Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

© 2024. National Astronomical Observatories, CAS and IOP Publishing Ltd. Printed in China and the U.K.

https://doi.org/10.1088 /1674-4527 Jad4fc4

CrossMark

UWLPIPE: Ultra-wide Bandwidth Low-frequency Pulsar Data Processing
Pipeline

Ya-Zhou Zhangl’2 , Hai-Long Zhangl’2’3’4 , Jie Wang]’4 , Jian Li'?, Xin-Chen Ye'**, Shuang-Qiang Wangl, Xu Du'?®,
Han Wu'*, Ting Zhangl’z, and Shao-Cong Guo®

! Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumgi 830011, China; zhanghailong@xao.ac.cn
University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, China
National Astronomical Data Center, Beijing 100101, China
5 Southeast University, Nanjing 211189, China
Received 2024 April 16; revised 2024 May 14; accepted 2024 May 21; published 2024 July 8

Abstract

For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data, we designed and
implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline (UWLPIPE) based on the
shared ringbuffer and GPU parallel technology. UWLPIPE runs on the GPU cluster and can simultaneously
receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA. After
aligning the dual-polarization data, multiple 128M subband data are packaged into PSRDADA baseband data or
multi-channel coherent dispersion filterbank data, and multiple subband filterbank data can be spliced into
wideband data after time alignment. We used the Nanshan 26 m radio telescope with the L-band receiver at
964 ~ 1732 MHz to observe multiple pulsars. Finally, we processed the data using DSPSR software, and the
results showed that each subband could correctly fold out the pulse profile, and the wideband pulse profile
accumulated by multiple subbands could be correctly aligned.

Key words: (stars:) pulsars: general — methods: data analysis — techniques: miscellaneous

1. Introduction

With the rapid development of key technology, the perfor-
mance requirements for digital backend system-related equipment
in astronomical observation are also continuously increasing.
Backend systems need to perform high-speed sampling, real-time
analysis, and data preprocessing under wider bandwidths, higher
time resolution, and higher frequency resolution. The deployment
of PAF (van Cappellen et al. 2022; Zhang & Duan 2022) and
multi-beam receiving systems (Yang & Han 2022) has doubled
the amount of information obtained from astronomical observa-
tions. The high-speed data streams produced during transmission,
storage, and real-time processing on heterogeneous platforms are
urgent problems to be solved during the operation of various radio
observation devices. Wider sampling bandwidths, higher digital
signal bit widths, and more array antennas lead to exponential
growth in the amount of data that need to be processed. Due to the
performance limitations of storage devices, massive amounts of
astronomical signals can only be processed and analyzed in real-
time, posing a significant challenge to computing hardware and
software (Wei 2019).

To address the high-speed transmission and processing of data,
a viable solution is to create the shared ringbuffer in memory for
real-time caching of data, and transfer the data to the GPU for
immediate processing. Internationally, the use of CPU+GPU

heterogeneous computing platforms for real-time processing of
pulse signals has become mainstream (Wei et al. 2023). Utilizing
the computational units of the GPU to process data can reduce the
load on the CPU and significantly enhance the system’s data
stream processing efficiency. With the continuous development of
digital backend technology in radio astronomy, real-time signal
processing poses severe challenges to traditional computing
technologies. The powerful computational capabilities of GPU
clusters offer a feasible solution for handling the massive data
streams generated during radio astronomical observations.

Currently, mainstream digital backend systems often adopt a
hybrid architecture of Field Programmable Gate Array (FPGA),
CPU, and GPU. Heterogeneous systems require data exchange
between different devices. After preprocessing by FPGA, the
data is transmitted via the network to the CPU memory of the
data processing server, and then copied to the GPU memory for
further processing. One of the technical challenges of a data
processing system based on a heterogeneous platform is how to
achieve high-speed data circulation between FPGA and CPU,
and between CPU and GPU. In radio astronomy digital
backend systems, the program that achieves high-rate real-time
transmission and preprocessing of data packets is called the
pipeline (Paine & Lee 2014), which includes several steps such
as reception, data buffering, data preprocessing, and packaging
in astronomical standard formats.

https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0001-6448-0822
https://orcid.org/0000-0001-6448-0822
https://orcid.org/0000-0001-6448-0822
mailto:zhanghailong@xao.ac.cn
mailto:zhanghailong@xao.ac.cn
mailto:zhanghailong@xao.ac.cn
https://doi.org/10.1088/1674-4527/ad4fc4
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad4fc4&domain=pdf&date_stamp=2024-07-08
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad4fc4&domain=pdf&date_stamp=2024-07-08

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

PSRDADA

GPU

Zhang et al.

VDIF
Packet /@\
FPGA >

Channels

Coherent
Dedispersion

—> Integral -> Filterbank

et

- - ->0---—>
4

TOML

configuration file

Figure 1. UWLPIPE data flow.

wrlter writer
ﬁ
|
\ 4
reader @>reader @>reader

Figure 2. Ringbuffer cyclic read and write operations.

To address the quasi-real-time or real-time high-speed
transmission and preprocessing of radio astronomical data,
several pipeline softwares have been developed both domes-
tically and internationally. GUPPI_daq (Data acquisition
software for GUPPI)° is the data acquisition software for the
Green Bank Telescope pulsar digital backend Green Bank
Ultimate Pulsar Processing Instrument (GUPPI). It operates in
a multi-thread mode, such as network data receiving threads
and data processing threads, which transmit data through a
shared memory ringbuffer (DuPlain et al. 2008). After
preprocessing the real-time received network data stream,
GUPPI_dagq stores it as PSRFITS (Hobbs 2021) data format in
fold or search mode based on configuration.

High Availability SHared PIPeline Engine (HASHPIPE)’ is an
efficient data processing framework based on shared memory. The
core of HASHPIPE is the shared ringbuffer, and applications
written based on HASHPIPE are created as shared library
“plugins,” realizing the circulation and sharing of data among
multiple threads. The shared memory buffer between threads is
controlled by the semaphore to manage tasks, achieving mutual

6 https://github.com/demorest/guppi_daq

" https://github.com/david-macmahon /hashpipe

exclusion between read and write threads and preventing data read
and write errors (MacMahon et al. 2018).

Niu et al. (2019) designed the Tianlai Disk Array Correlator
based on Reconfigurable Open Architecture Computing Hard-
ware-2 (ROACH2) and GPU, and implemented UDP network
data reception and subsequent data processing in GPU servers
based on HASHPIPE. Pei et al. (2022) developed the
HRBF_HASHPIPE, based on HASHPIPE for the PAF. After
FPGA collected the simulated signals, the data with a
bandwidth of 256 MHz was output to a GPU server through
four 10 Gigabit Ethernet (10GbE) links. The server ran four
instances of HRBF_HASHPIPE, each receiving data at a
bandwidth of 64 MHz and invoking a GPU card for
beamforming calculations. According to the future plan of
QiTai radio Telescope (QTT; Wang et al. 2023), Pei et al.
(2023) designed UWB_HASHPIPE to multithreadedly receive
and store multiple subband data in parallel, which could be
flexibly configured for data distribution links based on IP
addresses and port numbers. UWB_HASHPIPE was tested in
the Nanshan 26 m radio telescope (NSRT) pulsar observation
experiment, where the collected data bandwidth was 512 MHz,
sent to two servers via eight links. Each server ran four
instances of UWB_HASHPIPE for data processing and
encapsulation. The test results showed that the signal

https://github.com/demorest/guppi_daq
https://github.com/david-macmahon/hashpipe

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

acquisition system had high precision, good data integrity, and
the signal-to-noise ratio of the merged pulsar profile was
superior to that of single subband data.

PSRDADA (Distributed Acquisition and Data Analysis for
Radio Astronomy) is capable of flexibly managing a shared
ringbuffer, which is used for the distributed recording and
processing of pulsar baseband data (van Straten & Jameson 2021).
Based on PSRDADA, it is possible to implement read-write
clients that write data into the ringbuffer and read data from it. The
configuration and control of coherent processes are initiated
through a web-based interface that launches scripts. Data
recording backend such as the ATNF Parkes Swinburne Recorder
(APSR), Berkeley Parkes Swinburne Recorder (BPSR), and
CASPER Parkes Swinburne Recorder (CASPSR) at the Parkes
radio telescope are all developed based on PSRDADA.

The Parkes ultra-wide bandwidth low-frequency (UWL)
receiving system, employs an FPGA+GPU architecture for the
preprocessing and recording of observational data. It divides
the 704-4032 MHz wideband signal into three analog RF
bandwidths for sampling. During the FPGA preprocessing
stage, the Polyphase Filter Bank (PFB; Harris & Haines 2011)
channelization technique is used to further divide it into 26
continuous subbands, each with a bandwidth of 128 MHz. The
FPGA packages the data in VLBI Data Interchange Format
(VDIF; Whitney et al. 2010), and transmits it to various GPU
nodes via the UDP protocol. To cope with high-speed network
streams, a high-speed ringbuffer is established using
PSRDADA on each GPU node to temporarily store data.
Subsequently, the data is copied from the buffer to the GPU
memory for further processing. This can include operations
such as pulsar folding, pulsar searching, Fast Radio Burst
searching, and spectral line observations (Hobbs et al. 2020).

2. UWLPIPE

Ultra-wide bandwidth low-frequency pulsar data processing
pipeline (UWLPIPE) is a simple and efficient pulsar backend
processing pipeline software. It can quickly configure the current
observation by reading the configuration information from the
toml® file. For example, it can obtain observation source
information (pulsar source name, DM, observation bandwidth,
observation center frequency, etc.) and configure the GPU server
network (IP and port, etc.). As shown in Figure 1, by receiving
dual-polarization VDIF packets and unpacking them according to
the VDIF header information, the data is rearranged based on the
polarization timestamp information. Afterwards, the “write” client
is enabled to write the data into the shared ringbuffer. The “read”
client reads the data from the buffer, copies it to the GPU memory
for processing, and finally encapsulates it into the standard
astronomical data format.

8 hitps: //toml.io

Zhang et al.

[Pulsar]
name = "J0332+5434"
dm = 26.7641

[Telescopel]

name = “nanshan"
receiver = "UWL"
dec = 471500.0

ra = 43700.0

[Observation]

nband = 3

npol = 2

otime = 600.0 # total observation time (seconds)
bandwidth = 128.0

cfreq = [128.0, 256.0, 384.0]

calfreq = 1.0

observer = "zhangyazhou"

[Storage]
Packaged file types, such as dada, psrfits, filterbank and etc.
filetype = ["dada","filterbank"]

Figure 3. Observation configuration file.

[Network]

port = 60000

ip=1["192.168.1.114", "192.168.2.115", "192.168.3.116"]
[RingBuffer]

key = [Oxdada, Oxdadb, Oxdadc]

nbuf = 8

bufsize = 1073741824 # 2e30

[Node]

index = 0

outdir = ["/nvme0", "/nvmel", "/nvme2"]

Figure 4. Machine configuration file.

Shared memory can serve as a communication medium
between processes for synchronous data exchange. The write
client process writes data into the shared memory, while the
read client reads data from the shared buffer, processing it
differently according to various research needs. As shown in
Figure 2, the ringbuffer is essentially linear memory that is
logically connected at the head and tail, facilitating cyclic read
and write operations on the buffer.

From the perspective of buffer operations, processes can be
roughly divided into two modes: reading and writing. In the
writing mode, the client receives high-speed network data and
writes it into the shared buffer through rearrangement. There
might be various types of reading clients, such as the baseband
data encapsulation process that reads data from the shared
buffer, adds header information, and directly stores it on the
disk. Another example is the filterbank channelization process,
which reads data from the shared buffer and copies it to the
GPU memory for subsequent pipeline processing, such as

https://toml.io

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

31 30 29 28 27 26 25 24 23 22 21 20 19 18

17

Zhang et al.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word0 | I, | L,

Seconds from reference epochs,

Word1 U, Ref Epochg

(0-62499)Data Frame #within second,,

Word2 V3

| (0)log2(#nchan),

(1028)Data Frame length(units of 8 bytes),,

Word3 C1| (31)bits/sample-1g | (0/1)Thread ID,,

Station IDy

Word4 EDVg | Extended User Data,,
q
Word5 1 Extended User Data,,
Wordé Extended User Data,,
Word7 Extended User Data,,
Figure 5. Information of VDIF Data Frame Header Transmitted in UWL.
0 1 0 1 0 T | veeees 1 0 1 0 1 0 1 | eeeees 1

Y

curr_buffer

curr_byte_offset

next_byte_offset

Y

next_buffer

last_byte_offset

Figure 6. Double buffer structure initialization.

Reference
Time

0 offse't

Figure 7. Calculate the offset from the reference time based on the VDIF
timestamp.

channelization, coherent dedispersion, integration, and folding.
Other operations include RFI mitigation, pulsar searching, and
VLBI. The pulsar data processing pipeline based on shared
memory allows for modular code writing according to specific
functions, ensuring good extensibility.

2.1. UWLPIPE Configuration

Currently, UWLPIPE configures the observation targets and
GPU nodes by reading the configuration files Observation.toml
and Machine.toml. As shown in Figure 3, Observation.toml
includes information such as the name of the pulsar and the
dispersion value, the name of the telescope, the name of the
receiver, the number of observation subbands, the bandwidth size,
the center frequency of each subband, and the storage format.

The Machine.toml is shown in Figure 4, which allows the
configuration of ip and port for receiving subband network data,

as well as the key values, number, and size of the circular buffer.
Since baseband data storage can be selected, there are certain
requirements for the speed of the storage medium. The data of
each subband is stored on a separate high-speed solid-state disk.

2.2. High-speed Network Data Reception and Unpacking
Algorithm

Traditional TCP/IP technology, in the process of handling
massive astronomical data packets, has to go through the
operating system and other software layers, which requires a
large amount of server resources and memory bus bandwidth.
Data is copied and moved back and forth between system
memory, processor cache, and network controller cache,
imposing a heavy burden on the server’s CPU and memory,
exacerbating the effect of network latency.

To reduce the system overhead brought about by the
transmission of massive astronomical data, we reconstructed
the high-speed network unpacking program using the VMA
library.” The VMA library utilizes RDMA-enabled network
cards for direct hardware access and advanced polling
techniques to achieve kernel bypassing. This allows the
VMA library to bypass the kernel’s network stack for all IP
network traffic transmission and reception socket API calls,
reducing CPU usage, alleviating memory bandwidth bottle-
necks, and enhancing bandwidth utilization efficiency.

® htps://github.com/Mellanox /libvma

https://github.com/Mellanox/libvma

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

yes curr_count >= curr_capacity Il

next_count >= 0.5*next_capacity?

calculate
offset

vdif packet
discard

vdif packet insert
curr_buffer

offset >= curr &&
offset < next?

Zhang et al.

offset : byte_offset

curr @ curr_byte_offset

next @ next_byte_offset

last : last_byte_offset

curr_count: curr_buffer’s data count
next_count: next_buffer’s data count
curr_capacity: curr_buffer’s capacity
next_capacity: next_buffer’'s capacity

offset >= next &&
offset < last?

swap(curr_buffer,
next_buffer)

vdif packet insert
next_buffer

Figure 8. LDRP algorithm flow.

discards
curr_buffer

curr_byte_offset

next_byte_offset

next_buffer

last_byte_offset

Figure 9. VDIF packets are rearranged in a double-buffered structure.

The future planning of QTT’s UWL receiving system is the
same as Australia’s Parkes, with a bandwidth range of
704-4032MHz (Wang et al. 2023). During the FPGA
preprocessing stage, the PFB technology is used to divide the
704—4032 MHz bandwidth signal, totaling 3328 MHz, into 26
dual-polarization subband signals of 128 MHz bandwidth each.
The data quantization precision is 32 bit (real part 16 bit +
imaginary part 16 bit). As shown in Figure 5, the VDIF header
information is depicted, with key and fixed information
highlighted in red. Other channel numbers are set to 1, with
log2(1) = 0. Each VDIF data frame size is 8224 bytes (header
32 + data 8192), set to 8224 /8 = 1028. The complex flag bit is

set to 1, with a quantization precision of 32 bit, set to 31. Dual-
polarization data is distinguished by Thread ID, where 0
represents polarization 0 and 1 represents polarization 1. The
number of data frames per second is 62,500 (0-62,499),
calculated according to Equation (1), where fs represents the
sampling rate of 128 MHz and nbit represents the quantization

precision of 32.
128 x 1e6 * 32

J5 x nbit =62,500 (1)
8 x 8192 8 x 8192

nframe =

After packaging each channel of dual-polarization subband
data into VDIF data format, FPGA transmits it to the GPU

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

curr_buffer

next_buffer

L

curr_buffer

curr_byte_offset+bufsize

curr_buffer

next_buffer

next_byte_offset+bufsize

Figure 10. Double buffer structure swap.

next_buffer

Time interval (t)

GPU
memory

Figure 11. Buffer data copy.

Time Data Series

Chirp

Frequency

Dedispersion

Frequency

Inverse FFT

Time

Multi-Thread

A
3
Chirpy Chirps Chirps Chirpy | «een Chirp,_1 | Chirp,

chany chansy chang chang | chan, 1 chan, <
chany chans chang chang | chan,_1 chan,

o o o Q S‘ 2]

> > > = 1) N

) 8 8 S S)

S S S 3 3 S

= 5 B N | S

Figure 12. Multichannel coherent dispersion process.

uoneziPUURY) LA

Zhang et al.

last_byte_offset+bufsize

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

Table 1

Based on the Dada Baseband Data Generated by PFB/OPFB
Key Value
BW
CFREQ
HDR_SIZE 4096
HDR_VERSION 1.0
NBIT 16
NCHAN 1
NDIM 2
NPOL 2
RECEIVER UWL
TSAMP (ys)
UTC_START yyyy-MM-dd-HH:mm:ss

server via a high-speed network. Each channel of data is sent to
the corresponding 100GbE network card on the GPU, and the
GPU server receives data by listening to IP and specific ports.
Since the UDP transmission protocol is adopted, targeted
processing is required for lost, disordered, and duplicate
packets; otherwise, phase information will be missing. For
pulsar data, packet loss can severely affect the prediction of
pulsar periods and folding. Astronomical observation has high
requirements for time accuracy, so it is necessary to align dual-
polarization data. To solve the above problems, we proposed a
Linked-list Double-buffer Receive Packet (LDRP) algorithm.

LDRP is a dual-polarization VDIF packet alignment algo-
rithm based on a double buffer structure for alternate storage.
As shown in Figure 6, two consecutive segments of memory
are allocated as buffers, named curr_buffer and next_buffer.
Three byte offset pointers are set up as curr_byte_offset,
next_byte_offset, and last_byte_offset. Their initial values are
set as shown in Equation (2), pointing to the start of
curr_buffer, the end of curr_buffer (the start of next_buffer),
and the end of next_buffer, respectively

curr_byte_offset =0
next_byte_offset = curr_byte_offset + bufsize
last _byte_offset = next_byte_offset + bufsize. 2)

Before performing polarizations alignment, it is necessary to
set a reference start time. The header of the VDIF data frame
contains an accurate timestamp and counter, which can be
further converted into the byte offset from the reference start
time. When starting to receive network data packets, unpack
the first VDIF packet received for polarization O to obtain the
timestamp seconds of the data packet. If the packet’s counter is
greater than 0, add 1 to the timestamp seconds as the reference
start time, with the aim of starting to receive data at the
beginning of an entire second. Subsequently received VDIF
packets can calculate the byte offset from the reference start

Zhang et al.
E_ subbandO ___:_1 subband0
E_ subband1 ___: subband1
subband2 1: subband2
i_ subband3 i-“ subband3
1| subband4 ; subband4
) subband5 __E subband5

Figure 13. Multiple subbands are combined into one broadband signal.

Table 2
GPU Server Configuration
Key Information
Operating System Debian10
CPU 2xIntel Xeon Gold 5317
GPU 3xNVIDIA GeForce RTX 3090
Memory Size 512GiB

Storage Size 3xNVME SSD(8TB)

time using Equation (3), as shown in Figure 7

byte_offset = (offset x bytes)
+(i * frames) + (thread_id * packets). 3)

Among them, offset is equal to the difference between the
timestamp seconds of the VDIF package and the reference start
time, bytes represents the number of bytes sent per second,
iframe is the counter number of the VDIF package, frames is
twice the number of data bytes in the VDIF package, thread_id
is equal to O for polarization 0, equal to 1 for polarization 1,
packets is the size of the VDIF package bytes. The LDRP
algorithm flow is shown in Figure 8. The detailed processing of
VDIF packages is shown in Figure 9, which is separately
processed in several cases based on byte_offset.

1. When the offset is less than 0, the timestamp of the VDIF
data packet is before the reference start time, discard it
directly, as shown in the dotted white box in Figure 9.

2. When the byte_offset is greater than or equal to
curr_byte_offset and less than next_byte_offset, it
indicates that the VDIF data packet belongs to the
curr_buffer buffer. Calculate the difference between
byte_offset and curr_byte_offset as the offset position
of the VDIF data block relative to the starting position of
curr_buffer, and copy the data to the corresponding
position in curr_buffer, and increment the counter of
curr_buffer by 1.

3. When the byte_offset is greater than or equal to
next_byte_offset and less than last_byte_offset, it indi-
cates that the VDIF data packet belongs to the
next_buffer buffer. Calculate the difference between
byte_offset and next_byte_offset as the offset position
of the VDIF data block relative to the starting position of

964-1092Mhz

" R

b, 1092-1220Mhz
— 1220-1348Mhz
—— 1348-1476Mhz
— 1476-1604Mhz

(

1604-1732Mhz

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

Zhang et al.

GPU Node1

GPU Node2

Figure 14. NSRT test architecture.

15

102

Frequency [MHz]

1060

L1002

(a) Subband0

(b) Subband1

T 1220

r 1348

1380

141

Frequency [MHz]

Index

1444

L1z

0.25 0.5 0.75 0.25 05
Phase Phase

(d) Subband3

0.75

(e) Subband4

1252

128¢

Frequency [MHz]
Frequency[MHz]

1316

L34

1508 163

1546 1668

Frequency[MHz]
Frequency[MHz]

1572 1700

L1732

0.75

0.5 o 2
Phase Power

(f) Subband5

Figure 15. J0332+5434’s subband Dynamic Spectrum Diagram (PFB).

next_buffer, and copy the data to the corresponding
position in next_buffer, and increment the counter of
next_buffer by 1.

. When the byte offset is greater than or equal to
last_byte_offset, it indicates that there is an abnormality in
the network data (high system load or other network issues),

and the VDIF packet has exceeded the range of double
buffer. In response to this situation, as shown in Figure 10, it
is necessary to immediately update the pointers of the
double buffer structure to avoid further packet loss.

. When the curr_buffer buffer is filled with data (the

counter of curr_buffer is equal to the buffer capacity), it

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

indicates that the data in the curr_buffer buffer is
complete and can be processed by subsequent steps. At
this time, it is necessary to update the double buffer offset
pointers and swap buffers, as shown in Figure 10.

6. When the counter of next_buffer is greater than or equal
to half of the capacity of next_buffer, it indicates that the
data in the curr_buffer buffer is not filled, indicating that
there is a VDIF data packet loss. To avoid further packet
loss, it is necessary to update the double buffer offset
pointers and swap buffers, as shown in Figure 10.

For ultra-wide bandwidth pulsar baseband data, tens of
thousands of VDIF data packets are received per second, and
the time interval ¢ between VDIF data packets is very small, as
shown in Figure 11. When one of the double buffers is filled
with data, it needs to be copied to a shared buffer or directly to
the GPU memory for subsequent processing. If the copy time is
greater than the time interval 7, it will cause the loss of
subsequent VDIF data packets due to the inability to receive
them in time. To address this issue, we employ multi-threaded
asynchronous copying. Specifically, when the buffer is filled
with data, a new thread is initiated to copy the data to the
location required for subsequent steps, while the main receiving
thread continues to receive VDIF data packets. Both processes
proceed in parallel without interfering with each other.

2.3. Pulsar Data Processing and Astronomical Data
Format Packaging Technology

During the FPGA preprocessing stage, the wideband signal
is divided into multiple narrowband signals using PFB/
Oversampled Polyphase Filter Banks (OPFB; Zhang et al.
2023b), which are then transmitted to various nodes of the
GPU cluster for processing. UWLPIPE is capable of handling
subband data from both PFB and OPFB channel division
modes. For OPFB (with a 4/3 oversampling factor), the data
bandwidth size for each subband transmission is 128 X é MHz.
After performing FFT operations, it is necessary to discard data
corresponding to the first and last é of the bandwidth, retaining
the useful data within the central 128 MHz bandwidth.
Subsequent steps only process this 128 MHz data, ultimately
encapsulating it in an astronomical data format. However, if
encapsulated as DADA baseband data, to reduce computation
time, the data is stored directly at 128 x %MHZ to minimize
computational time.

2.3.1. Baseband Data Record

UWLPIPE, based on the configuration information, is
capable of directly packaging data into dada baseband data
format. This dada baseband data is identical to the baseband
data generated by the Parkes Medusa backend and can be
processed by DSPSR (van Straten & Bailes 2011). For PFB/

Zhang et al.

964.0

r1117.6

ri1271.2

r1424.8

Frequency[MHz]

r1578.4

-1732.0

0.25 0.5 0.75 10 2 4
Phase Power

Figure 16. Dynamic spectrum of J0332+4-5434 (PFB).

OPFB sub-channel technology, the key header information for
the generated dada baseband is shown in Table 1.

Among them, BW represents the bandwidth size, FREQ
represents the center frequency, NBIT represents the quantiza-
tion accuracy of the recorded data, NDIM is 1 for real numbers
and 2 for complex numbers, NPOL represents the number of
polarizations, RECEIVER represents the type of receiver, here
set to UWL, DSPSR can recognize it as baseband data recorded
by ultra-wide bandwidth receiver backend, TSAMP represents
the interval time of sampling points, and UTC_START is the
starting time of the baseband record.

The data portion needs to be encoded using the offset binary,
as shown in Equation (4)IO

out = data ¢ 0x8000. @)

Among them, @ represents the XOR operation symbol, input
represents the input data, and output represents the encoded
data. For bipolarized data, since the data part in the VDIF data
frame only contains one polarized data, and the size is
8192 bytes, under the 16 bit quantization precision, the two
polarizations in the baseband data are alternately stored every
2048 numbers.

2.3.2. Filterbank Data Record

UWLPIPE can be packaged into filterbank format according
to the configuration. For the filterbank format, it is necessary to
further divide each subband into channels, into 128 subbands
(each subband has a bandwidth of 1 MHz), and perform
coherent dispersion on each subband. As shown in Figure 12,
after performing FFT on the time data sequence, it is further
channelized into multiple subbands. According to the center

' hitps: / /sourceforge.net/p/dspsr/code/ci/master/tree /Kernel /Formats /
uwb/dsp/UWBUnpacker.h

https://sourceforge.net/p/dspsr/code/ci/master/tree/Kernel/Formats/uwb/dsp/UWBUnpacker.h
https://sourceforge.net/p/dspsr/code/ci/master/tree/Kernel/Formats/uwb/dsp/UWBUnpacker.h

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

Zhang et al.

964

102

Frequency[MHz]

1060

L1002

(a) Subband0

(b) Subband1

1092 1220

1124 1252

Frequency [MHz]

Frequency[MHz]

1188 1316

L1220

0.25 075

0
Power

0.5
Phase

(c) Subband?2

r 1308

1380

1412

Frequency[MHz]

0.2 025

0.75

o
Phase

(d) Subband3

o
Phase

0.7

(e) Subband4

1476 1604

1508 1636

Frequency[MHz]

Frequency[MHz]

1572 1700

) 0.25 075 20

10
Power

20 o5
Power Phase

(f) Subband5

Figure 17. J0332+5434’s subband Dynamic Spectrum Diagram (OPFB).

frequency, bandwidth, and dispersion value (DM) of each
subband, the chrip coefficient (the inverse function of the
interstellar medium transfer function) is generated (Zhang et al.
2023a), as shown in Equation (5)

2nC

T DMA)? .
(ﬁef + Af)frzef f

chirp = exp| —i 5)

After coherent dedispersion, in order to reduce the amount of
data, the data is integrated (32us) and finally stored as
filterbank data (Lorimer 2011).

UWLPIPE will eventually output multiple filterbank sub-
bands with a bandwidth of 128 MHz. Due to the network
latency of different GPU nodes, the starting record times of
each subband may vary. In order to synthesize a wideband
signal, it is necessary to align the times of multiple subbands.
As shown in Figure 13, find the maximum start time among the
multiple subbands, use it as the effective reference start time for
synthesizing the wideband, skip a certain number of bytes in
other subbands to align with the reference time, and synthesize
the final wideband signal.

3. Results

The UWLPIPE was tested using the L-band 1G bandwidth
receiver of NSRT. The test scheme is shown in Figure 14,
which used 3 FPGA development boards. The back-end uses

300 1

200

Flux

T 964.0

r1117.6

ri1271.2

r1424.8

Frequency[MHz]

r1578.4

-1732.0

0.5 . 1] 50

Phase Power

Figure 18. Dynamic spectrum of J0332+5434 (OPFB).

two GPU servers for data processing, Table 2 shows the
configuration of each GPU server. Each development board
outputs two 128 MHz bandwidth dual-polarized subband data,
with a total bandwidth range of 964 ~ 1732 MHz, covering a
bandwidth size of 768 MHz.

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

1.0
C 0.8
o
g
©
N
= 0.6
©
€
—
o
C 044
=
9]
2
&L 02

0.0 4

9640 1092.0 12200 1348.0 1476.0 16040 1732.0
Frequency[MHz]
(a) PFB

Zhang et al.

Power(normalization)

1220.0 1348.0 1476.0 1604.0 1732.0

Frequency[MHz]

964.0 1092.0

(b) OPFB

Figure 19. J0332+4-5434 frequency spectrum.

Frequency[MHz]

025

0’5
Phase

(a) Subband0

0.7

(b) Subbandl1

r1220

1124 1252

Frequency[MHz]
Tndex
Frequency[MHz]

1316

r 1348

H

141;

Frequency [MHz]

B

1476

1636

g
Frequency[MHz]
Index
H
Frequency[MHz]

H

1732

1476

025 o5
Phase

0.25 o5
Phase

(d) Subband3

(e) Subband4

1604

02 0’5

Phase

(f) Subband5

Figure 20. J1935+1616’s subband Dynamic Spectrum Diagram (OPFB).

Based on the PFB subband technique, UWLPIPE observed
J0332+5434 for 5 minutes. After processing with DSPSR, the
dynamic spectrum of the six subbands is shown in Figure 15.
The final synthesized wideband signal’s dynamic spectrum
after processing is shown in Figure 16. Each subband correctly
folds out the pulse profile, and the final synthesized wideband
signal’s processed pulse profile aligns accurately. The fre-
quency spectrum of the six subbands is shown in Figure 19(a),

which clearly shows significant attenuation between subbands.
Using the OPFB (Orthogonal Polyphase Filter Banks) subband
technique, UWLPIPE also observed J0332+5434 for
5 minutes. The dynamic spectrum of the six subbands is shown
in Figure 17, and the final synthesized wideband signal’s
dynamic spectrum after processing is shown in Figure 18. The
frequency spectrum of the six subbands is shown in
Figure 19(b), and when compared to Figure 19(a), it is evident

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

Zhang et al.

- 964

102

Frequency[MHz]

1060

L 1002

20
Power

(a) Subband0

(b) Subband1

71092 r1220

1124

1252

115¢

Frequency[MHz]

H
Frequency [MHz]

1188 1316

L1220 L13ag

0.75

o5
Phase

(c) Subband2

r 1308

g

141

Frequency [MHz]

1044

L1aze

0.25 05 0.75 10 0.25 05
Phase Power Phase

(d) Subband3

0.75

(e) Subband4

1476 1604

1636

1508

154 1668

Frequency[MHz]
Frequency[MHz]

1572 1700

Lz

0.25 0.75

0.5
Phase

(f) Subband5

Figure 21. J2022+5154’s subband Dynamic Spectrum Diagram (OPFB).

T 964.0

ri1117.6

ri1271.2

r1424.8

Frequency[MHz]

r1578.4

-1732.0
0.75 1 0 25

Power

0.5
Phase

Figure 22. Dynamic spectrum of J1935+1616 (OPFB).

that there is no attenuation between OPFB subbands, which
does not affect the continuity of the pulsar signal.
Furthermore, UWLPIPE was used to observe J1935+1616,
and J2022+5154. The dynamic spectra of the processed six
subbands are shown in Figures 20 and 21, respectively. The
final synthesized wideband signals’ dynamic spectra after

12

processing are shown in Figures 22 and 23, respectively. The
results demonstrate that UWLPIPE can correctly receive
subband data from both PFB and OPFB channels, verifying
the effectiveness of UWLPIPE in data processing.

4. Summary

To address the real-time processing requirements for ultra-
wide bandwidth pulsar data, we design and implement
UWLPIPE based on GPU parallel technology. UWLPIPE can
configure the current observation source and GPU node
parameters by reading the toml configuration file information.
UWLPIPE demonstrates proficiency in real-time parallel
reception of multi-subband dual-polarization pulsar signals. It
facilitates multi-channel parallel real-time coherent dedisper-
sion processing, enables ultra-wide bandwidth data synthesis,
and packages the data into formats suitable for scientific data
processing needs. The LDRP algorithm is designed and
implemented to unpack the header information of the dual-
polarization VDIF data packets, extracting the timestamp
information. By calculating the offset of each VDIF data
packet relative to the reference time, the data is placed in the
correct position within a double buffer structure to align the
dual-polarization data.

UWLPIPE is capable of packaging data into PSRDADA
baseband data and filterbank data astronomical formats, that is,

Research in Astronomy and Astrophysics, 24:075011 (13pp), 2024 July

T 964.0

ri1117.6

ri1271.2

r1424.8

Frequency[MHz]

r1578.4

-1732.0

0.5 . 1 0 20

Phase Power

Figure 23. Dynamic spectrum of J2022+4-5154 (OPFB).

directly saving the aligned dual-polarization data as baseband
data, or storing filterbank data after performing operations such
as channel separation, coherent dedispersion and integration on
the GPU.

We tested UWLPIPE using the NSRT with an L-band
bandwidth range of 964 ~ 1732 MHz. During the FPGA
preprocessing stage, we used PFB and OPFB channel
separation techniques respectively, and conducted a
5 minutes-observation of J0332+5434. Comparing the spectra
across six subbands, it is evident that the OPFB-based channel
separation technique yields a smoother spectrum compared to
PFB, eliminating the spectral decay effect between subbands.

We also observed J1935+1616 and J2022+5154, obtaining
six subbands of 128 MHz data. After performing folding
integration on each subband, we obtained the correct pulse
profile. Finally, we merged the six subbands to generate
wideband data and performed folding integration again. The
generated subband profiles were correctly aligned. The above
experiments verified the accuracy of UWLPIPE’s data proces-
sing and laid the foundation for real-time processing of ultra-
wide bandwidth pulsar data.

Acknowledgments

This work is supported by the National Key R&D Program
of China Nos. 2021YFC2203502 and 2022YFF0711502;

13

Zhang et al.

the National Natural Science Foundation of China (NSFC)
(12173077); the Tianshan Talent Project of Xinjiang
Uygur Autonomous Region (2022TSYCCX0095 and
2023TSYCCXO0112); the Scientific Instrument Developing
Project of the Chinese Academy of Sciences, grant No.
PTYQ2022YZZDO01; China National Astronomical Data
Center (NADC); the Operation, Maintenance and Upgrading
Fund for Astronomical Telescopes and Facility Instruments,
budgeted from the Ministry of Finance of China (MOF) and
administrated by the Chinese Academy of Sciences (CAS);
Natural Science Foundation of Xinjiang Uygur Autonomous
Region (2022D01A360).

ORCID iDs

Ya-Zhou Zhang © https: //orcid.org/0000-0001-6046-2950
Hai-Long Zhang ® https: //orcid.org/0000-0002-8951-7094
Jie Wang ® https: //orcid.org/0000-0003-0380-6395

Xu Du @ https: //orcid.org /0000-0001-6448-0822

References

DuPlain, R., Ransom, S., & Demorest, P. 2008, Proc. SPIE, 7019, 70191A

Harris, C., & Haines, K. 2011, PASA, 28, 317

Hobbs, G. 2021, pfits: PSRFITS-format Data File Processor, Astrophysics
Source Code Library, ascl:2104.013

Hobbs, G., Manchester, R. N., Dunning, A., et al. 2020, PASA, 37, e012

Lorimer, D. R. 2011, SIGPROC: Pulsar Signal Processing Programs,
Astrophysics Source Code Library, ascl:1107.016

MacMahon, D. H. E., Price, D. C., Lebofsky, M., et al. 2018, PASP, 130,
044502

Niu, C.-H., Wang, Q.-X., MacMahon, D., et al. 2019, RAA, 19, 102

Paine, D., & Lee, C. P. 2014, in 2014 IEEE 10th International Conf. e-Science,
Vol. 1 (Sao Paulo: IEEE), 231

Pei, X., Li, J., Duan, X., & Zhang, H. 2023, PASP, 135, 075003

Pei, X., Wang, N., Werthimer, D., et al. 2022, RAA, 22, 045016

van Cappellen, W. A., Oosterloo, T. A., Verheijen, M. A. W., et al. 2022,
A&A, 658, A146

van Straten, W., & Bailes, M. 2011,° PASA, 28, 1

van Straten, W., Jameson, A., & OsAowski, S. 2021, PSRDADA: Distributed
Acquisition and Data Analysis for Radio Astronomy, Astrophysics Source
Code Library, ascl:2110.003

Wang, N., Xu, Q., Ma, J., et al. 2023, SCPMA, 66, 289512

Wei, D. 2019, Research on Key Technologies in Radio Astronomical Data
Realtime Processing, PhD thesis, University of Chinese Academy of
Sciences

Wei, J., Zhang, C., Zhang, Z., et al. 2023, SSPMA, 53, 229506

Whitney, A., Kettenis, M., Phillips, C., & Sekido, M. 2010, in Sixth Int. VLBI
Service for Geodesy and Astronomy. Proc. 2010 General Meeting, ed.
R. Navarro et al., 192

Yang, J., & Han, W.-1. 2022, ChA&A, 46, 309

Zhang, H.-L., Zhang, Y .-Z., Zhang, M., et al. 2023a, RAA, 23, 015023

Zhang, M., Zhang, H.-L., Zhang, Y.-Z., et al. 2023b, RAA, 23, 085012

Zhang, X., & Duan, R. 2022, Proc. SPIE, 12190, 1219032

https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0001-6046-2950
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0002-8951-7094
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0003-0380-6395
https://orcid.org/0000-0001-6448-0822
https://orcid.org/0000-0001-6448-0822
https://orcid.org/0000-0001-6448-0822
https://orcid.org/0000-0001-6448-0822
https://doi.org/10.1117/12.789402
https://ui.adsabs.harvard.edu/abs/2008SPIE.7019E..1AD/abstract
https://doi.org/10.1071/AS11032
https://ui.adsabs.harvard.edu/abs/2011PASA...28..317H/abstract
http://www.ascl.net/2104.013
https://ui.adsabs.harvard.edu/abs/2020PASA...37...12H/abstract
http://www.ascl.net/1107.016
https://doi.org/10.1088/1538-3873/aa80d2
https://ui.adsabs.harvard.edu/abs/2018PASP..130d4502M/abstract
https://ui.adsabs.harvard.edu/abs/2018PASP..130d4502M/abstract
https://doi.org/10.1088/1674-4527/19/7/102
https://ui.adsabs.harvard.edu/abs/2019RAA....19..102N/abstract
https://doi.org/10.1088/1538-3873/ace12d
https://ui.adsabs.harvard.edu/abs/2023PASP..135g5003P/abstract
https://doi.org/10.1088/1674-4527/ac56cb
https://ui.adsabs.harvard.edu/abs/2022RAA....22d5016P/abstract
https://doi.org/10.1051/0004-6361/202141739
https://ui.adsabs.harvard.edu/abs/2022A&A...658A.146V/abstract
https://doi.org/10.1071/AS10021
https://ui.adsabs.harvard.edu/abs/2011PASA...28....1V/abstract
http://www.ascl.net/2110.003
https://doi.org/10.1007/s11433-023-2131-1
https://ui.adsabs.harvard.edu/abs/2023SCPMA..6689512W/abstract
https://ui.adsabs.harvard.edu/abs/2023SSPMA..53v9506W/abstract
https://doi.org/10.1016/j.chinastron.2022.09.010
https://ui.adsabs.harvard.edu/abs/2022ChA&A..46..309Y/abstract
https://doi.org/10.1088/1674-4527/aca8ee
https://ui.adsabs.harvard.edu/abs/2023RAA....23a5023Z/abstract
https://doi.org/10.1088/1674-4527/acd73b
https://ui.adsabs.harvard.edu/abs/2023RAA....23h5012Z/abstract

	1. Introduction
	2. UWLPIPE
	2.1. UWLPIPE Configuration
	2.2. High-speed Network Data Reception and Unpacking Algorithm
	2.3. Pulsar Data Processing and Astronomical Data Format Packaging Technology
	2.3.1. Baseband Data Record
	2.3.2. Filterbank Data Record

	3. Results
	4. Summary
	References

