more accurately
fitting the variations in light curves compared to the classical PSF
fitting photometry method. It also performs better in mitigating the
influence of nearby variable stars in dense star fields. These
findings emphasize that the deep learning-based pipeline can more
effectively capture star magnitudes, especially in noisy conditions.
They suggest that we can expect strong performance in processing
data obtained by the CSST by the deep learning-based pipeline.

5. Discussions and Future Works

This paper presents a novel framework that demonstrates
superior performance in photometry and target detection within
dense stellar fields, alongside enhanced accuracy in light curve

Figure 11. The confusion matrix for light curve classification obtained by two different frameworks. The left panel shows the confusion matrix obtained by the
classical method, while the right panel displays the confusion matrix obtained by PNet. As affirmed by this figure, PNet with the light curve classification algorithm
could obtain better results for further scientific research.

Figure 12. The classification accuracy of transit under different noise levels by
the light curve classification algorithm.
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classification. We have achieved photometry accuracy of 2%
and astrometry accuracy of 0.03 pixels for stars with moderate
brightness mag= 24 (i band). We assessed our classification
precision by introducing eclipsing binaries, variables, and
transiting exoplanets with periods up to and including 3.5 days
into the CSST simulated data. At S/N lower than 1.7, it was
observed that neither classical algorithms nor deep learning
techniques could deliver reliable light curve classifications. At
S/N above 1.7, we attained a light curve classification accuracy
of 85.5%. Leveraging these improvements in photometry,
target detection, and light curve classification, we present an
estimate of the number and types of different periodic variable
stars detectable by the CSST. We only consider three different

types of periodic variable stars: stars hosting transiting
exoplanets, eclipsing binaries, and variable stars (such as RR
Lyrae stars and Cepheid stars) with periods shorter than the
observation epochs. Our results can be applied to predict the
survey fruits of CSST using our methods, including transiting
hot Jupiters, eclipsing binaries, and variable stars.

1. Stars hosting hot Jupiters: Stars hosting hot Jupiters are a
specific class of exoplanets with transiting depth around
1%, which is possibly detectable by the CSST.
Beleznay’s analysis of data from the TESS telescope
revealed that, for stars similar to our Sun, the occurrence
rate of hot Jupiters is roughly 1% (Beleznay &

Figure 13. Theoretical light curves and those obtained through both PNet and the classical method are illustrated in this figure. As demonstrated, PNet outperforms in
capturing celestial object magnitudes, leading to increased precision and recall rates in classification. A particularly intriguing case is shown in the bottom-left panel of
the figure, which displays photometry results for a star situated near a variable star. In this scenario, PNet was able to successfully determine the magnitudes of the
stars. For stars exhibiting variations in magnitude, the deep learning method (PNet) could more accurately depict these variations, as evidenced in the top panel of the
figure. The bottom-right figure presents a star without magnitude variations, demonstrating that PNet can provide accurate results, while the PSF photometry method
yields a light curve with periodic variations.
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Kunimoto 2022). However, due to geometric detection
efficiency, only about 3% of these hot Jupiters can be
detected (Zhu et al. 2018). Furthermore, the occurrence
rate of hot Jupiters is strongly correlated with the stellar
metallicity (Wang & Fischer 2015; Zhu et al. 2016). In
our simulation, we simply assume that the fraction of
stars hosting hot Jupiters in the Galactic center is similar
to that in the TESS FOV. Given that 87% of our star
samples are main-sequence stars, if the survey sustains as
long as 20 days, we estimate that there are approximately
80 hot Jupiters capable of producing detectable transiting
signals within our data set of 300,000 stars, including
∼68 hot Jupiters that can be verified by our method.

2. Binaries: The Kepler space telescope conducted observa-
tions of around 200,000 stars during its mission. Within
these observations, Kepler successfully identified 2920
eclipsing binary systems, with 2098 of them having
orbital periods shorter than 10 days (Kirk et al. 2016). To
estimate the presence of eclipsing binary systems in our
star sample, we make an extrapolation based on Kepler’s
findings. This extrapolation suggests that there are
approximately 300,000× (2,098/200,000)∼ 3,150 such
binary systems within our star sample.

3. Observable variable stars (RR Lyrae stars and Cepheid
stars in this paper): In contrast to the Kepler telescope,
which primarily focuses on solar-type main sequence
stars within a restricted FOV, the TESS space telescope
conducts observations of stars of all types across the
entire celestial sphere. This wide coverage provides
valuable data for estimating the proportion of variable
stars. Within the two-cadence data collected by TESS,
118 RR Lyrae stars were identified in Sectors 1 and 2
(Molnár et al. 2022), and 25 Cepheid stars were detected
across Sectors 1–5 (Plachy et al. 2021). Given that the
TESS mission observes approximately 15,000 stars in
each sector, we can make a rough estimate of the
fractions of RR Lyrae stars and Cepheid stars as 0.39%
and 0.033%, respectively. This estimation leads us to
conclude that there are at least several thousand variable
stars within our star sample.

However, it is worth noting that there may be some stars that
are incorrectly classified as periodic variable stars, necessitating
additional human vetting through either a public science
platform or other algorithms. Overall, the combined use of deep
learning-based detection and photometry neural networks,
along with the light curve classification algorithm, has yielded
promising results in our study. This framework can be
employed to process observation data from the CSST, and
our research group is currently utilizing it to process real
observation data to further assess its performance.
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