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Abstract

Temporary capture efficiency is studied in the framework of the circular restricted three-body problem in two steps.
First, a non-uniform distribution of test particles around the secondary’s orbit is obtained by fully accounting the
secondary’s gravitational influence. Second, the capture efficiency is computed based on the non-uniform
distribution. Several factors influencing the result are discussed. By studying the capture efficiency in the circular
restricted three-body problem of different mass ratios, a power-law relation between the capture efficiency (p) and
the mass ratio (μ) is established, which is given by p≈ 0.27× μ0.53, within the range of 3.0035×
10−6� μ� 3.0034× 10−5. Taking the Sun–Earth system as an example, the influence from the orbit
eccentricity of the secondary on the non-uniform distribution and the capture efficiency is studied. Our studies
find that the secondary’s orbit eccentricity has a negative influence on the capture efficiency.
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1. Introduction

Gravitational capture is an important dynamical phenomenon in
the evolution of the solar system, which has engaged the curiosity
of many researchers. It usually occurs when a celestial body
approaches a massive planet at a relatively low velocity during a
close encounter, leading to a transition from a heliocentric orbit to
a planetocentric one (Heppenheimer & Porco 1977). During this
process, the orbit may be significantly perturbed from a Keplerian
orbit about the Sun as the gravitational perturbation from the close
encounter planet becomes dominant.

Hopf (1930) and Tanikawa (1983) demonstrate that the
probability of permanent capture in a purely gravitational
environment is zero, yet temporary capture is always possible.
When combined with some dissipative mechanisms, the tempor-
ary capture can become permanent. The dissipative mechanisms
can be gas drag (e.g., Hunten 1979; Pollack et al. 1979; Cordeiro
et al. 1999; Vieira Neto et al. 2009), a gradual increase in the mass
of the central planet (e.g., Heppenheimer & Porco 1977; Vieira
Neto et al. 2004), and collisions (e.g., Colombo & Franklin 1971).
The capture can also become permanent when a binary asteroid
system encounters a planet, in which case one of the bodies is
permanently attached to the planet and the other escapes due to
the exchange of orbital energies (e.g., Agnor & Hamilton 2006).
Due to these mechanisms, the capture process provides
researchers with an opportunity to explain the origin and evolution
of irregular satellites around four outer solar system planets (e.g.,
Nesvorný et al. 2007, 2014).

The capture process also arouses interest from the aerospace
community as it offers potential fuel savings for interplanetary

spacecraft by strategically utilizing the capture mechanism to
achieve a nominal orbit around a planet. Belbruno (1987) first
proposed the concept of Weak Stability Boundary and
successfully applied it to the Japanese Hiten spacecraft
(Belbruno & Miller 1993). Topputo & Belbruno (2009), Luo
et al. (2014), Luo & Topputo (2017, 2021), Luo (2020) studied
the gravity-assisted capture in different systems. Studies have
also been carried out on the application of the capture
mechanism to retrieve asteroids into the near-Earth space
(e.g., Baoyin et al. 2010).
Solving the capture problem analytically is challenging. The

capture occurs when celestial bodies encounter the planet at a
low relative speed. In such a case, the dynamics are usually
chaotic. Murison (1989) and Cordeiro et al. (1999) pointed out
the complexity of the capture process in the circular restricted
three-body problem (hereafter referred to as CRTBP), since the
capture structure in the phase space is partially fractal-like and
self-similar. Researchers therefore generally prefer to use
numerical methods to study the capture process, and usually
make some reasonable assumptions to simplify the situation
and reduce the computational difficulty. Carusi & Pozzi (1978),
Carusi & Valsecchi (1980) worked on the capture phenomenon
of objects located near Jupiter by setting the initial velocities of
particles tangential to Jupiter’s orbit. Huang & Innanen (1983)
studied the stability of retrograde jovicentric orbits to find the
relationship between the length of the capture time and the
periodic orbits using Henon’s diagram (Henon 1970). The
mirror theorem (Roy & Ovenden 1955) is also used to simplify
the problem whose nature is time reversible and symmetric in
the CRTBP. In the study of de Almeida Prado & Vieira Neto
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(2006), a polar mesh grid of distance and angle around the
capturing planet was adopted. They used the reversibility of
time in the CRTBP and integrated the particles backwards until
they left the vicinity of the planet. Brunini (1996) explored the
capture conditions for particles by placing particles on a fixed
line perpendicular to the x-axis. He changed the angle α

between the velocity and the x-axis and computed the capture
domain in the phase space of (y, α). In addition to these studies,
some others also focus on the length of the temporary capture
time (e.g., Vieira Neto & Winter 2001; Winter & Vieira
Neto 2001; Fedorets et al. 2017). The capture process is also an
important part of the transport of matter in interplanetary space.
It is the basis for calculating the flux of matter orbiting and
impacting the planet.

A practical concern of this study is the computation of the
temporary capture efficiency within a general CRTBP system,
taking into account the gravitational influence of the secondary
(hereafter referred to as P2 and the primary referred to as P1). It
represents the probability of a massless particle being
temporarily captured by P2 within a prescribed duration. In
our work, the capture efficiency serves as a metric for assessing
the capability of P2 to capture nearby particles in the CRTBP.
The basic method of computing the capture efficiency in our
work is the one employed by Granvik et al. (2012) which
computes the temporary capture efficiency of near-Earth
objects (hereafter referred to as NEOs). It involves the
following steps:

1. Choose a ring region enveloping the Earthʼs orbit. The
ring is described by the semimajor axis, orbit eccentricity
and inclination, and is discretized by uniformly distrib-
uted bins inside it.

2. Inside each bin of the above ring region, generate N1

random test particles with random values of longitude of
the ascending node Ω, argument of periapsis ω, and mean
anomaly M in the range of [0, 2π];

3. Choose a circumsphere centered at the Earth inside the
ring region, and count the number of test particles inside
the circumsphere (denoted as N2);

4. Integrate orbits of the N2 particles initially inside the
circumsphere within a prescribed time T and count the
number of particles that are temporary captured by the
Earth (denoted as N3);

5. The capture efficiency of the bin is computed as p(a, e, i)=
N3/N1.

The total capture efficiency of near-Earth objects (NEOs) by
the Earth is then obtained by multiplying the orbital element
distribution R(a, e, i) of NEOs (Bottke et al. 2002) with the
capture efficiency in each bin and then summing over all
the bins.

In the current study, we use the same method to compute the
capture efficiency, but focus on the general CRTBP model. The
orbital element distribution function R(a, e, i) is generated by

fully considering the resonance effects between P2 and the
particles. Moreover, we made following contributions: (1) A
backward integration method is proposed to identify the ring
region enveloping the orbit of P2. (2) Influence of the
circumsphere size on the capture efficiency is investigated,
and appropriate values are recommended. (3) By computing the
capture efficiency of CRTBPs with different mass ratios, a
power-law relation between the capture efficiency and the mass
parameter of CRTBP is established. (4) Influence of P2ʼs orbit
eccentricity on the capture efficiency is studied.
The paper is organized as follows. Section 2 is devoted to the

methods used in the study, including the way to obtain the non-
uniform steady-state distribution which is influenced by the
resonances with P2, the way to choose the ring region, the
circumsphere size, and the integration time, and the way to
compute the capture efficiency. Section 3 presents the main
results of our numerical experiments. A power-law relation
between the capture efficiency p and the mass ratio μ is given.
Section 4 discusses the influence of P2ʼs orbit eccentricity on
the capture efficiency. Section 5 concludes the study.

2. Methodology

2.1. Capture Efficiency Computation

The method to compute the capture efficiency is the one used
by Granvik et al. (2012), which mainly contains the following
steps:

1. The first step is to choose an initial sampling region
enveloping P2ʼs orbit. The sampling region is character-
ized by [ ] [ ] [ ]´ ´a a e e i i, , ,min max min max min max . It is
discretized into a series of bins with uniform step sizes
along the semimajor axis, orbit eccentricity, and orbit
inclination.

2. Inside each bin, generate a number of test particles whose
Ω, ω, and M are randomly distributed within the range of
[0, 2π]. The total number of test particles in each bin is
denoted as Mgen.

3. Choose a circumsphere inside the ring region, with its
center at P2. Select test particles that are inside the
circumsphere. Denote the number of the selected test
particles as Mfilter.

4. Integrate orbits of the selected test particles and count the
number of test particles that can be temporarily captured
within an integration time δT. Denote the number of
captured particles as Mcap.

5. The capture efficiency of this bin is computed by the
following formula:

( ) ( )=p a e i
M

M

M

M
, , . 1

cap

filter

filter

gen

6. Suppose that the distribution of the test particles around
P2 is in a steady-state, and is described by a function
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R(a, e, i). The total capture efficiency is computed by the
following formula:

∭ ( ) ( )

( ) ( ) ( )å

=

=
=

p p a e i R a e i dadedi

p a e i R a e i

, , , ,

, , , , 2
i

N

sum

1

bin

in which Nbin is the total number of discretized bins.

In their study, Granvik et al. (2012) used the steady-state
distribution of NEOs RNEO(a, e, i) given by Bottke et al.
(2002). They also give recommendations of the ring size,
circumsphere size and integration time for the Sun–Earth
system. However, for the purpose of the current study which
focuses on the general CRTBP model, we have to find these
settings by ourselves before applying the above method. In the
following subsections, we explain more details.

2.2. Capture Criterion and Boundary

The temporary capture criterion is rather a controversial but
inevitable issue as there is no precise dynamical constraint on
whether a celestial body is captured. Everhart (1973) judged
whether a celestial body is captured by monitoring if the
osculating planetocentric orbital elements become elliptical.
However, Fedorets et al. (2017) mentioned that quasi-satellites
may have an osculating orbit eccentricity less than 1 with
respect to the planet, while they are not dynamically bound to
the planet. Carusi & Pozzi (1978) and Gladman et al. (1995)
checked the distance of the particles from the planet.
Yamakawa et al. (1992) related the capture efficiency with
the two-body energy and assumed that the capture occurs when
the energy of the celestial body relative to the planet becomes
negative. In Granvik et al. (2012), the same definition as the
one used in Kary & Dones (1996) is adopted which includes
two criteria:

1. The distance of the celestial body away from P2 is less
than three Hill Radii of P2.

2. The two-body Keplerian energy of the celestial body with
respect to P2 is less than 0.

Once the particles in the CRTBP system simultaneously satisfy
the above two conditions, it can be considered to be
temporarily captured by P2. In this study, we take the same
two conditions. In the discussion section, we will discuss why
we persist using the value of three Hill Radii.

2.3. Initial Sampling Region

One issue to be addressed is how to choose the initial
sampling region for a given CRTBP system. Generally, the size
of the sampling region should increase with the mass
parameter, as the gravitational influence region of P2 expands.
We need to specify the initial sampling region in which the

gravity of P2 has an obvious influence and the particles have a
good chance of being captured (see Figure 1). In this
subsection, we propose a backward integration method to
identify the initial sampling region.
A necessary condition for temporary capture is that particles

have a low relative velocity at close encounters with P2. This
implies that the particles are on orbits characterized by low
eccentricities and inclinations with respect to P2 (Qi &
Qiao 2023). As a result, we can use the planar CRTBP model

Figure 1. The schematic diagram of the initial sampling region and the
circumsphere. The radius rfilter corresponds to the radius of the circumsphere
and should be inside the initial sampling region. The radius rmin and rmax

represent the inner and the outer boundary of the ring-shaped initial sampling
region, which approximately equal the minimum periapsis distance and the
maximum apoapsis distance of the particles.

Figure 2. The schematic diagram of the particles being captured and passing
the circle with a radius of three Hill Radii of P2. Particles are assumed to have
zero energy when they pass through this circle. v is the inbound velocity of the
particle at the circle.

3

Research in Astronomy and Astrophysics, 24:055016 (13pp), 2024 May Miao & Hou



to identify the initial sampling region in the (a, e) space. An
intuitive idea is that in the planar CRTBP, trajectories of the
captured particles should pass through a circle surrounding P2
with an instantaneous incoming velocity v which forms an
angle θ> π/2 with respect to its position vector, as depicted in
Figure 2. By generating points on the circle and performing a
backward integration of them from the “capture boundary”
(three Hill Radii which is the same as that used in Granvik et al.
2012), we can obtain the region in the space of (a, e) where the
particles originate. Since it is possible for the particles to enter
the three Hill Radii region at any point on the sphere, the entire
circle needs to be surveyed. The energy of the particle with
respect to P2 is set to zero as it is also one of the temporary
capture criteria used by us. Hence the value of |v| can be solved
by this condition.

Using the mass parameter of the Sun–Earth system as an
example (μE≈ 3.0035× 10−6), 100 points are selected uni-
formly at a distance of three Hill Radii from P2. At each point,
we create 100 random directions for the inbound velocity
vector v ensuring that the constraint θ> π/2 is met.
Consequently, there are a total of 100× 100 orbits. These
orbits are backwards integrated for 100 units of dimensionless
time in the CRTBP. For each orbit, we record its minimum and
maximum orbit semimajor axes, as well as its maximum orbit
eccentricity. The left frame of Figure 3 shows the statistical
result. The plane spanned by the semimajor axis and the orbit
eccentricity is divided into a series of bins (the resolution is
Δa= 0.01 au, Δe= 0.01), and the relative weight of each bin
is computed by counting the number of particles in it. If we
neglect the bins that contain particles less than 10% of the
maximum one, we get the initial sampling region (denoted by
the smaller square) in the (a, e) space presented in the right
frame of Figure 3. The larger square represents the initial
sampling region used in Granvik et al. (2012). The two regions

agree with each other quite well in the semimajor axis, but not
in the orbit eccentricity. The upper boundary of Granvik et al.
(2012) is about twice the upper boundary of ours.
With the increase of P2ʼs mass, the size of the initial

sampling region also increases. Figure 4 shows the range of
initial sampling region when the mass parameter of the system
is μ=10μE. The range apparently enlarges compared to that in
Figure 3. Table 1 lists the relevant parameters used in our work.
The bin resolution is set to Δa= 0.01 au, Δe= 0.01. As we
have mentioned, the capture process mainly happens for planar
orbits, so in our study the orbit inclination is restricted as

Figure 3. The range of the initial sampling region determined by the backward integration method is shown. The mass parameter is the one of the Sun–Earth system
(μE ≈ 3.0035 × 10−6). The left frame shows the histogram of the reachable bin in the (a, e) space. The right frame shows the identified initial sampling region (the
smaller square) and the one used by Granvik et al. (2012) (the larger square).

Table 1
Parameters Used in the Numerical Experiments

Mass Para-
meter (μE)

a
amin

(au)b
amax

(au)b emax
b Nbin

c Mgen
tot d Morb

tote

1 0.87 1.15 0.06 840 8.4 × 106 8.4 × 104

2 0.85 1.20 0.08 1400 1.4 × 107 1.4 × 105

3 0.83 1.23 0.09 1800 1.8 × 107 1.8 × 105

4 0.81 1.26 0.10 2250 2.25 × 107 2.25 × 105

5 0.80 1.29 0.11 2695 2.695 × 107 2.695 × 105

6 0.79 1.31 0.12 3120 3.12 × 107 3.12 × 105

7 0.78 1.33 0.12 3300 3.3 × 107 3.3 × 105

8 0.77 1.35 0.13 3770 3.77 × 107 3.77 × 105

9 0.76 1.37 0.14 4270 4.27 × 107 4.27 × 105

10 0.76 1.38 0.14 4340 4.34 × 107 4.34 × 105

Notes.
a The mass parameter of the CRTBP systems (μE ≈ 3.0035 × 10−6).
b The range of the initial sampling region.
c The total number of the discretized bins.
d The total number of the particles for computing the capture efficiency of each
bin.
e The total number of the particles for computing the non-uniform steady-state
orbit distribution.
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i ä [0°, 2°.5] which is in accordance with Granvik et al. (2012),
and the bin size in the orbit inclination direction is
Δi= 0.5°.= 0°.5. We generate 104 particles in each bin to
compute the capture efficiency p(a, e, i) of this bin.

2.4. Circumsphere Size and Integration Time

It is unnecessary to integrate all the test particles in the initial
sampling region. Only test particles close to P2 have a chance
to be temporarily captured within a prescribed integration time.
Numerically integrating all the test particles is time-inefficient
and unnecessary. A clever way to avoid integrating all the test
particles is to choose a circumsphere around P2 to filter those
that are close to P2 as integration candidates in Granvik et al.
(2012). We use the same method in our work. The schematic
diagram of the circumsphere is shown in Figure 1. These
selected candidates are further integrated for a prescribed time
to judge whether they are captured or not. The radius of the
circumsphere is denoted as rfilter and the length of the
integration time is denoted as δT. The final computed capture
efficiency p is therefore a function dependent on these two
parameters. It is only an approximation of the accurate capture
efficiency which should be obtained by integrating all the test
particles in the initial sampling region for a long enough
integration time.

A natural expectation is that as the circumsphere size
increases, the capture efficiency gradually approaches its
accurate value. We discretize the circumsphere size in units
of Hill Radius of P2 as · ( )= Îr k R kfilter H  . The following
relationship should hold:

( · ) ( ) ( )d d=
¥

p k R T p Tlim , . 3
k

H

For the purpose of practical computation, we need to select an
appropriate value of k. One remark is that the circumsphere
should be within the initial sampling region. This puts an upper

limit for the value of k, denoted as kmax. For each [ ]Îk k0, max ,
we compute the capture efficiency p(k). The size selection
should be large enough in order not to miss the particles that
can be captured during a specific integration time. Starting from
smaller values, we select the k value once the following
criterion is met:

( ) ( · ) (( ) · )
(( ) · )

( )d d
d

D =
- -
-

p k
p k R T p k R T

p k R T

, 1 ,

1 ,
10% 4H H

H


where Δp(k) stands for the relative increment in capture
efficiency for a specific circumsphere size compared to the
former one. If the criterion cannot be satisfied unless =k kmax,
we select kmax as our k value.
As for the integration time δT, it is obvious that the longer it

is, the better the computed result is. However, considering the
practical computation cost, we need to put an upper limit to it.
In the study of Granvik et al. (2012), the integration time is
chosen as 2000 days. In our work, we choose 2 yr for the Sun–
Earth system. We will show that the option of this integration
time is appropriate.

2.5. Steady-state Orbit Distribution

According to Equation (2), to get the actual capture
efficiency, we need a distribution of test particles around
P2ʼs orbit. In the work of Granvik et al. (2012), an NEO orbit
distribution model RNEO(ah, eh, ih) from Bottke et al. (2002) is
utilized. For the general analysis in this study, we do not have
the information and we have to generate it by ourselves.
In reality, the distribution of small bodies around a planet’s

orbit is the result of complicated evolution processes during
which the source regions, the gravitational effects, and even
some non-gravitational effects (such as collisions and thermal
effects) may have their contributions. For the simple CRTBP
model considered in this study, P2ʼs gravity is the main
contribution for a non-uniform steady-state distribution. It is

Figure 4. Same as Figure 3 but for a CRTBP with mass parameter of μ = 10μE.
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obvious that due to orbital resonances between P2ʼs orbit and
the particles’ orbit, the steady-state distribution around P2ʼs
orbit is non-uniform. To get the non-uniform orbital element
distribution, we start with an initial uniform distribution in the
initial sampling region. Take the mass parameter of the Sun–
Earth system as an example. The range of this region is
a ä [0.87, 1.15] au, e ä [0, 0.06], i ä [0°, 2°.5], and the bin
resolution is Δa= 0.01 au, Δe= 0.01, Δi= 0°.5. The angular
elements (Ω, ω, M) are uniformly distributed in the range of
[0, 2π].

A time-slicing method is used. The nature of the method is to
simulate a dynamically steady-state population by means of
time discretization. We assume that the orbital element
distribution of the particles around P2ʼs orbit is already in a
steady-state. That is to say, influenced by P2ʼs gravity, at any
given time, the number of particles leaving the sampling region
is equal to the number of particles entering this particular
region. At any given observation epoch T and in a specific
region of the orbital element space spanned by (a, e, i), we
observe the population of the particles. The time is discretized
from the initial epoch (t0= 0) to the epoch T into N equal
intervals, so that we have a series of time epochs as ti= i ·ΔT
(i= 0L N) where the time interval ΔT= T/N. The particles
observed are a mixture of some old particles that were in this
region before epoch T, and some new particles that have just
entered this particular region at epoch tN= T.

To simulate this process, we perform the following
numerical simulations:

1. Since we are dealing with a continuous system, we first
discretize the time into a series of epochs ti= i ·ΔT. The

epoch T is the total evolution time and also the
observation epoch at which we “observe” the orbital
element distribution, and N is the number of time
intervals in the total evolution process, i.e., N= T/ΔT.
We then divide the phase space of the orbital elements
into a set of bins according to certain resolution. Using
the two-dimensional phase space spanned by a and e as
an example, the left frame of Figure 5 shows one example
of the binned orbital element space.

2. At observation epoch T, we count the number of particles
in each bin. As we have mentioned, the particles in each
bin include those that have only entered the bin at the
epoch T, and those that have entered the bin at an earlier
epoch ti< T and still remain in the bin after an evolution
interval of T− ti. Denote the number of these particles as

( )Mi
j , where the subscript i is the group number of

particles and the subscript j is the ID of the binned orbital
element space. The total number of the particles in the bin
( j) is therefore ( ) ( )= å =M Mi

j
i
N

i
j

0 , which is the sum of all
previous particles that are in the bin.

3. Suppose that the particles in all bins have an equal chance
of evolution. To approximate this equal chance, we give
each bin the same number of initial test particles to
simulate the initial uniform distribution and track their
evolution over time. Starting from the initial epoch t0= 0,
we count the total number of particles from all bins that
can enter the bin( j) at each epoch ti. Of course, the
number changes with the epoch ti. It is necessary to
distinguish between the epoch ti which stands for the
group number of particles starting the evolution and the
integration epoch which is the evolution time in this

Figure 5. Left frame: One example bin in the two-dimensional phase space spanned by a and e. Right frame: The number of particles in one example bin (ID number
is 36) as a function of the evolutionary epoch t̄i.
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context. If we integrate the test particles for a total time of
T and denote the integration time as t̄i, the number at t̄i
corresponds to the particles that have entered the bin at
epoch tN−i and remain in the bin after an interval of
T− tN−i. One example bin is shown in the right frame of
Figure 5. According to the curve, it is reasonable to say
that the value ( )

-MN i
j at the evolution epoch t̄i is the

number of particles that are in the bin( j) after a time
interval of T− tN−i. For example, when i= 0, the number

( )MN
j at epoch t̄0 indicates the initial test particles that have

not started their evolution yet, while if i=N, the number
( )M j
0 at epoch t̄N indicates the final test particles in the bin

after an evolution time of T.

The orbital element distribution at the epoch T is thus

( ) ( ) ( ) ( )
( )

( )å= =R a e i T
M a e i

M
M M a e i, , ,

, ,
, , , 5

j
j

tot
tot

where M( j) is the total number of the particles at “observation”
epoch T in bin( j), and Morb

tot is the total number of the particles
at “observation” epoch T in all bins. Since a steady-state orbit
distribution is assumed, the above process should be indepen-
dent of the observation epoch T (also the evolution integration
time) and R(a, e, i)= R(a, e, i, T). Intuitively, the longer the
integration time T, the larger the total number of the test
particles for the evolution Morb

tot, the smaller the time interval
ΔT, and the higher the resolution of the bins, the closer the
resulting orbital distribution will be to the true case.

In our study, the evolution integration time is set as
T= 106 yr, and the time interval for “observing” the orbit
distribution is 104 yr. The bin interval is mentioned above as
Δa= 0.01 au, Δe= 0.01, Δi= 0°.5. To carry out the above
numerical integration process, we generate 100 particles in
each bin to track their orbit evolution. Denote the total number
of particles generated to obtain the non-uniform steady-state
distribution as Morb

tot. According to Table 1, within 840 bins, a
total of 8.4× 104 particles are generated. It is necessary to
distinguish the number of Morb

tot and Mgen
tot as they correspond to

two different numerical processes.
One remark is that the assumption that particles in all bins

have an equal chance of evolution is inappropriate. Given that
the orbit distribution near P2 is supposed to be in a steady-state
and non-uniform, there is no doubt that fewer particles should
be in a bin if it has a lower weight R( j), and vice versa. To take
this non-uniformity into account, a basic idea is to repeat the
above process after obtaining the approximation of the orbital
element distribution R(a, e, i) based on the initial uniform
distribution. This time, the number of initial particles in each
bin for a new evolution process should be chosen according to
R(a, e, i), which is also the weight of the bin. However, we did
not iterate in this study. In reality, a steady-state distribution is
a balance between external sources which keep sending
particles into the initial sampling region and the particles that

are already in the initial sampling region. Under the sole
influence of P2ʼs gravity, the region with a high weight means
that orbits of particles in these regions are more stable. On the
other hand, particles from external sources are harder to get into
these regions due to their stability. As a result, when
considering external sources, these regions do not necessarily
have a higher weight. Since in our general analysis, we do not
have information of external sources, so we prefer not to iterate
because otherwise stable regions will gain a higher and higher
weight after each iteration. We emphasize that since we only
consider P2ʼs gravity in our work, the capture efficiency only
reflects the ability of P2 to temporarily capture particles, but is
not the real capture efficiency in real physical systems in which
real steady-state distribution should be used.

2.6. Numerical Integrators

In our work, two integration algorithms are employed. To
compute the non-uniform orbital element distribution intro-
duced in Section 2.5, a hybrid symplectic integrator package,
Mercury6 written by Chambers (1999) is used to compute the
dynamical evolution of particles. The hybrid symplectic
algorithm can accurately handle close encounters by predicting
and using a conventional Bulirsch–Stoer extrapolation inte-
grator to step over it. To compute the capture efficiency, a
Runge–Kutta–Felberg 7(8) integrator is used to follow the
orbits of the particles within the circumsphere. A particle is
removed once it impacts P2 or P1 if its instantaneous P2-centric
distance is less than the radius of P2 or its P1-centric distance is
less than the radius of P1. The radius of P1 is always assumed
to be the same as the Sun, while the radius of P2 increases with
mass ratio by keeping the density the same as that of the Earth.

3. Results

In this section, we first take the mass parameter of the Sun–
Earth system (μE≈ 3.0035× 10−6) as an example to display
the results. After that, the relationship between the capture
efficiency p and the mass parameter μ is shown.

3.1. Capture Efficiency of Each Bin

According to Table 1, in each bin 104 particles are uniformly
generated within the initial sampling region. The range of
initial sampling region is: a ä [0.87, 1.15] au, e ä [0, 0.06],
iä [0°, 2°.5] and the bin resolution is: Δa= 0.01 au,
Δe= 0.01, Δi= 0°.5.
As we have mentioned in Section 2.4, it is necessary to first

check the influence of the filtering circumsphere size on the
capture efficiency, and choose a proper value for circumsphere
size and integration time. Figure 6 displays the capture
efficiency for different circumsphere sizes after the integration,
as well as the relative increment in the capture efficiency
between adjacent two circumsphere sizes defined by
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Equation (4). It seems that when k= 7 Hill radii, the relative
increment of the capture efficiency is less than 10%. This is
larger than the size of the circumsphere taken by Granvik et al.
(2012). One remark is that if we set the truncation criterion as
20%, the value of k is around 4–5, which is the value taken by
Granvik et al. (2012).

Fixing the circumsphere as seven Hill Radii, Figure 7 shows
the relationship between the growth of capture efficiency and
the integration time. An obvious trend is that the capture
efficiency gradually approaches a fixed critical value when the
integration time is long enough. It can be seen that when the
particles are integrated for 2 yr, the growth of capture efficiency
almost ceases. Therefore, a prescribed 2 yr integration time in
the Sun–Earth system is long enough.

Based on the chosen initial sampling region, the circum-
sphere size, and the integration time, the capture efficiency of
each bin can be computed. According to Equation (1), the map
of capture efficiency p(a, e, i) in each bin is illustrated in the
left frame of Figure 8.

3.2. Steady-state Distribution

To numerically simulate the long-term evolution of the
whole population, a total number of 8.4× 104 particles are
integrated for T= 106 yr, as listed in Table 1. The time interval
for observing the state of orbit distribution is ΔT= 104 yr.
Figure 9 shows the final steady-state distribution of the test
particles in the orbital element (a, e) space through the
numerical method in Section 3.2. Due to the gravitational
influence of P2, the distribution is non-uniform. The bins have
a higher weight if the color is lighter. The cumulative ridge in

the left frame of Figure 9 is located where the semimajor axis
a= 1 au. Particles accumulate here because they are on orbits
like P2 and are trapped in the 1: 1 resonance. The region with
lower weight close to 1 au corresponds to P2-orbit crossers
with low orbital eccentricities. Close encounters between P2
and the particles are common here. P2 wipes out the particles
here and causes a significant depletion in this region. Particles
with semimajor axes further away from 1 au and small orbit
eccentricities have little chance to encounter P2, so the bins in
this region have a higher distribution weight. When the bin
resolution is enhanced to Δa= 0.0005 au, Δe= 0.0005 (see
the right frame of Figure 9), we can observe some fine
structures at specific positions. We believe that these structures
are closely related to orbital resonances with P2, which are very
close to the 1: 1 one (Pan & Hou 2022; Tan et al. 2023).
According to Equation (2), the capture efficiency p(a, e, i) of

each bin is multiplied with the bin weight R(a, e, i). The result
is illustrated in the right frame of Figure 8. Based on the non-
uniform steady-state distribution and the capture efficiency of
each bin, the capture efficiency is computed as ∼2.930× 10−4,
which is only ∼50.49% of the value if using a uniform steady-
state distribution.

3.3. Relationship between the Capture Efficiency and the
Mass Ratio

In this section, we study the relation between the capture
efficiency p and the mass ratio μ. The values of the mass
parameters are listed in Table 1 and the corresponding capture

Figure 6. The red line stands for the capture efficiency at each circumsphere
size based on the uniform distribution. The yellow line stands for the relative
increment in the capture efficiency. The black dashed line is the 10% criterion.
At about 7 Hill radii, the relative increment is smaller than 10%.

Figure 7. The blue line stands for the cumulative curve of the capture
efficiency with respect to the integration time. The red line stands for the
relative increment in the capture efficiency. The circumsphere size is set to 7
Hill Radii. After 2 yr of integration, the growth in capture efficiency has almost
ceased. A prescribed 2 yr integration time to compute the capture efficiency is
long enough.
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efficiency values are computed. The procedure of computing
the capture efficiency for different mass ratios μ is the same as
that for the Sun–Earth system described in Sections 3.1 and
3.2. The sizes of the initial sampling regions and the total
numbers of test particles used in the numerical simulations are
also listed in Table 1. The results of the capture efficiency for
different mass ratios based on different orbit distributions are
displayed in Figure 10. The red dots and fitted short-dash line
correspond to the results of the uniform steady-state distribu-
tion of test particles, i.e., P2ʼs gravitational influence on the
orbital element distribution is ignored. The green dots and fitted
dotted–dashed line correspond to the results of the non-uniform
distribution of test particles, which is obtained by fully
considering P2ʼs gravitational influence. Obviously, the capture
efficiency of the non-uniform distribution is smaller than the
result of assuming a uniform distribution. For the non-uniform
steady-state which considers the gravitational influence of P2, a
power-law relation between the capture efficiency p and the
mass ratio μ is fitted as

m» ´p 0.27 0.53

in which 3.0035× 10−6� μ� 3.0034× 10−5.

4. Discussion

4.1. Capture Boundary

In Section 2.2, if we refer to the P2-centric distance in
Criterion 1 as “capture boundary”, it is natural to wonder
whether the final computed result would be significantly
changed when this value is altered. In previous work, Granvik
et al. (2012) and Kary & Dones (1996) did not explain the
reason why three Hill Radii is chosen as the boundary to judge
whether a particle is captured by the planet. Intuitively, the
farther the particles are away from the planet, the lower the
probability that their Keplerian energy becomes negative.
In order to investigate the influence of the capture boundary

on the computed capture efficiency and to justify the
plausibility of using three Hill Radii, we integrate all the
particles within the circumsphere (seven Hill Radii) around P2
for δT= 2 yr. During the integration process for each particle,
when the Keplerian energy is less than 0, the minimum distance
of the particle from P2 is recorded. That is to say, particles with
minimum distance from P2 less than three Hill Radii are
precisely those that can be captured when the capture boundary
is set to three Hill Radii. The distribution of particles’ minimum
distances from P2 is displayed in Figure 11. According to the
cumulative capture efficiency curve, it is evident that the

Figure 8. The left frame is the capture efficiency p(a, e, i) of each bin for a mass parameter of the Sun–Earth system. The right frame is the modified capture efficiency
distribution based on the non-uniform steady-state distribution. The colorbar means the capture efficiency of the bin.

Figure 9. The steady-state distribution of the particles near P2ʼs orbit for the system with μ ≈ 3.0035 × 10−6. The colorbar is the relative weight of the bin. (1) The
left frame: The distribution in the (a, e) space with the bin resolution as Δa = 0.01 au, Δe = 0.01. The red line stands for test particles with apoapsis distance of 1 au
and the black one stands for test particles with periapsis distance of 1 au; (2) The right frame: The distribution in the (a, e) space with the resolution as
Δa = 0.0005 au, Δe = 0.0005. The red dashed lines stand for the positions of the orbital resonances with P2, which match the computed fine structures well.
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Figure 10. Linear fit for relation between ( )mlog10 and ( )plog10 based on uniform and non-uniform steady-state distributions.

Figure 11. The minimum distance from P2 for test particles with a negative Keplerian energy during the 2 yr integration. The histogram stands for the particle number.
The yellow dashed line stands for the cumulative capture efficiency based on a uniform steady-state distribution assumption. The red hexagons are the capture
efficiency based on the uniform steady-state distribution at specific capture boundary values ranging from one to ten Hill Radii of P2.
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capture efficiency increases as the capture boundary increases.
Within one Hill Radius from P2, the number of particles
decreases as the distance from P2 increases. This implies that
particles have a higher likelihood of being found near P2 after
entering the Hill Radius. Another peak in the distribution of the
minimum distances of particles from P2 occurs around three to
four Hill Radii. From an alternative perspective, when P2-
centric distance is beyond one Hill Radius, particles with
negative energy are more likely to be found in the range of 3–4
Hill Radii. This may help explain why a three Hill Radii
capture boundary serves as a choice for truncation of capture
process.

4.2. Orbit Eccentricity of P2

The majority of our work is conducted under the framework
of CRTBP model. The relative geometry between P1 and P2
remains constant over time. The long-term gravitational
influence of P2 can thus be investigated and the relationship
between the capture efficiency and the mass parameter can be
established only by altering the mass parameter. In the real
context, planetary orbits are typically elliptic. In this subsec-
tion, we extend our work to the elliptic restricted three-body
problem (ERTBP) and alter the orbit eccentricity of P2 to
examine whether it would influence the capture efficiency
or not.

The system used here is also the one with a mass parameter
of the Sun–Earth CRTBP system. The orbit eccentricities of P2
are listed in Table 2 as 0, 0.0167 (Earth-like orbit), 0.05 and
0.1. The first thing is to determine the initial sampling region
when the P2ʼs orbit eccentricity is non-zero. The same
backward integration method in Section 2.3 is used both at
periapsis and apoapsis of P2ʼs orbit. Our studies indicate that
the size of the initial sampling region increases with P2ʼs orbit
eccentricity. For the case of P2ʼs orbit eccentricity equals 0.1,
the initial sampling region is identified as: a ä [0.78, 1.28] au,
e ä [0, 0.17], i ä [0°, 2°.5]. In order to compare the capture
efficiency of different orbit eccentricity values at the same
condition, we set the initial sampling region for all the tested
orbit eccentricities as this one, and the bin resolution is:
Δa= 0.01 au, Δe= 0.01, Δi= 0°.5.

Basically, the same method as above has been used to
compute the capture efficiency of each bin and the steady-state
distribution. Considering that the relative geometry of ERTBP
changes as P2 revolves around P1, an additional epoch is
assigned to the particles during their generation. The epoch is
uniformly distributed in the range of [0, 2π] to average over the
geometry between the particle, P2 and P1. Figure 12 displays
the capture efficiency p(a, e, i) of each bin for different orbit
eccentricity values. An obvious fact is that the center of the
map remains close to the orbit eccentricity of P2. According to
Table 2, the total capture efficiency decreases as the orbit
eccentricity of P2 increases. This indicates that P2ʼs orbit

eccentricity has a negative influence on the total capture
efficiency. It is noticeable that the capture efficiency for orbit
eccentricity of P2 to be 0 in Figure 12 differs from the one
computed in Section 3.2. This discrepancy is due to the fact
that a larger initial sampling region is used here. It has been
mentioned in Section 1 that the capture efficiency in our work
serves as an indicator of P2ʼs ability to capture nearby particles
within a specific region. The computed result is dependent on
the choice of the initial sampling region and the alteration of
the sampling region here is solely for the purpose of discussing
the potential impact of P2ʼs orbit eccentricity on the capture
efficiency.

5. Conclusion

In this paper, we study the temporary capture efficiency of
massless particles around P2ʼs orbit in the framework of
CRTBP. We focus on the gravitational influence of P2 on the
capture efficiency. The final computed capture efficiency based
on the non-uniform steady-state distribution which fully takes
P2ʼs gravity into account is different from the one based on the
uniform steady-state distribution. In the Sun–Earth CRTBP
system (μE≈ 3.0035× 10−6), the capture efficiency based on
the non-uniform distribution is computed as ∼2.930× 10−4. In
this case, the initial sampling region which envelops P2ʼs orbit
is given as a ä [0.87, 1.15] au, e ä [0, 0.06], i ä [0°, 2°.5]. The
circumsphere size is set to 7 Hill Radii of P2.
The way to compute the capture efficiency is the one used in

Granvik et al. (2012). The relevant physical parameters during
the process are also investigated and some reference values are
recommended. A backward integration method is proposed to
identify the initial sampling region. The circumsphere size
around P2 is also altered to choose a proper value. With the
relative increment in capture efficiency at specific circumsphere
size less than 10%, 7 Hill Radii of P2 is recommended as the
circumsphere size in the Sun–Earth CRTBP system. A 2 yr
integration time is demonstrated to be long enough to compute
the capture efficiency. Furthermore, we also find a power-law
relation between the capture efficiency and mass parameter,
which holds as

m» ´p 0.27 0.53

when 3.0035× 10−6� μ� 3.0034× 10−5.
It is emphasized that since we do not consider realistic orbit

element distributions of small bodies around the planet, the
capture efficiency computed is not the real one of the planet,
but it can serve as a metric for assessing the planet’s capability
to capture nearby particles within a specific region. We believe
that the planet’s gravity is a dominant factor which influences
the steady-state distribution and the capture efficiency. The
time-slicing method enables us to generate a steady-state
distribution of nearby particles for a given planet. Moreover,
although the algorithm is basically the same one taken by
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Granvik et al. (2012), the ways to choose parameters of the
algorithm such as the size of the initial sampling region,
circumsphere size and integration time can serve as good
references if one wants to study the capture efficiency of some
particular planet once a reliable orbit element distribution
around it is available. The power-law relation between the
capture efficiency and the mass parameter provides us with a
quick reference of capture capability for any planets within the
specific range (μE� μ� 10μE). To be more realistic, we
extend our work to the ERTBP. When the orbit eccentricity of

P2 increases, the computed capture efficiency decreases. This
means that the orbit eccentricity of P2 has a negative influence
on the capture efficiency.
Our next step is to analyze the capture efficiency in the case

where dissipative forces such as the Poynting–Robertson drag
and the Yarkovsky effect are included. These thermal forces are
significant for celestial bodies with small sizes. We try to find
out how these thermal forces along with the gravity of P2 can
affect the capture efficiency of particles in the vicinity. This
may help us better understand the role of dissipative forces in
the evolutionary history of small celestial objects around the
planet, e.g., dust particles around Earth’s orbit.
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Figure 12. Capture efficiency p(a, e, i) of each bin in the initial sampling region for different values of P2ʼs orbit eccentricity. The initial sampling region is a ä [0.78, 1.28] au,
e ä [0, 0.17], i ä [0°, 2°.5] and the bin resolution remains: Δa= 0.01 au, Δe= 0.01, Δi= 0°.5. The orbit eccentricities of P2 are: (1) Upper left: e= 0; (2) Upper right:
e= 0.0167 (Earth-like orbit); (3) Lower left: e= 0.05; (4) Lower right: e= 0.1. The colorbar means the capture efficiency in the bin.

Table 2
Test Values of the ERTBP’s Orbit Eccentricity, Along with the Total Capture

Efficiency

Orbit Eccentricity 0 0.0167 0.05 0.1

p 5.928 × 10−5 4.931 × 10−5 2.142 × 10−5 1.195 × 10−5
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Data Availability

The data that support the findings of this study are available
from the author upon reasonable request.
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