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Abstract

Fast radio bursts (FRBs) are among the most studied radio transients in astrophysics, but their origin and radiation
mechanism are still unknown. It is a challenge to search for FRB events in a huge amount of observational data
with high speed and high accuracy. With the rapid advancement of the FRB research process, FRB searching has
changed from archive data mining to either long-term monitoring of the repeating FRBs or all-sky surveys with
specialized equipments. Therefore, establishing a highly efficient and high quality FRB search pipeline is the
primary task in FRB research. Deep learning techniques provide new ideas for FRB search processing. We have
detected radio bursts from FRB 20201124A in the L-band observational data of the Nanshan 26 m radio telescope
(NSRT-26m) using the constructed deep learning based search pipeline named dispersed dynamic spectra search
(DDSS). Afterwards, we further retrained the deep learning model and applied the DDSS framework to S-band
observations. In this paper, we present the FRB observation system and search pipeline using the S-band receiver.
We carried out search experiments, and successfully detected the radio bursts from the magnetar SGR J1935+2145
and FRB 20220912A. The experimental results show that the search pipeline can complete the search efficiently
and output the search results with high accuracy.
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1. Introduction

Fast radio bursts (FRBs) are bright, highly dispersed, and
millisecond-duration cosmological radio transients (see
Lorimer et al. 2007; Cordes & Chatterjee 2019; Petroff
et al. 2019). Nearly 800 FRB sources have been reported since
the transient radio phenomenon was first detected in 2007, and
most are non-repeating, while only 65 are known repeaters.4

Most repeating FRBs were detected only twice. The study
of FRBs has entered a new era as the active periods of
several repeating FRBs have been captured, such as FRB
20121102 (Cruces et al. 2021), FRB 20180916B (Chen et al.
2021), and FRB 20201124A (Xu et al. 2022). This has
resulted in a collection of a large number of radio burst
samples, which helps to study their respective energy
distributions, polarization properties, and time-dependent
properties. However, their physical origin and radiation
mechanism are still unknown, and we still need more FRB
samples for analysis and study.

The establishment of an efficient FRB search pipeline is of
great significance for voltage data dump, improving the speed
and accuracy for observation data processing and carrying out

FRB follow-up observations in time. As early as 2016, the
Nanshan 26 m radio telescope (NSRT-26m) conducted FRB
blind search observations in the L-band. Afterwards, we
upgraded the digital terminal system and developed a deep
learning based search pipeline named dispersed dynamic
spectra search (DDSS) in 2022, which successfully detected
radio bursts in the data of targeted search for repeating FRB
20201124A using L-band receiver (Liu et al. 2022). The
application of deep learning techniques in FRB observation
search has greatly improved the search accuracy. But the
performance of a deep learning based classifier greatly depends
on the quality of training samples. When applying the DDSS
pipeline to the S-band, the deep learning model needs to be
retrained, and the radio frequency interference (RFI) mitigation
method also needs to redesigned. In this paper, an FRB
observation system and a search pipeline are built, which are
deployed to search for the radio bursts from magnetar SGR
J1935+2154 and FRB 20220912A at S-band using the NSRT-
26m. The rest of this paper is organized in the following
manner. In Section 2, we describe the observing system. The
third section describes the search pipeline, and the fourth
section describes our observation experiment and the results.
We present our conclusions in Section 5.
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2. Observation System

2.1. Receiver System

The NSRT-26m is located at E87°10.67′, N43°28.27′ at an
altitude of 2080 m, and is operated by Xinjiang Astronomical
Observatory (XAO) of Chinese Academy of Sciences (Wang
et al. 2001). The telescope is equipped with L-band, C-band, S/
X band, K-band, and Q-band receivers. According to the
current state of FRB observation, FRBs are mainly detected at
radio frequencies between 110MHz (FRB 20180916B, Pleunis
et al. 2021) and 8 GHz (FRB 121102, Gajjar et al. 2018). Of
course, this is mainly due to the limited frequency range of the
observation equipments. The Low Frequency Array (LOFAR)
detected FRBs at the lowest frequencies to date, with
observation frequencies ranging between 110 and 188MHz
(Pleunis et al. 2021). The NSRT-26m can conduct FRB
observations in the L-band, S-band, and C-band. In 2022
February and March, we detected radio bursts from FRB
20201124A with the L-band receiver.

In 2022 August, the L-band observations were discontinued
at the NSRT-26m due to upgrades on the L-band receiver.
Since then, we have been using the room-temperature S-band
receiver, with 60 K system temperature, for FRB observations.
The frequency range for the S-band is from 2.1 to 2.6 GHz,
with a bandwidth of 500MHz. Because of the RFI effects, the
radio frequency (RF) front end of the S-band receiver is partly
filtered, such that the actual observed frequencies are from
2182 to 2382MHz. We use the radiometer equation (see, e.g.,
Lorimer & Kramer 2005) to compute the minimum detectable
fluence
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= h is the gain of NSRT-26m, and η= 47% is the

aperture efficiency, A is the aperture area, and k is the
Boltzmann’s constant. In addition, Np= 2 is the number of
summed polarizations, B= 200MHz is the effective observing
bandwidth, and Tsys= 60 K is the system temperature. We
assume the minimum FRB pulse width Wobs= 1 ms, and a
signal-to-noise ratio (S/N) threshold of 10. From this, we
obtain F 10.5min » Jy ms for the S-band receiver.

2.2. Digital Backend

The digital backend for FRB observations is based on the
Reconfigurable Open Architecture Computing Hardware 2
(ROACH2) board5 with frequency bandwidth of 512MHz and
is independently developed by XAO, referred to as the XAO
FilterBank (XFB) system. Its time resolution is 64 μs and
frequency resolution can be set to either 0.5 MHz or 1MHz.
The observation data are packaged in the Flexible Image

Transport System (FITS) format and can be converted to
filterbank format as needed.
After the astronomical signal is reflected by the single-dish

telescope, it enters the receiver system, where it is converted
into two intermediate frequency (IF) signals, A and B, through
a polarizer, followed by multistage amplification, filtering and
mixing. The two analog-to-digital converters (ADCs) in the
XFB perform high-speed sampling of the two IF signals A and
B, respectively. After that, multiple operations such as filtering,
fast Fourier transform (FFT), Stokes parameter calculation, and
data packaging will be done based on the Field Programmable
Gate Array (FPGA) module. Lastly, the signal data are
transferred to the high-performance computing (HPC) platform
through 10 Gigabit Ethernet (10 GbE). The main work of the
HPC includes putting the data transmitted from the 10 GbE
network into the first-input first-output (FIFO) buffer,
packaging the data in PSRFITS format and finally storing the
data on the hard disk. The data are then processed by the FRB
search pipeline based on the deep learning technique. The S-
band FRB observation and processing framework on the
NSRT-26m are illustrated in Figure 1.

3. The Search Pipeline

3.1. Pipeline Design

For the traditional single-pulse search method, the key
processing is the dedispersion algorithm, e.g., heimdall
(Barsdell et al. 2012), presto (Ransom 2001), etc. For the
blind FRB search, it is necessary to carry out the dispersion
with dispersion measure (DM) trials and calculate the S/N for
each dedispersed time series. The dedispersion processing of
multiple DMs is a resource-intensive and time-consuming
process. Meanwhile, in order not to miss rare FRB events, the
detection S/N threshold is usually set very low. This raises the
challenges of noise and RFI masquerading as false positives. In
order to improve the processing accuracy and speed, deep
learning techniques are applied to the procedures for processing
the FRB observational data. Currently, there are two main
technical routes as depicted in Figure 2. The first route is to
search directly for single pulse events in the observational data
with deep learning classifiers without relying on any traditional
search algorithm (e.g., Zhang et al. 2018; Liu et al. 2022), and
the second route involves applying a deep learning classifier to
classify the candidates generated by the search software based
on the traditional dedispersion algorithm (e.g., Connor & van
Leeuwen 2018; Agarwal et al. 2020).
In this paper, we use the DDSS pipeline based on the

technical route 1 for processing FRB observational data. The
specific process flow is shown in Figure 3. The filterbank data
were cut into frames of 2048 samples each along the time axis,
which are in the form of the dynamic spectrograms. They are
preprocessed before being fed into the deep learning classifier.
The preprocessing operation mainly includes RFI mitigation,5 https://casper.berkeley.edu/wiki/ROACH2_Revision_2
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trimming, down-sampling and so on. When the prediction
score of one sample is above 0.5, it is considered as an FRB.
The pipeline will save the frequency-time image of the FRB
candidate on the hard disk for offline visual inspection and
inform the observers by email. More details of the pipeline are
given by Liu et al. (2022).

When the pipeline is applied to the S-band observation data,
we need to retrain the deep learning model to obtain a new deep
learning classifier. We selected Xception as the deep learning
network model, and utilized the simulation method to generate
FRB samples as positive samples with DM ranging between
200 and 500 pc cm−3. The negative samples are all randomly

Figure 2. The technical routes of FRB search pipeline.

Figure 3. The flow chart of DDSS pipeline (Liu et al. 2022).

Figure 1. The S-band FRB observation and processing framework on the NSRT-26m.
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extracted from the real observational data without single pulses.
A training set of 60,000 samples was prepared. The training
was carried out on an Nvidia GTX 1080 GPU card and lasted
for about 1.5 hr with 6 epochs. We conducted several model
training experiments, and the model training precision,
accuracy, and recall were all achieved above 98%. Figure 4
features the accuracy and loss curves for training and validation
subsets with epoch of the training process. The results show
that, using only 6 epochs for training, the Xception model
achieved very high performance on the classification task.

RFI in observational data can have a large impact on the
training performance of deep learning models. In particular,
some significant RFIs can even become the learning focus of a
deep learning network model. When we analyzed the S-band
observation data, we found that the quality of the data is

better than that at the L-band showing only some narrowband
RFIs and sporadic transient broadband RFIs, as depicted in
Figure 5. Therefore, we have simplified the RFI mitigation
process for the DDSS pipeline to only zapping the RFI
channels. The processing speed of the pipeline is dramatically
increased to more than six times the speed of data generation,
which is fast enough to conduct real-time observational search
missions.

3.2. Pipeline Test

Based on our past experience in applying the DDSS pipeline
in the L-band, in this paper we do not perform further testing
and validation work, but directly use the trained network model
for FRB search in the S-band observations. A search
experiment for the S-band search pipeline was conducted on
approximately 4.6 hr of data observed on 2022 October 26. The
pipeline returned only 47 false-positive candidates, most of
which were caused by transient broadband RFIs, as shown in
Figure 6.
Although such an error rate is acceptable, a higher search

accuracy is desired given the need to store raw voltage data.
Therefore, optional handling of such broadband transient RFI
has been added to the search pipeline. The zero-DM matched
filter (ZDMF) proposed by Men et al. (2019) was used as the
mitigation strategy for broadband RFI to further improve the
search accuracy of the pipeline. In practice, the RFI mitigation
methods can be selected and set as necessary for a specific
search task. The specific experimental data are shown in
Table 1. It can be seen that the application of ZDMF further
improves the accuracy of search pipeline, but the processing
time increases accordingly. It is worth noting that since the
execution speed of the developed software is related to the
hardware platform used, the programming language, the degree

Figure 4. Accuracy and loss change curves with epoch of the Xception model training process on both training and validation data sets.

Figure 5. Dynamic spectrum of S-band observation data.
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of code optimization, etc., it makes more sense to make relative
comparisons of speed here, and the absolute speed can only be
used as a reference.

4. Search Experiment

4.1. SGR J1935+2154

In 2021, FRB 200428 was confirmed as originating from the
galactic magnetar SGR J1935+2154 (Li et al. 2021). This was
a landmark development as it proved that magnetars can be a
physical origin of FRBs. On 2022 October 14, the
Gravitational-wave High-energy Electromagnetic Counterpart
All-sky Monitor (GECAM) detected an X-ray burst associated
with an FRB, and scientists quickly confirmed that it originated
from the magnetar SGR J1935+2154 (Wang et al. 2022). This
was the second time that the high-energy counterpart of an
FRB was detected. The NSRT-26m then began to conduct
follow-up observations of FRB 200428, and fortunately based
on the S-band search pipeline described in this paper, the radio
bursts from the magnetar SGR J1935+2154 were found in the
observation conducted on 2022 November 20. Dedispersed
pulses and dynamic spectra of the bursts from FRB 200428
with a DM of 330 pc cm−3 are shown in Figure 7, and specific
information for the bursts is displayed in Table 2.

4.2. FRB 20220912A

FRB 20220912A is a highly active repeating FRB detected
by the Canadian Hydrogen Intensity Mapping Experiment
(CHIME) in the fall of 2022, and the FRB remained highly
active for several months. Twelve bursts from FRB 20220912A
were detected by CHIME in the 400–800MHz band between
2022 September 12 and October 15 (McKinven & Chime/Frb
Collaboration 2022), with the brightest burst possessing a DM
of 219.46 pc cm−3. FRB 20220912A was subsequently
detected by FAST in the 1000–1500MHz band (Zhang et al.
2022), and by the Arecibo 12 m radio telescope at 2.3 GHz
(Perera et al. 2022). Two radio bursts with low S/N from FRB
20220912A in the NSRT-26m observations were identified
using the S-band FRB search pipeline. The dedispersed pulses
and dynamic spectra of the two bursts with a DM of
220 pc cm−3 are shown in Figure 8, and their specific
information is displayed in Table 3.

Figure 6. False positive candidates output from S-band search pipeline.

Table 1
The Execution Speed of the RFI Mitigation Algorithm and the Number of False

Positive Candidates Produced by the FRB DDSS Pipeline

Method
Observation
Duration (hr)

Processing
Time (hr)

False
Detections

Zapping 4.65 0.56 47
Zapping + ZDMF 6.39 15

Table 2
Fast Radio Bursts Emanating from SGR J1935+2154 Reported in this Paper

Event UTC S/N DM (pc cm−3)

2022-11-20 10:35:52.311936 40.85 330
2022-11-20 10:35:52.232064 77.32
2022-11-20 10:35:53.229440 6.0
2022-11-20 10:35:53.491584 7.03

Table 3
Fast Radio Bursts Emanating from FRB 20220912A Reported in this Paper

Event UTC S/N DM (pc cm−3)

2022-10-29 15:11:39 5.3 220
2022-11-16 20:52:37 7.25
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Figure 7. Bursts from SGR J1935+2154 in the S-band observational data.

Figure 8. The two bursts from FRB 20220912A in the S-band observational data.
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5. Conclusions

We have established an FRB search pipeline based on the
FRB DDSS pipeline for the S-band observation data obtained
from the NSRT-26m. Given that the RFI situation in the S-band
observation data is simpler than that in the L-band, only two
layers of RFI mitigation procedure are adopted, which are
narrowband RFI zapping and ZDMF for broadband RFI. We
also carried out experiments on the processing speed of the
search pipeline for different RFI mitigation procedures. The
results from the experimental data support the real-time
searching of the FRB dynamic spectra. Using the S-band
DDSS pipeline, the FRB observational search data obtained
from October to November by the NSRT-26m were processed.
We detected the radio bursts from magnetar SGR J1935+2154
and FRB 20220912A, which further demonstrated the
applicability and practicability of the DDSS pipeline
framework.
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