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Abstract

Active surface technique is one of the key technologies to ensure the reflector accuracy of the millimeter/
submillimeter wave large reflector antenna. The antenna is complex, large-scale, and high-precision equipment,
and its active surfaces are affected by various factors that are difficult to comprehensively deal with. In this paper,
based on the advantage of the deep learning method that can be improved through data learning, we propose the
active adjustment value analysis method of large reflector antenna based on deep learning. This method constructs
a neural network model for antenna active adjustment analysis in view of the fact that a large reflector antenna
consists of multiple panels spliced together. Based on the constraint that a single actuator has to support multiple
panels (usually 4), an autonomously learned neural network emphasis layer module is designed to enhance the
adaptability of the active adjustment neural network model. The classical 8-meter antenna is used as a case study,
the actuators have a mean adjustment error of 0.00252 mm, and the corresponding antenna surface error is
0.00523 mm. This active adjustment result shows the effectiveness of the method in this paper.
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1. Introduction

Large reflector antennas are important observation equip-
ment in the field of deep space exploration and radio
astronomy. With the increasing demand for high-frequency
observation, large reflector antennas are constantly developing
in the direction of large aperture, high frequency band, and
high precision (Baars & Kärcher 2018). The surface accuracy
of large reflector antenna directly affects the electrical
performance of the antenna, but its reflector is usually made
of a large number of panels spliced together, which will
inevitably produce deformation under the action of gravity,
temperature and wind and other external loads, which will
directly lead to the antenna to appear gain degradation, pointing
error and other problems (Ban et al. 2020). Therefore, ensuring
the accuracy of the antenna reflector surface is a key link to
guarantee that the antenna realizes the desired performance.

At present, the active surface technique is the most effective
and direct method to realize the surface accuracy of large full
panel high-frequency reflector antennas. It has been widely
used, for example, the 100 m Green Bank Telescope (GBT) in
the U.S. (White et al. 2022), the 64 m Sardinia Radio Telescope
(SRT) in Italy (Bolli et al. 2015), the 50-meter Large Millimeter
Telescope (LMT) in Mexico (Hughes et al. 2010), and the 65 m
Tianma Radio Telescope (TMT) in Shanghai (Dong et al.
2016), etc. Currently, the world’s largest full panel and
steerable large reflector antennas, QTT (Xu & Wang 2016;

Wang et al. 2023), is being built in Qitai, Xinjiang, which has a
110 m aperture of the main reflector with 2242 panels and can
operate at 115 GHz, and will also use the active surface
technique to ensure the required surface accuracy. The active
surface technique mainly realizes the regulation of antenna
surface accuracy through the actuator supporting the panel
(which adjusts the position of the panel by extending or
shortening). Among them, calculating the adjustment value of
the actuator is one of the key elements of the active surface
technique to realize the antenna reflector with high accuracy
requirements.
Currently, many scholars have studied the calculation

method of the actuator adjustment value, and the main idea is
to take the normal distance between the ideal reflector node and
the actual reflector node as the adjustment value. Usually,
2-parameter, 5-parameter and 6-parameter methods can be used
to determine the optimal coincident reflector (Fu et al. 2015),
and some scholars have used microwave holography to
measure the antenna surface error to establish the calculation
method of the actuator adjustment value (Ban et al. 2024b).
These methods are simple and effective, and the resulting
adjustment value improves the accuracy of the antenna surface
to some extent. However, these adjustment methods ignore the
effect of the elastic deformation of the panel itself when the
actuator adjusts the panel position. Therefore, some scholars
have approximated the linear relationship matrix between the
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elastic deformation of the panel and the adjustment value of the
actuator (Lian et al. 2021), and the adjustment value of the
antenna actuator is calculated by this optimization method. Ban
et al. directly simplified the actuator mechanism and then
directly established the structural model of the active reflector
antenna using the simplified actuator (Ban et al. 2023, 2024a),
which further improved the method of the analysis of the active
surface and the calculation of the adjustment value. These
methods center around the structural error for the calculation of
the actuator adjustment value, and do not take into account the
influence of the change of the adjustment amount brought
about by different complex environments, the aging of the
regulation equipment during the actual operation and main-
tenance process of the project. For this reason, this paper
proposes an extensible method for analyzing the adjustment
value, i.e., the neural network-based adjustment analysis
method, which can be intelligently learned to improve the
adjustment amount through the adjustment data in the future
engineering practice.

In recent years, with the rapid development of computer
hardware, artificial intelligence, especially deep learning
technology, has gained great progress in the application field.
It has been widely applied in the fields of materials (Fang et al.
2022), physics (Thuerey et al. 2021), chemistry (Goh et al.
2017), medicine (Zhou et al. 2021) and other fields with
remarkable results. Its intelligent autonomous learning through
data also opens up new ideas for the calculation method of the
active adjustment value of large reflector antennas, but there is
still no research on deep learning applied to antenna active
surface technique. Therefore, this paper for large reflector
antenna active surface technique urgently needs intelligent
learning to improve the demand for adjustment value
calculation method, innovatively put forward the active surface
adjustment value calculation method based on neural network,
In order to train and fine-tune the parameters of the established
active adjustment neural network model according to the use
data of the active surface technique in the process of
engineering application, so that the active adjustment value
calculation method has the intelligent property of self-learning.
Due to the large number of large reflector antenna panels and
actuators, and for such a large number of feature input-output
problems, the neural network using only a multilayer
perceptron will produce training difficulties and slow arithmetic
(Zhou et al. 2017); on the other hand, the reflector panel nodes
contain prior knowledge such as structural and contextual
information, which can help the neural network to understand
and analyze the data better, and help to improve the
convergence accuracy. Combining the above characteristics,
there are two major types of neural network models available at
present, namely Convolutional Neural Networks (CNNs)
(Hadji & Wildes 2018) and Vision Transformer (Liu et al.
2023). After the measurement of the antenna active adjustment
neural network model established in this paper, under the same

conditions, the CNNs with the same accuracy level are
obtained with higher efficiency of the active adjustment mode,
so this paper finally adopts CNNs to establish the antenna
active surface adjustment deep learning model.
The overall flow of this paper is shown in Figure 1. The

convolutional neural network model for antenna active
adjustment is constructed in Section 2. The data preprocessing
method for the model is described in Section 3.1. The initial
parameter settings, loss function definitions, and the model
training strategy of the constructed model are also described in
Section 3.2. The classical 8-meter antenna is used as a case in
Section 4, and the built active tuning deep learning model is
trained to obtain feasible and effective application results.
Finally, all the conclusions are described in Section 5.

2. Modeling of Convolutional Neural Network for
Antenna Active Adjustment

Since the reflector panel nodes have a priori knowledge such
as structural information and contextual information, in order to
use this a priori knowledge to improve the convergence
accuracy, and at the same time for the large reflector antenna
panels and actuators are more in number, i.e., the neural
network will be faced with a larger number of inputs and
outputs, the convolutional neural networks (CNNs) are more
efficient compared to other neural network structures, and
therefore, this paper finally adopted CNNs to establish the
antenna active adjustment model.
As shown in Figure 2, the input features of this neural

network are the coordinate information of the nodes of the
reflector panels, and the output is the actuator adjustment value
corresponding to the input panels position. In order for the
neural network to learn the changing features of the panels at
different levels, i.e., to perceive the information of the panel
surface at different scales, and to help the neural network to
learn the regularity of the data set, multi-scale convolution is
required. For example, in the first layer of the model in
Figure 2, different sizes of convolution kernels are used for
convolution respectively. In the simplest case, the output value
of the layer with input size (N, Cin, H, W) and output (N, Cout,
Hout, Wout) can be precisely described as:
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where ⊗ is the valid 2D cross-correlation operator, N is a batch
size, C denotes a number of channels, H is a height of input
planes in pixels, and W is width in pixels.
In order to save arithmetic power at the same time to ensure that

the neural network has a large range of perceptual ability,
combined with the use of large size convolutional kernel and a
larger step size, such as the first layer of Figure 2, the use of 5× 5
size convolutional kernel and 7× 7 size convolutional kernel, and
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so that the two convolutions of the step size of 2. At this point, if
the direct boundary filling makes the output of the four
convolutions of the first layer of the same size, there will be a
decline in training efficiency, so it can be supplemented with the
use of jump connections, the output of the 5× 5 convolution and
7× 7 convolution is connected to the output of the third layer of
the convolution to improve the training efficiency.

In order to improve the stability of neural network convergence
during the training process and make smooth convergence, a
normalization layer is usually used between the connected
convolutional layers. However, since batch normalization (Ioffe
& Szegedy 2015) leads to differences in the features of different
batches of data, in order to reduce the impact of data changes and
make the convolutional neural network have a better general-
ization effect on unseen data, and then more accurately predict the
adjustment value of the actuator, the normalization layer of this
model uses a layer normalization layer (Ba et al. 2016), and the
computational formula is:

e
g b=

-
+

´ +y
x x

x

E

Var
2

[ ]
[ ]

( )

where x is the set of inputs to the layer, y is the set of outputs
from the layer, E represents the mean, Var represents the

variance, ε in the denominator is a very small number that
serves to prevent the numerical computation from being
unstable, and γ and β are the parameters of the learnable
affine transformation.
For a single panel controlled by an actuator, a neural network

model structure can be built as shown in Figure 2 (without the
emphasis layer), which has five logical layers, with every two
layers outputting a convolution of the same size connected in
the depth direction, with an additional layer of normalization
after each convolution, and using a Gaussian Error Linear Unit
(GELU) activation function as shown in Equation (3)
(Hendrycks & Gimpel 2016). Specifically, the first layer uses
four convolutional kernels of different sizes, where the 1× 1
convolutional kernel and the 3× 3 convolutional kernel leave
the feature map size unchanged and concatenate the outputs of
both. the 5× 5 convolutional kernel and the 7× 7 convolu-
tional kernel shrunk the feature map’s by half, concatenating
their outputs by jumping to the outputs of the third layer. The
second layer used a 1× 1 convolutional kernel and a 3× 3
convolutional kernel that concatenated their outputs, leaving
the feature map size unchanged. The third layer used a 3× 3
convolution kernel with the feature map size halved and jump-
connected its output to the output of the convolution kernel

Figure 1. The overall flow of convolutional neural network model construction and training method for active antenna adjustment.
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Figure 2. Antenna active adjustment convolutional neural network model.
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with the halved feature map of the first layer. The fourth layer
used a 1× 1 convolution kernel and a 3× 3 convolution
kernel, concatenating their outputs with the feature map size
unchanged. The fifth layer used only 3× 3 convolution
kernels, but halved the feature maps and increased the number
of channels to compress the information for final information
extraction using global average pooling.

p= ´ ´ + ´ + ´

3
x x x xGELU 0.5 1 Tanh 2 0.044 715 3

( )
( ) ( ( ( )))

where x represents the input and Tanh is the hyperbolic tangent
function. The above method is more applicable to the case of
an actuator controlling a single panel. For the overall reflector
of a multi-panel splice, i.e., a single actuator controlling
multiple panels (usually one actuator controlling multiple
panels), the method will take the influence of panels that are not
directly connected to the actuator into account with the same
weight, which affects the training results. Therefore, when
using the panel position to predict the actuator adjustment
value, the four directly connected panels should be given
higher weights to attract the neural network’s “attention”, so
this paper designs an autonomously learnable “emphasis
layer.”. This layer allows the neural network to autonomously
choose the importance of each panel node to the connected/
unconnected actuators. At the same time, in order to keep the
three-dimensional coordinates of the same node scaled equally
to prevent positional distortion, the emphasis layer uses a single
weight to scale the xyz values of the nodes by the same size.
This module is placed at the very bottom of the model structure
in Figure 2 (near the input end), i.e., the first layer after the
input of antenna panel data, and is used to redistribute the
weights of the different panel nodes of the input. This emphasis
layer has the same dimensions as the input data, and the
computational formula for this layer is:

=O I W 4( )

Where I is the input of the layer, W is the parameter matrix of
the layer and O is the output of the layer, i.e.,

⎡

⎣
⎢

⎤

⎦
⎥=I

X
Y
Z

5( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=X

x x x
x

x x

6

n nn

11 12 1n

21

1

( )




  

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=Y

y y y

y

y y

7

n

n nn

11 12 1

21

1

( )




 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

z z z

z z

Z
y

8

n

n nn

11 12 1

21

1

( )




 

⎡

⎣

⎢
⎢
⎢

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥

= =

w w w
w

w w

W w 9

n

n nn

11 12 1

21

1

[ ] ( )




 

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

= =

w w w
w

w w

w w w

w

w w

z w z w z w
z w

z w z w

O
X w
Y w
Z w

x x x
x

x x

y y y

y

y y

10

n

n n nn nn

n n

n n nn nn

n n

n n nn nn

11 11 12 12 1n 1

21 21

1 1

11 11 12 12 1 1

21 21

1 1

11 11 12 12 1 1

21 21

1 1

· · ·
·

· ·
· · ·
·

· ·
· · ·
·

· ·
( )








 




 




 

3. Convolutional Neural Network Training for
Antenna Active Adjustment

In order to transform the data into a form that can be input
into a convolutional neural network as well as to preserve the
a priori knowledge of the reflector panel nodes, data
preprocessing is required to transform the raw data into the
desired form of an ordered 3D array. The initial parameters of
the model need to be specified and the loss function defined
before the model is trained. The computational optimizer and
dynamic learning rate methods during training are also
described in this section.

3.1. Data Preprocessing

Since the panel nodes contain a priori knowledge similar to
that of a picture, but the nodes of the generated data set are not
ordered. If the input to the network is only reorganized without
ordering, it will result in the loss of this a priori knowledge,
causing a decrease in prediction accuracy. In order to retain this
a priori knowledge and improve the stability of convergence,
this section performs sorting, reorganization, and feature
scaling on the source data, and the general process is shown in
Figure 1(a). Sorting and reorganization transforms the two-
dimensional array containing the coordinates of the panel nodes
before and after adjustment into a three-dimensional array of
coordinate changes that approximate the real node layout order.
At this point the change value corresponds to the node
coordinates, in this three-dimensional array from left to right
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x-coordinate gradually increases, from bottom to top y-
coordinate gradually increases, as shown in Figure 3. Finally
this coordinate change value and the actuator adjustment value
are feature scaled. The preprocessed panel node coordinate
change value is used as the feature of the neural network
described in Section 2, and the actuator adjustment value
matching the node change value is used as its label.

The reason for using the node coordinate changes here instead
of directly using the adjusted position coordinates as the neural
network inputs is that the large reflector surface of a large reflector
antenna has a huge reflector size, and if normalization is
performed directly, it will result in the amount of coordinate
changes and their minuteness such that the neural network will not
be able to perceive the changes in the node positions, resulting in
the failure of convergence in training the neural network.

Feature scaling means limiting the distribution of the input data
to [−1, 1] in order to better train the deep learning model.
Specifically, data normalization has two main effects: (a). Help
accelerate training: data normalization can make the gradient
descent algorithm converge faster, thus accelerating the training
process. (b). Avoid gradient vanishing or exploding: when the
distribution of the input data is too large or too small, it will lead
to gradient vanishing or exploding in the process of back-
propagation, which can be avoided by data normalization. Since
for different actuator adjustment values, this may result in
uncertainty about the maximum value of the panel nodes, the
practice of dividing the feature and label by the maximum
adjustment value was adopted. At this point, some of the data will
be slightly out of the range of [−1, 1], but it has little effect on the
stability of the training, which we refer to as feature scaling.

Since only feature scaling is performed for label, it is not
repeated here. The processing flow for the feature is shown in
Figure 4, where each set of data of the feature contains the pre-
adjusted ideal/designed panel node coordinates data i

0
[ ] and the

post-adjusted panel node coordinates dataa
i[ ] (In this paper, the

designed paraboloid is used as the example). The processing flow
can be divided into two parts. The first part is on the left side of
Figure 4, which is used to determine the sorting order, the number
of groups, and the number of nodes in each group after grouping.
The reason for using i instead of j for processing here is that the
positions of the deformed panel nodes will be shifted, potentially
causing the sorted positions to be misaligned and affecting the
processing results. The second part is on the right side of Figure 4,
which serves to process the data set sequentially using the sorting
order and grouping results of the first part.
In Figure 4, sort_sb(A0, 0) denotes that column 0 of A0 is

sorted in order from smallest to largest and extended to other
columns. split(B) denotes that C is grouped, assuming that the
group with the most elements contains h elements, which will
be described in the next paragraph due to the complexity of the
grouping method. sort_bs(Cj, 1) denotes that the 1st column of
C is sorted in descending order and extended to the other
columns. sort_o(O, OX) denotes that the rows of O are sorted
by OX. split_o(P, OY) indicates that P is grouped according to
the number of elements in each group in OY. The purpose of
the grouping operation is to increase the dimension of the array
and produce the effect of increasing the x-coordinate
sequentially in that dimension. After grouping, if the number
of elements in the group is less than h, it is necessary to add
element 0 to both ends of the array, so that the number of
elements in each group is m. R. add(Q) denotes the addition of
the array Q to the end of the array R. transpose(R) denotes that
the order of the 1/2/3 axis is adjusted without affecting the
order in which the data are arranged, i.e., the four-dimensional
array with the original shape of t×w× h× 3 is transformed
into the shape of t× 3× w× h. It should be reminded that for
the convenience of writing the model code, 0 elements can be
added at both ends to make w equal to h. pseudo_norm(S)
denotes the feature scaling operation of S.
As a reminder, since feature scaling is also applied to the

labels. Therefore, the final neural network prediction is not the

Figure 3. Purpose of data preprocessing.
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true value, which is the inverse of the predicted value
multiplied by the multiplier that was shrunk when pseudo-
normalized.

3.2. Training Strategies

3.2.1. Model Parameter Initialization

Model initialization is the process of assigning initial values
to the parameters (weights and biases) of a neural network
before it is trained. Proper initialization helps prevent problems

such as vanishing or exploding gradients, speeds up conv-
ergence, and helps the neural network learn more efficiently.
In order to avoid any impact on the node weights of the

input, the initialization of the parameters of the emphasis layer
is carried out using constant initialization. This ensures that the
relative positions of the node coordinates of the input neural
network are unchanged and have not been misaligned. Due to
the use of the GELU activation function, the parameters of the
neural network other than the emphasis layer are initialized
with “kaiming normal” for numerical stability (He et al. 2015).

Figure 4. Data preprocessing process. A0, B and other matrices in the figure, the darker the color indicates a larger value.
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3.2.2. Loss Function

The coordinates of the panel nodes that have been
preprocessed by 3.1 are used as the convolutional neural
network inputs, and the mean absolute error (MAE) between
the corresponding actuator adjustment value and the neural
network outputs is used as the loss function, i.e., the L1 loss,
which is computed as shown in Equation (11):

=
+ + + + +

¢ = - ¢
l l l l

p
l a a a aL1Loss , ,

11

i p
i i i i i

1 2 ( ) ∣ ∣

( )
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Here ai is the adjustment value of actuator i, ai is the predicted
value of the neural network output of actuator i, and p is the
number of actuators.

However, subsequent experiments revealed that it is difficult
for a single model to achieve accurate prediction of the
adjustment value of each actuator, so in this paper, we designed
the emphasis layer described in Section 2 and changed the
output to a single actuator, i.e., p in the loss function
Equation (11) is 1.

The same model is used for training, and p actuators are
trained sequentially for a total of p times, and p sets of neural
network parameters can be obtained in the end. For prediction,
it is only necessary to replace the p sets of neural network
parameters obtained during the above training to realize the
prediction of the adjustment value of these actuators.

3.2.3. Computational Optimizer

Adaptive Moment Estimation (ADAM) (Kingma &
Ba 2014) and Stochastic Gradient Descent (SGD) are two
optimization algorithms commonly used for training neural
networks. Both algorithms aim at minimizing the loss function.
However, they differ in the way they update the model
parameters during training, and there is no superiority between
the two. It is usually necessary to empirically test the algorithm
for a specific problem and choose the one that works better. For
the model in this paper, learning rate and weight decay are the
main hyper-parameters that need to be tuned for testing, and the
rest of the parameters use the recommended values from the
literature.

3.2.4. Dynamic Learning Rate

When using a gradient descent algorithm to optimize the loss
function, as it gets closer to the local minimum of the loss, the
learning rate should become smaller to bring the model as close
as possible to this minimum point. The cosine annealing
learning rate (Loshchilov & Hutter 2016) is an effective
dynamic learning rate strategy, where the learning rate value
first decreases slowly as the epoch increases, then accelerates,
and finally decreases slowly again. This learning rate adjust-
ment strategy makes the learning rate transition smoothly

between high and low learning rates, avoids sudden jumps in
the learning rate, and makes the training process more stable.
At the same time, this learning rate adjustment strategy helps to
improve the convergence and make the model parameters
easier to approach the optimal solution.

4. Example

In this section, the classical 8-meter reflective surface
antenna will be used as an example to validate the active
surface antenna tuning method described in this paper, using
the neural network model constructed in Section 2 and
applying the data preprocessing method and training strategy
described in Section 3.

4.1. Dataset Generation

This data set is generated by modeling the proposed method
in literature (Ban et al. 2023), which is based on the active
adjustment of the antenna active main reflector finite element
model of the simplified actuator. This model consists of three
parts: the backup structure, the simplified actuator and the
panel, where the backstay and the simplified actuator are
composed of spatial beam units and the panel is composed of
triangular elastic shell units. The antenna panel profile is
adjusted by giving the actuator an adjustment value.
In this paper, we apply the 8 m antenna model in the

literature, which the actuator pointing will change with the
backstay, the adjustment direction will change according to the
real pointing after deformation, and the nodes of the panels can
also be displaced along different directions. As shown in
Figure 5, the model consists of 36 panels with about 99 nodes
each, and the panels are supported and adjusted by 48
actuators. These 48 actuators are numbered for ease of
description below. When generating the data set, the model is
given a vertically downward force to simulate the elevation
condition. When generating the data set, the model was given a
downward force to simulate the work conditions in the elevated
sky under the influence of gravity. Due to the lack of
comprehensiveness of the working conditions and influencing
factors, a randomized adjustment scheme was adopted in order
to increase the complexity of the data. That is, 48 actuators on
the model were randomly adjusted within the adjustment range
of [0, 10] mm to obtain the adjusted nodal displacements of the
antenna panel under gravity. Its actuator adjustment value and
its corresponding panel node coordinates are a set of data set.
A total of 20480 sets of data sets are generated cyclically

with the above method, and the data generated in present
section are preprocessed using the data preprocessing strategy
in Section 3.1 to transform the 20480 sets of 3564× 6 arrays of
source nodes into a pseudo-normalized ordered array of
20480× 3× 64× 64. The corresponding actuator adjustment
value of these 20480 groups of panel nodes are pseudo-
normalized and transformed into a 20 480× 48 array. For
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training, the data set is divided into a training set and a
validation set, with 18432 groups in the training set and 2048
groups in the validation set.

4.2. Training and Results

Build the convolutional neural network model in Section 2,
set the number of outputs to 1, i.e., train only one actuator per
training. Use the method in Section 3.2.1 to initialize the model
parameters, which was tested to work best when the emphasis
layer was initialized to 0.0001. Set the loss function to L1 loss
in Section 3.2.2. It is tested that for this 8 m antenna data set,
the ADAM algorithm mentioned in Section 3.2.3 converges
more stable and has higher accuracy, and it is also tested that
the hyper-parameter learning rate of 0.0001 and the weight
decay of 3× 10−6 are more appropriate values. The dynamic
learning rate method without using restart strategy in
Section 3.2.4 is adopted. The model training adopts the Mini-
Batch Gradient Descent method, and the batch size is set to
128, and the number of training epoch of the model is 150. It
has been measured that more epoch of training will give a tiny
improvement in accuracy, but it is not significant, and 150 is a
compromise between accuracy and efficiency.

Since the antenna model in Section 4.1 is a symmetric
structure, it is representative to select one actuator per ring for
performance testing. Therefore, in order to prove the effect of
emphasis layer on the improvement of accuracy, the actuators
8, 9, 10 and 11 are selected for training in this paper.

Comparing their training with and without the emphasis layer,
the loss changes during the training process are shown in
Figure 6 (since the actuator adjustment value are pseudo-
normalized, the loss has been transformed into the real error
here for the sake of easy observation and description of the
specific accuracy). The left column of the figure shows the
training process of the model without the emphasis layer and
the right column shows the training process of the model with
the emphasis layer. It can be seen that the model containing the
emphasis layer converges faster than the model without the
emphasis layer and has a high convergence accuracy, which
indicates that the emphasis layer of the model does help to
improve the overall performance and generalization ability of
the model.
Extracting the emphasis layer weights to validate the role of

the emphasis layer in the model, in order to make it more
representative, it is necessary to select four actuators located in
different rings, and all four actuators have different orienta-
tions. The actuators selected here as representative actuators are
numbered 9, 20, 35, and 46. As shown in Figure 7, the right
column is a visualization of the weight matrix of the emphasis
layer of the model when the actuator is trained. Since the size
of the weights is only related to the size of the absolute value,
which has nothing to do with the positive and negative values,
in order to make it easier to observe here, all the weights are
taken as their absolute values, and the left column is a dot
matrix of the right weights mapped on the nodes of the panel. It
can be seen that the coordinates with larger weights have the
same orientation as the antenna panel nodes in the simulation
model, and the weights of the nodes around the actuator are
significantly larger than the other positions. It can thus be
demonstrated that sorting and reorganizing the data using the
data preprocessing method in Section 3.1 results in the node
coordinates being located at the real locations overall, and it
can also be demonstrated that the emphasis layer is able to find
the location of the corresponding panel node through learning,
and is interested in increasing the weight on the location of that
node in line with the expectation of emphasizing the directly
connected panel nodes.
All the actuators are trained sequentially and the trained

model parameters of each actuator are saved for use in the
following tests. The training results are shown in Tables 1–2,
which compares the convergence accuracies of all the actuators
with and without emphasis layers, and the table shows that the
training accuracies differ depending on the ring where the
actuators is located. As shown in Figure 8, the model with
emphasis layer for the first ring actuators have a mean error
reduction of 0.00715 mm compared the model without
emphasis layer, which is a relative error reduction of 79.0%.
The second ring actuators mean error reduced by 0.00514 mm,
relative error reduced by 62.8%. The third ring actuators mean
error reduced by 0.00436 mm, relative error reduced by 59.6%.
The fourth ring actuators mean error reduced by 0.00389 mm

Figure 5. 8 m antenna model based on the simplified actuators.
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Figure 6. Error changes of the training process of the actuators 8, 9, 10 and 11 when the model contains an emphasis layer or not. The left side shows the change in
error of the model without the emphasis layer and the right side shows the change in error with the emphasis layer.
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Figure 7. Actuators 9, 20, 35, and 46 emphasis layer weight heat map (right) and weight mapping to antenna panel (left)
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and relative error reduced by 61.4%. This proves that the law
that models containing emphasis layers have higher conv-
ergence accuracy than models without emphasis layers holds
true for all actuators. It can be seen that the neural network
containing the emphasis layer has a greater improvement in the
prediction accuracy of the reflector antenna actuator adjustment
value, which is extremely important for the adjustment value of
the active surface of the reflector antenna.

The final panel node accuracy test is performed. Using the
method of Section 4.1, 128 sets of data were generated as a test
set for final accuracy assessment. The test starts with building
the convolutional neural network model in Section 2, after
which the corresponding model parameters of different
actuators trained above are loaded to predict different actuator
adjustment value. In this paper, we use a graphics card model
TUF-RTX4080-O16G to predict 128 sets of data at the same
time, with a predicting time of 1.8 s, which finally results in the
mean error of the actuators adjustment values in this test set of

0.00252 mm. The actuator positions predicted from the neural
network were input into the model of Section 4.1 to derive the
corresponding panel node coordinates, which were then used to
calculate the root mean square (rms) with the panel node
coordinates of this test set, resulting in a final surface error of
0.00523 mm.

5. Conclusions

In this paper, we propose a convolutional neural network-
based antenna active surface adjustment method for actuator
adjustment value calculation, as well as a data preprocessing
method adapted to the input-output form of this convolutional
neural network model, and we summarize the strategy used to
train the model. The convolutional neural network model
adopts a multi-scale convolutional approach, and uses jump
connections to connect the feature maps output from the large
convolutional kernel at the bottom layer of the model to the

Table 1
Comparison of the Error of First Ring/Second Ring Actuators with and Without Emphasis Layer

Actuator Number
on the First Ring

Validation Set Error with-
out Emphasis Layer (mm)

Validation Set Error with
Emphasis Layer (mm)

Actuator Number on
the Second Ring

Validation Set Error with-
out Emphasis Layer (mm)

Validation Set Error with
Emphasis Layer (mm)

0 0.00891 0.00161 1 0.00887 0.00294
4 0.00889 0.00204 5 0.00758 0.00277
8 0.00999 0.00199 9 0.00848 0.00331
12 0.00896 0.00171 13 0.00896 0.00304
16 0.00962 0.00206 17 0.00805 0.00282
20 0.00864 0.00169 21 0.00842 0.00329
24 0.00819 0.00176 25 0.00922 0.00279
28 0.00904 0.00190 29 0.00809 0.00330
32 0.00834 0.00222 33 0.00814 0.00267
36 0.00903 0.00206 37 0.00806 0.00336
40 0.00977 0.00195 41 0.00732 0.00331
44 0.00927 0.00185 45 0.00709 0.00302
Mean 0.00905 0.00190 Mean 0.00819 0.00305

Table 2
Comparison of Error of Third/Fourth Ring Actuators with and Without Emphasis Layer

Actuator Number
on the Third Ring

Validation Set Error with-
out Emphasis Layer (mm)

Validation Set Error with
Emphasis Layer (mm)

Actuator Number on
the Fourth Ring

Validation Set Error with-
out Emphasis Layer (mm)

Validation Set Error with
Emphasis Layer (mm)

2 0.00768 0.00296 3 0.00610 0.00237
6 0.00754 0.00305 7 0.00570 0.00240
10 0.00722 0.00321 11 0.00618 0.00263
14 0.00780 0.00295 15 0.00596 0.00231
18 0.00731 0.00236 19 0.00747 0.00236
22 0.00725 0.00316 23 0.00642 0.00259
26 0.00682 0.00263 27 0.00637 0.00181
30 0.00699 0.00313 31 0.00671 0.00234
34 0.00754 0.00287 35 0.00666 0.00298
38 0.00818 0.00299 39 0.00633 0.00231
42 0.00713 0.00312 43 0.00627 0.00247
46 0.00641 0.00313 47 0.00591 0.00287
Mean 0.00732 0.00296 Mean 0.00634 0.00245
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output at the top layer of the model. An autonomously
learnable emphasis layer is designed to realize that the model
can autonomously learn which are the relatively important
panel nodes when training different actuators, which makes the
model accuracy significantly improved. Meanwhile, due to the
retrainable nature of the neural network model, the model
parameters can be fine-tuned by using the usage data as a
training set during subsequent use to adapt to the errors caused
by the aging of the components and other conditions.
Compared with the traditional method of calculating the
actuator adjustment value for active surface adjustment, the
model and method have wide application prospects and
sufficient development potential, and are also smarter, which
can provide a reference for other large aperture high-precision
antenna active surface adjustment schemes under other work-
ing conditions and complex environmental conditions.
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