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Abstract

Astronomical knowledge entities, such as celestial object identifiers, are crucial for literature retrieval and
knowledge graph construction, and other research and applications in the field of astronomy. Traditional methods
of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.
Consequently, there is a pressing need for improved methods to efficiently extract them. This study explores the
potential of pre-trained Large Language Models (LLMs) to perform astronomical knowledge entity extraction
(KEE) task from astrophysical journal articles using prompts. We propose a prompting strategy called Prompt-
KEE, which includes five prompt elements, and design eight combination prompts based on them. We select four
representative LLMs (Llama-2-70B, GPT-3.5, GPT-4, and Claude 2) and attempt to extract the most typical
astronomical knowledge entities, celestial object identifiers and telescope names, from astronomical journal articles
using these eight combination prompts. To accommodate their token limitations, we construct two data sets: the
full texts and paragraph collections of 30 articles. Leveraging the eight prompts, we test on full texts with GPT-4
and Claude 2, on paragraph collections with all LLMs. The experimental results demonstrate that pre-trained LLMs
show significant potential in performing KEE tasks, but their performance varies on the two data sets. Furthermore,
we analyze some important factors that influence the performance of LLMs in entity extraction and provide
insights for future KEE tasks in astrophysical articles using LLMs. Finally, compared to other methods of KEE,
LLMs exhibit strong competitiveness in multiple aspects.

Key words: astronomical databases: miscellaneous – virtual observatory tools – methods: data analysis

1. Introduction

The advent of multi-band and multi-messenger observations
marks a new epoch in the field of astronomy. This further
attracted more and more scholars to devote themselves to
astronomical research, resulting in an increasing cumulative
amount of astronomical literature. Renowned repositories such
as the Astrophysics Data System (ADS)8 and ArXiv9 furnish a
plethora of astrophysics journal articles, which are replete with
invaluable specialized knowledge, including but not limited to,
celestial object identifiers, and telescope names (Grezes et al.
2022). These knowledge entities are crucial to the research and
application of literature retrieval (Marrero et al. 2013; Yadav &
Bethard 2019), text mining, information association and
recommendation, knowledge graph construction (Al-Moslmi

et al. 2020; Hogan et al. 2021), publication management, etc.
Effectively extracting these knowledge entities from the
literature has become one of the keys to improve the efficiency
and depth of astronomy research.
Knowledge Entity Extraction (KEE) , a subtask of Named Entity

Recognition (NER), emphasizes the extraction of professional
knowledge entities from texts and outputs them in a structured
format, negating the need for sequential entity annotation (Wang
et al. 2023). Currently, KEE and NER are extensively studied
across various domains. For instance, in the field of biology, this
involves extracting information about genes, proteins, and
biological processes from texts. In the medical field, it encompasses
the identification of symptoms, diagnostic opinions, and drug
information. In the field of astronomy, as astronomers’ demand for
entity information in texts increasingly grows, researchers have also
embarked on some exploratory studies.
Early efforts in the field of astronomy have largely depended

on rule-based methods (Grishman & Sundheim 1996;
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Cardie 1997; Cucerzan & Yarowsky 1999) and dictionaries
(Riloff et al. 1999; Cohen & Sarawagi 2004; Torisawa et al.
2007) for entity extraction. The Detection in Journals of
Identifiers and Names (DJIN) system (Lesteven et al. 2010) is
one example that uses the Dictionary of Nomenclature of
Celestial Objects (Lortet et al. 1994) to design more than
50,000 regular expressions for identifying celestial object
identifiers and names in articles. This system’s most successful
implementation is evidenced at the Strasbourg Astronomical
Data Centre (CDS), where it is seamlessly integrated with
literature and catalog queries, providing a service within Set of
Identifications, Measurements, and Bibliography for Astro-
nomical Data (SIMBAD)10. This integration facilitates users in
navigating through the celestial object identifiers and names
mentioned in literature and accessing their detailed data during
literature searches; conversely, it enables literature retrieval
through celestial object identifiers and names. SIMBAD not
only optimizes the process of knowledge acquisition for
astronomers but also underscores the pivotal role of KEE in
bridging various information resources within the field of
astronomy.

With the development of machine learning ( ; Jordan &
Mitchell 2015; Mahesh 2020), statistics-based NER, such as
maximum entropy models (Bender et al. 2003; Curran &
Clark 2003) and hidden Markov models (Shen et al. 2003;
Morwal et al. 2012), have emerged as the prevailing strategy.
Murphy et al. (2006) pioneered the development of a
specialized entity extraction system tailored for astronomical
literature. Specifically, they utilized the maximum entropy
model to train an application which is capable of identifying
key entities such as source types, source names, and equipment
names. By learning from extensive corpora, this approach can
glean contextual and distributional information about entities,
thereby enhancing recognition performance.

Employing Google’s Bidirectional Encoder Representations
from Transformers (BERT; Devlin et al. 2018) deep neural
network architecture, Grezes et al. (2021) have developed a
domain-specific model for astronomy, termed astroBERT,
through the training on a corpus comprising 395,499
astronomical research papers. Subsequently, this model was
used for the development of the NER tool in ADS, which
includes identifying specific organizations, projects, terms, etc.,
in the literature. Moreover, in the evaluation results, astroBERT
performed better than the standard BERT model in the KEE
tasks on ADS data. Following the success of this work, the
Detecting Entities in Astrophysics Literature (DEAL) shared
task was proposed at the first Workshop on Information
Extraction from Scientific Publications (WIESP)11 at AACL-
IJCNLP 2022 (Grezes et al. 2022). The DEAL challenge
mandates participants to construct systems capable of

automatically extracting astronomically named entities. Some
researchers have attempted to use pre-trained language models
such as mT5 (Ghosh et al. 2022) and BERT (Alkan et al. 2022)
to extract knowledge entities from text, achieving considerable
results.
Recently, Large Language Models (LLMs) with hundreds of

billions of parameters, such as GPT-3.5, have demonstrated
exceptional zero-shot and few-shot learning capabilities across
a multitude of tasks (Li et al. 2023a; Li & Zhang 2023; Wang
et al. 2023). Owing to their extensive training samples, these
models can rapidly comprehend the rich semantic knowledge
embedded in text without the need for large annotated data.
Their robust transfer learning capabilities also enable them to
swiftly adapt to new domains (Ciucă & Ting 2023; Ciucă et al.
2023; Nguyen et al. 2023). Therefore, LLMs are also actively
being applied to KEE tasks by researchers. Sotnikov &
Chaikova (2023) harnessed LLMs such as InstructGPT-3
(Ouyang et al. 2022) and Flan-T5-XXL (Chung et al. 2022)
for the extraction of astronomical knowledge entities, including
event IDs and object names, from Astronomical Telegrams and
GCN Circulars. They explored various methods to enhance the
capabilities of LLMs, including prompt engineering and model
fine-tuning. Their research highlights the potential of LLMs in
NER tasks within the field of astronomy.
Owing to the increasing specialization and diversity of

astronomical knowledge entities within articles, annotating and
training copious samples for each type of entity to develop a
functional extraction model is evidently inefficient and unsus-
tainable. Therefore, this paper attempts to explore a more
effective method for extracting astronomical knowledge entities.
In this paper, we focus on two representative knowledge entities
within the field of astronomy: celestial object identifiers and
telescope names. We select four mainstream LLMs (Llama-2-
70B, GPT-3.5, GPT-4 and Claude 2) and carefully design a new
strategy called Prompt-KEE to explore the potential of pre-
trained LLMs for KEE in astrophysical articles.
The rest of this paper is structured as follows. In Section 2,

we describe the Prompt-KEE strategy and the four LLMs, as
well as the set of prompts that we design based on this strategy.
In both Section 3 and Section 4, we detail the data set, the
design of the combination prompts, the specific experimental
procedures, and experimental results and analysis. In Section 5,
we introduce some of the main differences between LLMs and
other methods. In Section 6, we briefly discuss our work. In
Section 7, we conclude this paper.

2. Method

Astrophysical journal articles contain a wide variety of
astronomical knowledge entities. Table 1 shows two types of
knowledge entities mentioned in sentences from different
articles: celestial object identifiers and telescope names.
Extracting them from articles is challenging. Inspired by

10 https://simbad.u-strasbg.fr/simbad/
11 https://ui.adsabs.harvard.edu/WIESP/2022/SharedTasks
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NATURAL-INSTRUCTIONS (Mishra et al. 2021), we
propose a prompting strategy, Prompt-KEE, to explore the
potential of using general LLMs to extract knowledge entities
directly from astrophysical journal articles in a prompt-based
method. In this section, we describe the five prompt
components of Prompt-KEE, the specific prompts designed
based on the Prompt-KEE framework, and four LLMs (Llama-
2-70B, GPT-3.5, GPT-4 and Claude 2) used.

2.1. Prompt-KEE

Prompt-KEE is structured as a two-stage conversation process.
In the first stage, the prompt comprises four components: Task
Descriptions, Entity Definitions, Task Emphasis, and Task
Examples. During the second stage, a partial utilization of Task
Emphasis is employed specifically for the self-verification of
LLMs. We follow the Prompt-KEE strategy to design a set of
specific prompts, as shown in Figure 1.

2.1.1. Task Descriptions

We carry out a general design of the Task Description to
satisfy the subsequent comparative experiments. First, to fully
exploit the astronomical knowledge captured by LLMs, we ask
them to take on the role of an experienced astronomer and
inform them about the working ability they need to master
(Kong et al. 2023). Second, we explicitly specify that the task
is to extract astronomical knowledge entities and output the
results in a JSON format. Third, we provide three basic
requirements. Considering that both the abbreviated and full
forms of an astronomical knowledge entity might concurrently
appear in an article, and professional scholars exhibit a

preference for using abbreviations in academic writing, there-
fore, the first prompt asks LLMs to prioritize the extraction of
entities in their abbreviated form. Most LLMs struggle with
recognizing and processing structured tabular data (Bisercic
et al. 2023). Thus, our study skips any tables and figures, and
gives LLMs the other prompt, i.e., ignoring any information in
tables or figures in the article.

2.1.2. Entity Definitions

LLMs often face challenges in distinguishing highly specia-
lized and detailed terminology, as many similar terms can
disperse LLMs’ attention and thereby affect final performance
(Zhao et al. 2023). To address this issue, we provide definitions
for the knowledge entities that we expect to be extracted
(celestial object identifiers and telescope names) in an attempt to
use these detailed definitions to guide LLMs in the distinction of
professional terminology. Specifically, we reference the defini-
tions of celestial object12 and telescope13 from Wikipedia. We
also define celestial object identifier and telescope name. Note
that celestial objects may have different identifier formats (e.g.,
Vega, LAMOST J004936.62+375022.8, AS Ser) due to
different naming conventions and standards, so we use celestial
object identifier as a general term for the convenience of LLMs
understanding. Additionally, we do not make a strict distinction
between telescope names, other observational facility names, or
sky survey names (e.g., LAMOST, Gaia, and SDSS). In fact,
astronomers usually do not emphasize the differences among
them during scientific research.

Table 1
Examples of Sentences that Contain Celestial Object Identifiers and Telescope Names

Entity Category Sentence Reference

Object Identifier We performed a detailed chemical analysis for a few objects from this list and showed that the estimated abundances
of the CEMP-r/s star LAMOST J151003.74+305407.3 (hereafter J151) could be well explained by the model
yields ([X/Fe]) of i-process nucleosynthesis of heavy elements, and LAMOST J091608.81+230734.6 (hereafter
J091) K

Purandardas et al. (2022)

Only a handful of SySts exhibit noticeable signs of such variations in their SEDs (e.g., 2MASS J17391715-
3546593, 356.04+03.20, AS 245, H 2-34, PN H 2-5, RT Cru, SMP LMC 88, UV Aur, BI Cru, Hen 2-127, AS
221, Hen 2-139, K 3-9, RR Tel, V347 Nor, V835 Cen, 354.98-02.87).

Akras et al. (2019)

However, no apparent periods have been detected in the millisecond to second range for either FRB 20121102A or
FRB 20201124A, two of the most well-studied repeaters K

Niu et al. (2022)

Telescope Name Kwhich was identified from the LAMOST spectrum. The photometric data were collected with the Tsinghua-
NAOC 0.8 m telescope (TNT), Transiting Exoplanet Survey Satellite (TESS), Zwicky Transient Facility (ZTF),
and ASAS-SN K

Li et al. (2023b)

Gaia measurements of G29-38 will build on existing observations with Keck, the Hubble Space Telescope, Her-
schel, and ALMA K

Sanderson et al. (2022)

The first observation for this pulsar was from the Arecibo telescope at 327 and 430 MHzK, Although FAST is the
largest and most sensitive radio telescope in the world K

Shang et al. (2022)

12 https://en.wikipedia.org/wiki/Astronomical_object
13 https://en.wikipedia.org/wiki/Telescope
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Figure 1. A set of specific prompts that follow the Prompt-KEE strategy. The sentences from the three provided examples in the Task Examples are cited from Han
et al. (2018), Zhang et al. (2020b), and Zhang et al. (2020a).
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2.1.3. Task Emphasis

Task Emphasis provides domain knowledge to LLMs for the
target entities, and uses prompts to activate the self-improve-
ment capabilities of LLMs. We indicate that telescopes may be
named by their aperture length and address information, and
celestial objects may be encoded as “several letters or numbers
+ constellation abbreviation” or “abbreviation of telescope
name + coordinate.” We employ self-check prompts to rectify
potential errors in the output, thereby encouraging a more
profound contextual understanding (Gero et al. 2023). It also
contains some other prompts that should not be ignored, which
come from our previous practical experience.

2.1.4. Task Examples

Task Examples are designed to enable LLMs to learn the
mapping from the inputs to outputs for the celestial objects and
telescope names KEE task (Min et al. 2022). Task Examples
are meticulously crafted to facilitate the learning process of
LLMs in mapping inputs to outputs for celestial object
identifiers and telescope names within the KEE task.
Specifically, the first example focuses on the form of telescope
names, like “address + aperture” format often found in articles.
The second one is designed for celestial object identifiers
named in “abbreviation of telescope + coordinate” pattern. To
reduce the likelihood of LLMs outputting non-existent entities,
the third example uses an input without telescope names and an
output with no telescope name as guidance.

2.1.5. Second Conversation

We assume that the extracted entities in the first stage may be
incomplete and inaccurate. To make up for the errors and
omissions of the extraction in the first stage, we provide
another stage conversation prompts to ask LLMs to validate the
results of the previous conversation and re-extract knowledge
entities (Ji 2023).

2.2. LLMs Used

Recent advancements in computational capabilities, com-
bined with the accumulation of extensive textual data sets, have
propelled the development of powerful LLMs. Notably, Llama-
2-70B, GPT-3.5, GPT-4 and Claude 2 represent cutting-edge
systems that have garnered significant attention.

Llama-2-70B,14 a prominent member of the Llama 2 series
(Touvron et al. 2023), is characterized by its expansive 70
billion parameters and a 4096-token (100 tokens= 75 words)
context window, making it adept at understanding and
processing complex language structures. Its training on a
massive 2 trillion token data set significantly enhances its
context comprehension, a critical factor in KEE tasks. The

model’s proficiency in external benchmarks, especially in areas
requiring deep reasoning and knowledge understanding,
positions it as an ideal candidate for testing KEE.
GPT-3.5,15 an advanced natural language processing model

from OpenAI built upon the GPT architecture, is a high-
performance iteration that inherits the exceptional language
generation and comprehension capabilities of GPT-316 while
optimizing for faster response and lower cost through
parameter efficiency. Through massive pre-training and self-
supervised learning, this model has acquired mastery over
linguistic patterns and structures, conferring immense applica-
tion potential across diverse natural language processing tasks
including text generation, question answering and KEE.
GPT-4, including its standard 8K and extended 32K token

models, has been significantly advanced with the introduction
of GPT-4 Turbo, capable of handling a 128K token context.17,
18 This enhancement makes GPT-4 particularly adept at long-
text KEE tasks. The extended token capacity allows for the
processing of information equivalent to over 300 pages in a
single prompt, thereby enabling more comprehensive analysis
and understanding of extensive texts, vital for accurate and in-
depth entity extraction from large documents or data sets.
Claude 2,19 developed by Anthropic, is an LLM with a

substantial token limit of 100,000 tokens. This extensive token
capacity enables Claude 2 to handle and analyze large volumes
of text in a single prompt, making it equally suitable for long-
text KEE tasks. The ability to process such a high number of
tokens allows Claude 2 to maintain context over lengthy
documents, ensuring more accurate and comprehensive
extraction of knowledge entities. This capability is crucial for
analyzing and understanding extensive data sets or documents,
where context and detailed comprehension are crucial.

3. Experiments

In this section, we first introduce the experimental data sets.
Then, we describe the specific experimental settings. Finally,
we present the evaluation metrics and experimental results.

3.1. Dataset

In order to evaluate the capability of LLMs in performing
KEE tasks within astrophysics articles, we have established a
data set based on a set of specific selection criteria. Our focus
was on selecting articles rich in distinct knowledge entities,
such as celestial object identifiers and telescope names, to
provide a diverse range of entity samples for the experiment.

14 https://ai.meta.com/llama/

15 https://openai.com/chatgpt
16 https://openai.com/blog/gpt-3-apps
17 https://help.openai.com/en/articles/7127966-what-is-the-difference-
between-the-gpt-4-models
18 https://openai.com/blog/new-models-and-developer-products-announced-
at-devday
19 https://claude.ai/chats
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We ensured that the research subjects of the articles, covering
galaxies, stars, planets, and more, as well as the observational
bands like optical, radio, and X-ray, were as broad as possible.
This breadth is crucial to fully reflect the diversity and
complexity of astrophysical research. In addition, the selected
articles needed to be logically structured and content-rich,
which is essential for models to comprehend the text context
and effectively identify and extract knowledge entities. By
adhering to these criteria, our goal was to construct a data set
that truly showcases the potential of LLMs in conducting KEE
tasks in astrophysical articles.

Therefore, we carefully selected 30 astrophysics journal
articles from authoritative publications, including the Astro-
physical Journal (ApJ),20 Astrophysical Journal Supplement
Series,21 Astronomy & Astrophysics (A&A),22 Monthly
Notices of the Royal Astronomical Society (MNRAS),23 and
Research in Astronomy and Astrophysics (RAA).24

Despite GPT-4 and Claude 2ʼs unparalleled long-context
capabilities allowing them to effortlessly parse texts of the level
of astrophysical journal articles, Llama-2-70B and GPT-3.5
currently face strict token limitations. Direct segmentation of
lengthy texts based on the maximum token support of models can
severely disrupt contextual semantic information, limiting the
understanding and reasoning abilities of LLMs. Considering that
the maximum token supported by Llama-2-70B and GPT-3.5 is
sufficient to cover each paragraph in the articles, we segmented
all articles in the order of their paragraphs to ensure maximum
preservation of contextual semantic integrity. After processing,
these articles were divided into segments ranging from 20 to over
100 paragraphs, forming 30 paragraph collections.

In total, we collected two data sets: the full texts and
paragraph collections of the 30 articles. Following the principle
of prioritizing abbreviations, we annotated the celestial object
identifiers and telescope names that appeared in them. The DOIs
of the articles we selected and the specific annotation data are
available in the Paperdata Repository of National Astronomical
Data Center at https://nadc.china-vo.org/res/r101358/.

3.2. Experiment Setup

We designed the comparative experiment from the following
aspects. The Figure 2 illustrates our experimental pipeline. The
terms Descriptions, Definitions, Emphasis, Examples, and
Second Conversation in the figure represent Task Descriptions,
Entity Definitions, Task Emphasis, Task Examples, and Second
Conversation respectively in the prompt.

First, since we crafted Task Description in a general way, we
combine Task Description with other prompt elements to

explore the influence of each prompt element on KEE task.
These combinations include: (1) Des_Only: Task Descriptions
only. (2) Des_Def: Task Descriptions combined with Entity
Definitions. (3) Des_Emp: Task Descriptions combined with
Task Emphasis. (4) Des_Exa: Task Descriptions combined
with Task Examples. (5) Des_Def_Emp: Task Descriptions,
Entity Definitions, and Task Emphasis combined. (6) Des_De-
f_Emp_Exa: Task Descriptions, Entity Definitions, Task
Emphasis, and Task Examples combined. (7) Des_Def_Emp_-
Con: Task Descriptions, Entity Definitions, Task Emphasis,
and Second Conversation combined. (8) All: Task Descrip-
tions, Entity Definitions, Task Emphasis, Task Examples, and
Second Conversation combined. Based on our experience, we
observed that the definitions of entities and the emphasis on the
task usually have a positive and stable impact on the outputs of
LLMs. However, the output performance of some current
LLMs may exhibit uncertainty when examples are included
(Zhao et al. 2021). Therefore, we incorporated Task Examples
in combinations (4), (6), and (8) to verify this possibility.
Furthermore, Second Conversation is used to re-emphasize the
task focus, leading us to accordingly construct combinations
(7) and (8).
Second, we fed the full texts of 30 articles, each paired with

the eight different combination prompts, into GPT-4 and
Claude 2 for KEE. For the 30 paragraph collections of articles,
we similarly combined them with these prompts and inputted
them into Llama-2-70B, GPT-3.5, GPT-4, and Claude 2. It is
important to note that for Llama-2-70B and GPT-3.5, the
knowledge entities extracted from the paragraph collections
underwent a specific post-processing procedure, which
involved merging the results and then removing duplicates.
Finally, all experimental results will be compared with the

corresponding annotated knowledge entities of each article.

3.3. Evaluation Metrics

In the realm of KEE task, the evaluation metrics of precision,
recall, and F1-score are pivotal in ascertaining the efficacy of
models in accurately discerning and extracting pertinent entities
from textual data.
Precision: This metric quantifies the accuracy of the model

in its entity extraction endeavors. Within the task of KEE,
precision is defined as the proportion of accurately identified
entities (true positive, TP) relative to the aggregate number of
entities (TP + false positive (FP)) extracted by the model.
Elevated precision indicates a substantial ratio of correct entity
identifications, signifying a reduction in FPs, i.e., erroneous
extraction of non-entities or incorrect entities. The formula is

Precision
TP

TP FP
. 1( )=

+

Recall: It assesses the model’s ability to extract a
comprehensive set of relevant entities. It measures the fraction

20 https://iopscience.iop.org/journal/0004-637X
21 https://iopscience.iop.org/journal/0067-0049
22 https://www.aanda.org/
23 https://academic.oup.com/mnras/
24 https://www.raa-journal.org/
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Figure 2. The Experimental pipeline.
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of correctly extracted entities (TP) out of the total number of
correct entities (TP+FN) that are inherently present and should
be extracted from the textual corpus. A model exhibiting high
recall is indicative of its proficiency in extracting the majority,
if not the entirety, of pertinent entities, thereby minimizing
instances of missed identifications. The formula is

Recall
TP

TP FN
. 2( )=

+

F1-score: This metric, representing the harmonic mean of
precision and recall, functions as an integrative measure that
encapsulates both accuracy and completeness in the KEE task.
It is particularly salient in balancing the model’s performance
in avoiding entity omissions (high recall) and avoiding
inaccurate extractions (high precision). The ideal scenario
encompasses a model demonstrating concurrently high preci-
sion and recall, although a trade-off between these metrics is
often observed in practical applications. The formula is

F1 score 2
Precision Recall

Precision Recall
. 3· · ( )- =

+

4. Results and Analysis

In this section, we comprehensively evaluate the effective-
ness of the Prompt-KEE strategy and the extraction capabilities
of LLMs. Our analysis is bifurcated into two distinct parts on
the full texts and paragraph collections.

4.1. For Full Texts

As shown in Table 2, the results of GPT-4 and Claude 2 in
extracting two types of knowledge entities (celestial object

identifier and telescope name) from the full texts of the 30
articles are presented under eight different combination
prompts. And in Figure 3, we compare precision, recall, and
F1-score from top to bottom respectively. In a comparative
analysis of these results, several key insights emerge.
GPT-4 consistently outperforms Claude 2 across all metrics.

This superiority is particularly evident in the recall and F1-scores,
indicating GPT-4ʼs great capability in accurately identifying a
wider range of relevant entities. Claude 2, while competent,
shows lower performance, especially in terms of recall.
The diversity of prompts significantly influences the

performance of both models. Task Descriptions integrating
other elements, especially Task Emphasis, lead to better results
compared to simpler ones. GPT-4 shows a pronounced ability
to leverage diverse prompts for more accurate entity extraction,
with the All prompt (encompassing a combination of all
elements) yielding the highest F1-scores. Claude 2 also benefits
from more elaborate prompts, but the improvement is less
dramatic than with GPT-4. In addition, the overall improve-
ment of the recall based on combination prompts is remarkably
greater than that of the precision.
Moreover, a comparison between the extraction of celestial

object identifiers and telescope names reveals GPT-4ʼs relatively
balanced performance for both entities, while Claude 2 exhibits
more variance. GPT-4 slightly favors the extraction of telescope
names, whereas Claude 2 shows a notable preference for
telescope names, particularly in recall and F1-score.

4.2. For Paragraph Collections

Table 3 provides the results of four models—Llama-2-70B,
GPT-3.5, GPT-4, and Claude 2—in extracting celestial object

Table 2
The Results of GPT-4 and Claude 2 in Extracting Celestial Object Identifier and Telescope Name Knowledge Entities from the Full Text of 30 Articles Using Each of

the Eight Combination Prompts Individually

Combination Prompt Celestial Object Identifier Telescope Name

Precision Recall F1-score Precision Recall F1-score

GPT-4 Des_Only 0.7913 0.4081 0.5385 0.8112 0.5179 0.6322
Des_Def 0.7813 0.4484 0.5698 0.8145 0.5449 0.6530
Des_Emp 0.8118 0.6480 0.7207 0.8540 0.7054 0.7726
Des_Exa 0.8309 0.5179 0.6381 0.8125 0.5223 0.6359
Des_Def_Emp 0.8504 0.6502 0.7369 0.8549 0.7366 0.7914
Des_Def_Emp_Exa 0.8420 0.6569 0.7380 0.8684 0.7411 0.7997
Des_Def_Emp_Con 0.8713 0.6682 0.7563 0.8763 0.7589 0.8134
All 0.8739 0.6839 0.7673 0.8769 0.7634 0.8162

Claude 2 Des_Only 0.7456 0.1906 0.3036 0.6951 0.2545 0.3726
Des_Def 0.6912 0.2108 0.3231 0.7142 0.3571 0.4761
Des_Emp 0.7083 0.4193 0.5267 0.7952 0.5893 0.6769
Des_Exa 0.6987 0.3587 0.4703 0.7059 0.3750 0.4898
Des_Def_Emp 0.7410 0.3722 0.4955 0.6927 0.6741 0.6833
Des_Def_Emp_Exa 0.7892 0.3946 0.5261 0.6748 0.7411 0.7064
Des_Def_Emp_Con 0.7500 0.4507 0.5630 0.7255 0.6964 0.7107
All 0.7955 0.4798 0.5986 0.7652 0.7277 0.7459

8

Research in Astronomy and Astrophysics, 24:065012 (16pp), 2024 June Shao et al.



identifiers and telescope names from the paragraph collections
of the articles. And in Figure 4, we compare three metrics.

Llama-2-70B, while showing a respectable recall, particu-
larly in identifying telescope names, falls behind by a wide
margin in precision, leading to lower F1-scores. This suggests
Llama-2-70B’s tendency to correctly identify a large number of
relevant knowledge entities but at the cost of including more
FPs. The pattern is consistent across all prompts, indicating a
fundamental characteristic of the model’s extraction strategy.
Furthermore, the performance of Task Examples in Llama-2-
70B validates the possibility that the example introduces
uncertainty. This phenomenon arises from the fact that prompts
with examples may bias the model’s knowledge assessment,
making it tend to prefer knowledge entities contained in the
examples when extracting, while reducing the attention to
information not present in the examples.

GPT-3.5 demonstrates a marked improvement over Llama-2-
70B, with notably higher precision and F1-scores. Its
performance peaks with the All prompt, suggesting an ability
to effectively utilize prompt information for entity extraction.
This trend implies that GPT-3.5 balances accuracy and
comprehensiveness better than Llama-2-70B.
Claude 2, while slightly trailing behind GPT-4, shows

impressive results. They outperform both Llama-2-70B and
GPT-3.5, exhibiting high scores in all metrics for both entity
types. Their highest F1-scores are observed with the All
prompt, indicating exceptional proficiency in handling complex
prompts. Moreover, the results suggest an advanced under-
standing of the text and a more nuanced extraction capability,
making them particularly suitable for tasks requiring high
precision and recall.
By analyzing the F1-scores across the above two tables, it is

evident that the Prompt-KEE strategy significantly activates the
ability of the four LLMs to identify celestial object identifiers
and telescope names. In particular, the inclusion of Task
Emphasis greatly improves the extraction performance.
We also note that four LLMs are much better at recognizing

telescope names than they are at identifying celestial object
identifiers. This disparity can be attributed to the fact that
telescope names often appear alongside distinctive vocabulary,
such as “telescope,” “survey,” etc., which aids in the under-
standing and judgment of LLMs. Additionally, the number of
telescope names is still within a manageable range, possibly
already encompassed within the prior knowledge of LLMs. In
contrast, celestial object identifiers are diverse in format and
vast in quantity, posing a great challenge for LLMs.
Figure 5 compares the three evaluation metrics for extracting

object identifiers and telescope names in the full texts and
paragraph collections between GPT-4 and Claude 2. We
observe distinct disparities in their performance across the texts
of two different lengths. Specifically, the former consistently
maintains high precision while showing noticeable improve-
ment in recall, whereas the latter demonstrates consistently
high recall and precision. We attribute these differences
primarily to the following factors:
Contextual Information: The full texts of the 30 journal

articles are imbued with a wealth of contextual information,
which plays a pivotal role in enabling models like GPT-4 and
Claude 2 to accurately comprehend the semantic nuances
associated with celestial object identifiers and telescope names,
thereby facilitating high precision in entity extraction. While
paragraphs inherently provide a narrower context for knowl-
edge entities, the sheer volume and diversity of training data
underpinning GPT-4 and Claude 2 equip these models with the
capability to maintain notable precision.
Entity Distribution: Knowledge entities within full texts

typically exhibit a sparser distribution pattern, whereas entities

Figure 3. The comparison of precision, recall, and F1-score for extracting
celestial object identifiers (COI) and telescope names (TN) in the full texts
between GPT-4 and Claude 2.
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in paragraphs tend to be more concentrated. This distribution
variance has some influence on the model’s recognition
capabilities. The sparse knowledge entities embedded within
the full texts elevate the likelihood of models overlooking
certain entities, consequently diminishing LLMs’ recall.
Conversely, paragraphs present a denser knowledge entity
environment for the models. This attribute allows them to
extract more potential knowledge entities, which greatly
improves recall rates.

These distinct attributes of full texts and paragraphs greatly
affect how the models allocate their attention and process
information, leading to varied performances in extracting
knowledge entities from the texts of two different lengths
within the astrophysical journal articles.

5. Comparison with other Methods

We further compare the LLMs with other extraction
methods. These methods are rule-based, machine learning-
based, and small-scale pre-trained language model-based
methods mentioned in Section 1.

5.1. Comparative Methods

Rule-based Methods: The DJIN system has constructed a
robust set of regular expressions based on the Dictionary of
Nomenclature of Celestial Objects to extract as many celestial
object identifiers as possible from the text. Regrettably, the
availability of these regular expressions remains a challenge,
presenting a significant hurdle in the broader application of the

Table 3
The Results of Llama-2-70B, GPT-3.5, GPT-4 and Claude 2 in Extracting Celestial Object Identifier and Telescope Name Knowledge Entities from the

Paragraph Collections of 30 Articles Using Each of the Eight Combination Prompts Individually

Combination Prompt Celestial Object Identifier Telescope Name

Precision Recall F1-score Precision Recall F1-score

Llama-2-70B Des_Only 0.0450 0.6687 0.0843 0.1341 0.7098 0.2256
Des_Def 0.0680 0.6816 0.1237 0.1381 0.7232 0.2319
Des_Emp 0.1100 0.7085 0.1904 0.1861 0.7768 0.3003
Des_Exa 0.0320 0.5897 0.0607 0.1121 0.6429 0.1909
Des_Def_Emp 0.1330 0.7197 0.2245 0.2100 0.7500 0.3281
Des_Def_Emp_Exa 0.0930 0.6099 0.1614 0.1450 0.7634 0.2437
Des_Def_Emp_Con 0.1563 0.7197 0.2568 0.1912 0.7723 0.3065
All 0.1337 0.6300 0.2206 0.1591 0.7188 0.2605

GPT-3.5 Des_Only 0.2902 0.7197 0.4136 0.3605 0.7500 0.4869
Des_Def 0.3322 0.6928 0.4491 0.3707 0.7232 0.4902
Des_Emp 0.5105 0.7646 0.6122 0.4101 0.7946 0.5410
Des_Exa 0.3101 0.7287 0.4351 0.3723 0.7679 0.5015
Des_Def_Emp 0.5404 0.7803 0.6386 0.5112 0.8125 0.6276
Des_Def_Emp_Exa 0.5703 0.8094 0.6691 0.5903 0.8170 0.6853
Des_Def_Emp_Con 0.5505 0.7332 0.6288 0.6111 0.7857 0.6875
All 0.5906 0.8184 0.6861 0.6301 0.8214 0.7131

GPT-4 Des_Only 0.7804 0.7489 0.7632 0.8026 0.8170 0.8097
Des_Def 0.8455 0.7242 0.7802 0.8251 0.8214 0.8232
Des_Emp 0.8474 0.8094 0.8280 0.8414 0.8527 0.8470
Des_Exa 0.8313 0.7511 0.7892 0.8326 0.8214 0.8270
Des_Def_Emp 0.8518 0.8117 0.8313 0.8458 0.8571 0.8514
Des_Def_Emp_Exa 0.8414 0.8206 0.8309 0.8727 0.8571 0.8648
Des_Def_Emp_Con 0.8535 0.8363 0.8449 0.8744 0.8393 0.8564
All 0.8536 0.8632 0.8584 0.8694 0.8616 0.8655

Claude 2 Des_Only 0.8208 0.7085 0.7605 0.7702 0.8080 0.7886
Des_Def 0.8029 0.7399 0.7701 0.7883 0.7813 0.7848
Des_Emp 0.8005 0.7915 0.7960 0.8210 0.8393 0.8300
Des_Exa 0.8234 0.7108 0.7630 0.7712 0.8125 0.7913
Des_Def_Emp 0.8009 0.8206 0.8106 0.8000 0.8571 0.8276
Des_Def_Emp_Exa 0.8408 0.8408 0.8408 0.8430 0.8393 0.8411
Des_Def_Emp_Con 0.8518 0.8117 0.8313 0.8514 0.8438 0.8475
All 0.8444 0.8520 0.8482 0.8319 0.8616 0.8465
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system. Moreover, while the global inventory of telescopes is
finite and quantifiable, there is no comprehensive and
authoritative list of telescope names available for reference.
Therefore, taking inspiration from the development experience
of Lesteven et al. (2010), we designed a set of extraction rules
for both conventional celestial object identifiers (such as
LAMOST J151003.74+305407.3 and NGC 1866) and tele-
scope names (such as Hubble Space Telescope and Arecibo
Telescope).

Machine Learning-based Methods: We employed the
maximum entropy model (MaxEnt), a prevalent method for
information extraction based on machine learning techniques.
The application of this model for the extraction of astronomical
knowledge entities necessitates an ample supply of high-
quality, annotated astronomical data. Consequently, we have
selected the DEAL data set as our training corpus, which
encompasses annotations for both telescope names and celestial

object identifiers. It is important to note that within this data set,
the term “CelestialObject” corresponds to the “celestial object
identifier” in this paper, while “Telescope” and “Survey” are
aligned with the “telescope name” category. Detailed informa-
tion regarding this data set can be accessed at https://ui.adsabs.
harvard.edu/WIESP/2022/LabelDefinitions and https://ui.
adsabs.harvard.edu/blog/ads-models-and-data sets, and it is
publicly available at https://huggingface.co/data sets/adsabs/
WIESP2022-NER. We implemented this task in Python using
the MaxentClassifier class and related functions from the nltk
library.25

Smaller Language Model-based Methods: Building upon the
work of Alkan et al. (2022), we opted for the

Figure 4. The comparison of precision, recall, and F1-score for extracting
celestial object identifiers (COI) and telescope names (TN) in the
paragraph collections between Llama-2-70B, GPT-3.5, GPT-4, and Claude 2. Figure 5. The comparison of precision, recall, and F1-score for extracting

celestial object identifiers (COI) and telescope names (TN) in the full texts and
paragraph collections between GPT-4 and Claude 2.

25 https://www.nltk.org/
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scibert_scivocab_cased version26 of the SciBERT model
(Beltagy et al. 2019) from PyTorch HuggingFace. This version
is particularly adept at processing scientific texts, as it offers
enhanced recognition and comprehension of scientific termi-
nology and concepts. Through fine-tuning, the model can be
further optimized to cater to specific tasks of entity recognition
within scientific literature. We have continued to utilize the
DEAL data set (Grezes et al. 2022) and implemented a sliding
window strategy to accommodate the maximum sequence
length constraint of the BERT model, which is typically 512
tokens. Additionally, we have set a training regimen of 30
epochs to ensure that the model thoroughly learns the
characteristics of the data set.

5.2. Comparison

To ensure that the extraction performance of these methods
can be compared with that of four LLMs, we employed the
paragraph collections as the experimental text. For these LLMs,
we selected their experimental results from their respective
combination prompts that yielded the highest F1-score in
Table 3 as the benchmarks for comparison. Table 4 shows their
performance. The following outlines the main differences
between LLMs and these methods.

Performance: From the F1-scores presented in Table 3, it is
evident that the overall performance of rule-based method and
maximum entropy model is significantly lower than that of
LLMs. In contrast, SciBERT, which has been pre-trained on a
substantial corpus of scientific literature and fine-tuned using
the DEAL data set, exhibits superior performance compared to
the Llama-2-70B without fine-tuning. Specifically, SciBERT
outperforms Llama-2-70B by 0.1650 and 0.2675 in the
extraction of celestial object identifiers and telescope names,
respectively. In Section 5.1, we delineate some objective
limitations; it must be acknowledged that the performance of
these methods has not reached the pinnacle, equating to that of
mature astronomical KEE methods such as the DJIN system.
Hence, we do not extensively focus on the performance

differences between LLMs and these methods. Instead, our
focus is primarily on the key differences during the extraction
process. Table 5 shows these differences.

1. The comparative analysis of the six examples in Table 5
reveals the LLMs exhibit a superior capacity for
comprehensively identifying celestial object identifiers
and telescope names, two types of knowledge entities,
when compared to other methods.

2. From all the examples, it can be observed that LLMs
perform better in handling knowledge entity boundaries,
such as compound nouns or abbreviations. For instance,
“Small Magellanic Cloud” is a compound noun referring
to a specific galaxy. Rule-based methods require specific
rules to identify such structures, and both the maximum
entropy model and SciBERT may encounter difficulties
in handling these compound nouns. On the contrary,
LLMs are capable of recognizing “Small Magellanic
Cloud” as a whole entity, even when it spans across
multiple words.

3. The examples presented in Table 5, particularly Example
3 and 4, demonstrate the better generalization capabilities
of LLMs. Despite the presence of entities in the text that
are either uncommon in the pre-training data or entirely
novel, LLMs are adept at inferring the meaning and
category of unknown entities by capturing semantic
relationships and contextual information between words.
This enables them to perform more consistently when
confronted with new texts. In contrast, other methodol-
ogies struggle to adapt to such situations.

4. LLMs demonstrate strong competitiveness in entity
disambiguation as well. In Example 5, both “Andromeda”
and “M31” refer to the same galaxy. LLMs are capable of
understanding the equivalence between the two entities
and correctly associating them with the same celestial
object, outputting it as “Andromeda galaxy (M31).” In
Example 6, despite the presence of several personal names
(Page, Grupe, and Giommi) and telescopes named after
individuals (XMM-Newton, Swift, Fermi, Planck), all four
LLMs are still able to accurately distinguish them.

Table 4
The Performance Comparison of Four LLMs and other Methods in Extracting Celestial Object Identifier and Telescope Name Knowledge Entities

Method Celestial Object Identifier Telescope Name

Precision Recall F1-score Precision Recall F1-score

Llama-2-70B 0.1563 0.7179 0.2568 0.2100 0.7500 0.3281
GPT-3.5 0.5906 0.8184 0.6861 0.6301 0.8214 0.7131
GPT-4 0.8536 0.8632 0.8584 0.8694 0.8616 0.8655
Claude 2 0.8444 0.8520 0.8482 0.8514 0.8438 0.8475
Rule 0.5185 0.1211 0.1963 0.8529 0.1518 0.2577
MaxEnt 0.2817 0.1592 0.2034 0.2898 0.3080 0.2986
SciBERT 0.4624 0.3879 0.4218 0.5517 0.6473 0.5956

26 https://github.com/allenai/scibert
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Table 5
Comparison Examples of LLMs and other Methods in Extracting Celestial Object Identifiers and Telescope Names

Example Sentence Method Output

1 Kindicated that the reddening of the quasar is steeper than in the Small Magellanic Cloud,
and perhaps even steeper than for the galaxy IRAS 14026+4341. (Marculewicz et al. 2022)

Expected [Small Magellanic Cloud, IRAS
14026+4341]

Llama-2-70B [Small Magellanic Cloud, IRAS
14026+4341]

GPT-3.5 [Small Magellanic Cloud, IRAS
14026+4341]

GPT-4 [Small Magellanic Cloud, IRAS
14026+4341]

Claude 2 [Small Magellanic Cloud, IRAS
14026+4341]

Rule [IRAS 14026+4341]

MaxEnt [IRAS 14026+4341]

SciBERT [Magellanic Cloud, IRAS
14026+4341]

2 Compared to the limits placed by Scholz et al. (2017) on X-ray emission at the time of radio
bursts from FRB 121102 using Chandra and XMM, the limits placed here using NuSTAR
are not as constraining for the low absorption K(Cruces et al. 2021)

Expected [Chandra, XMM, NuSTAR]

Llama-2-70B [Chandra, XMM, NuSTAR]

GPT-3.5 [Chandra, XMM, NuSTAR]

GPT-4 [Chandra, XMM, NuSTAR]

Claude 2 [Chandra, XMM, NuSTAR]

Rule [Chandra]

MaxEnt [Chandra]

SciBERT [Chandra, XMM]

3 For J1334, the primary component is near the 0.04 Gyr isochrone and the secondary comp-
onent is not far below the 10 Gyr isochrone. (Lu et al. 2018)

Expected [J1334]

Llama-2-70B [J1334]

GPT-3.5 [J1334]

GPT-4 [J1334]

Claude 2 [J1334]

Rule []

MaxEnt []

SciBERT []

4 The first time was on 2014 November 15 and 16. We used the 60 cm reflecting telescope to
perform R-band photometry. The second time was on 2019 January 17 and 18. (Lu et al.
2020)

Expected [60 cm reflecting telescope]

Llama-2-70B [60 cm reflecting telescope]

GPT-3.5 [60 cm reflecting telescope]

GPT-4 [60 cm reflecting telescope]

Claude 2 [60 cm reflecting telescope]
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Furthermore, the telescope name “LAMOST” included in
the celestial object identifier “LAMOST J1131+3114” is
correctly excluded from “LAMOST” and “J1131+3114”
constitutes a single entity without conveying the meaning
of “telescope.” However, other methods seem to be less
satisfactory in these aspects.

Extraction Pattern: The performance differences in extract-
ing entities are closely related to the respective working
patterns of these methods. LLMs can learn a vast amount of
general language knowledge during pre-training, thus requiring
minimal external knowledge for identifying celestial identifiers
and telescope names. They can accomplish KEE tasks with just
a few prompts. In contrast, a rule-based entity extraction

method heavily relies on pre-defined sets of rules for pattern
matching, resulting in limited capability to handle unknown or
complex entities (such as “Small Magellanic Cloud”). Max-
imum entropy model and SciBERT seem to alleviate these
issues, but they require extensive high-quality astronomical text
data sets to enhance their ability to extract celestial object
identifiers and telescope names. The labor-intensive and
tedious nature of these tasks makes them less competitive
compared to LLMs.
Update and Maintenance: For the practical application of

astronomical entity extraction tools based on these methods,
updating and maintenance become necessary tasks. The rule-
based method and maximum entropy model require frequent

Table 5
(Continued)

Example Sentence Method Output

Rule [cm reflecting telescope]

MaxEnt [reflecting telescope]

SciBERT [60 cm reflecting telescope]

5 In this Letter, we report the discovery of a new LBV - LAMOST J0037+4016 (R.A.:
00:37:20.65, decl.: +40:16:37.70) in the Andromeda galaxy (M31). (Huang et al. 2019)

Expected [LAMOST J0037+4016, Andromeda
galaxy(M31)]

Llama-2-70B [LAMOST J0037+4016, Andromeda
galaxy(M31)]

GPT-3.5 [LAMOST J0037+4016, Andromeda
galaxy(M31)]

GPT-4 [LAMOST J0037+4016, Andromeda
galaxy(M31)]

Claude 2 [LAMOST J0037+4016, Andromeda
galaxy(M31)]

Rule [LAMOST J0037+4016, M31]

MaxEnt [LAMOST J0037+4016, M31]

SciBERT [LAMOST J0037+4016, Andromeda
galaxy, M31]

6 KXMM-Newton (Page et al. 2004), and Swift (Grupe et al. 2010) K Giommi et al. (2012)
did not detect LAMOST J1131+3114 in γ-ray or submillimeter ranges using Fermi and
Planck. (Shi et al. 2014)

Expected [XMM-Newton, Swift, Fermi, Planck]

Llama-2-70B [XMM-Newton, Swift, Fermi, Planck]

GPT-3.5 [XMM-Newton, Swift, Fermi, Planck]

GPT-4 [XMM-Newton, Swift, Fermi, Planck]

Claude 2 [XMM-Newton, Swift, Fermi, Planck]

Rule [LAMOST]

MaxEnt [Swift, LAMOST, Fermi, Planck]

SciBERT [XMM-Newton, Swift, Giommi,
Fermi, Planck]

14

Research in Astronomy and Astrophysics, 24:065012 (16pp), 2024 June Shao et al.



updates to adapt to new astronomical terms and terminology,
ensuring sustained accuracy. This process can be labor-
intensive. SciBERT benefits from less frequent updates due
to its general scientific pre-training but still needs occasional
fine-tuning. In contrast, LLMs are typically updated and
maintained by professional companies, providing a more
sustainable and scalable solution for entity extraction in
astronomy. The remarkable capabilities of LLMs reduce the
need for ongoing maintenance, making them a more efficient
choice for accomplishing the task of extracting astronomical
knowledge entities.

6. Discussion

This study validates the effectiveness of our carefully
designed Prompt-KEE and highlights the potential of pre-
trained LLMs for KEE in astrophysical journal articles. This
further underscores the importance of prompts as a viable
strategy to enable models to rapidly adapt to new domains and
tasks. Furthermore, compared to other methods of extracting
knowledge entities, these LLMs demonstrate stronger competi-
tiveness, such as their robust generalization capabilities.
However, it is essential to acknowledge the limitations of this
study. First, we solely focused on two typical categories of
astronomical knowledge entities, and the recognition of more
complex and specialized astronomical entity types necessitates
further investigation. Second, different models and astronom-
ical task scenarios may require different prompt optimization
strategies, and research in this area still offers extensive
exploration opportunities. Third, due to certain challenges, the
alternative methods used for comparison, while exhibiting
some performance, have not reached the level comparable to
mature systems.

Meanwhile, we also recognize several issues that warrant
further investigation:

1. Domain knowledge is key to augmenting the under-
standing, reasoning, and generalization abilities of LLMs;
thus, training LLMs with extensive astronomical knowl-
edge can further enhance their capability in extracting
astronomical knowledge entities.

2. The inclusion of examples may impact the model’s
extraction of new entities, suggesting that prompts need
careful design based on specific models and scenarios.
More information does not necessarily lead to better
results, hence, further optimization of the Prompt-KEE
strategy is possible.

3. Differences in extraction results between full texts and
paragraph collections indicate that contextual information
and data set characteristics influence model attention
allocation. Investigating how to guide the model to
perform better across the texts of two different lengths
merits further research.

4. Astrophysical journal articles often present specialized
knowledge entities such as celestial object identifiers in
structured tables. Existing models exhibit limited cap-
abilities in extracting structured table data from articles.
Future research can address this issue specifically.

7. Conclusion

In this paper, we proposed the Prompt-KEE strategy to explore
the potential of pre-trained LLMs for KEE in astrophysical
journal articles. We focused on the two most typical astronomical
knowledge entities, celestial object identifier and telescope name.
Based on the Prompt-KEE strategy, we designed eight combina-
tion prompts with five elements: Task Descriptions, Entity
Definitions, Task Emphasis, Task Examples, and Second
Conversation. Furthermore, we collected two data sets: the full
texts and paragraph collections of the 30 articles, and employ
four LLMs (Llama-2-70B, GPT-3.5, GPT-4 and Claude 2) for
our experiments. Leveraging the eight combination prompts, we
tested on full texts with GPT-4 and Claude 2, on
paragraph collections with all LLMs. The experimental results
demonstrated that pre-trained LLMs can perform KEE tasks in
the astrophysics journal articles, but there are differences in their
performance. Moreover, we introduced areas that require further
exploration and improvement, including the design of prompts
and the use of contextual information. Finally, we compared
LLMs to other methods, showing the advantages of LLMs in
terms of performance, as well as their competitiveness in terms of
working patterns, updates and maintenance. This study provides
valuable insights for using prompt engineering to adapt LLMs for
KEE tasks in astrophysical articles.
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