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Abstract

Determining asteroid properties provides valuable physical insights but inverting them from photometric
lightcurves remains computationally intensive. This paper presents a new approach that combines a simplified
Cellinoid shape model with the Parallel Differential Evolution (PDE) algorithm to accelerate inversion. The PDE
algorithm is more efficient than the Differential Evolution algorithm, achieving an extraordinary speedup of 37.983
with 64 workers on multicore CPUs. The PDE algorithm accurately derives period and pole values from simulated
data. The analysis of real asteroid lightcurves validates the method’s reliability: in comparison with results
published elsewhere, the PDE algorithm accurately recovers the rotational periods and, given adequate viewing
geometries, closely matches the pole orientations. The PDE approach converges to solutions within 20,000
iterations and under one hour, demonstrating its potential for large-scale data analysis. This work provides a
promising new tool for unveiling asteroid physical properties by overcoming key computational bottlenecks.
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1. Introduction

Asteroids are important objects for understanding the origin
and evolution of the solar system. As small bodies orbiting the
Sun, they provide insights into early planetary formation
processes and conditions. Additionally, some asteroids pose a
potential hazard to Earth through impact events. Characterizing
and understanding asteroids, especially those that pass near
Earth’s orbit, is therefore crucial. Most asteroids reside between
the orbits of Mars and Jupiter in the main asteroid belt.
However, gravitational perturbations can send some asteroids
into the inner solar system, becoming near-Earth asteroids. Key
physical properties of asteroids, such as rotational periods,
shapes, and pole orientations, can be determined through
analysis of photometric lightcurves and radar images. While
radar data are limited, lightcurves from optical photometric
monitoring are abundant. Deriving accurate asteroid physical
parameters from lightcurve data remains an open challenge.
Further work to develop efficient lightcurve inversion techni-
ques would significantly advance our understanding of the
asteroid population.

The utilization of lightcurve data for studying asteroid
shapes was initially met with skepticism in early research
endeavors. Despite being the pioneer in employing lightcurve
data for asteroid shape inversion, Russell (1906) was skeptical
about its ability to construct satisfactory asteroid shape models.

However, advancements in observational techniques eventually
made the inversion of physical parameters of asteroids using
lightcurve data increasingly viable. Surdej & Surdej (1978)
implemented Lambert’s law and the Lommel–Seeliger law to
simulate a synthetic lightcurve from a spinning triaxial
ellipsoid. Meanwhile, Karttunen (1989) and Karttunen &
Bowell (1989) advanced a method for generating lightcurves
using a triaxial ellipsoid anchored on the Lumme–Bowell
scattering law Lumme & Bowell (1981a, 1981b). However, the
symmetric and regular nature of the ellipsoid resulted in a
symmetric synthetic lightcurve, posing challenges for simulat-
ing asymmetrical and irregular real asteroids. In response to
these limitations, Cellino et al. (1985, 1987, 1989) introduced a
new model based on a composite of eight ellipsoidal octants,
moving away from the regular triaxial ellipsoid. The model
facilitated the generation of lightcurves more indicative of real-
world observations. Still, Cellino et al. (1989) did not provide
an inversion method for these lightcurves. The model was
subsequently named the Cellinoid shape model by Lu et al.
(2014), who also provided a detailed derivation proof and
inversion method.
The field has made significant strides over the past decades

in inverting the physical parameters of asteroids. Lumme et al.
(1990) employed the method of spherical harmonics to
determine the pole position of an asteroid. A method for
calculating asteroid shapes and related parameters was
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proposed and validated on a large number of real observed
lightcurves by Kaasalainen et al. (1992a), Kaasalainen et al.
(1992b), Kaasalainen & Torppa (2001), Kaasalainen et al.
(2001), Kaasalainen (2001), Kaasalainen et al. (2002),
Kaasalainen et al. (2003), Kaasalainen et al. (2005) and
Kaasalainen & Lamberg (2006). Innovative approaches have
been introduced to accelerate lightcurve simulation and
inversion, as evidenced by Kaasalainen et al. (2012) usage of
Lebedev quadratures. Ďurech et al. (2010, 2011) successfully
applied Kaasalainen’s method to obtain the relevant physical
parameters of hundreds of asteroids. Furthermore, Muinonen &
Lumme (2015) and Muinonen et al. (2015) utilized the disk-
integrated brightness method and the Lommel–Seeliger
ellipsoid model to effectively invert physical parameters such
as the rotational period and shape of an asteroid from both
sparse and dense photometric data. The inversion tests
conducted by Cellino et al. (2015) on both simulated and real
photometric data using the Muinonen method further con-
tributed to the field. Inversions on asteroids like (6) Hebe and
(7) Iris were performed using the Cellinoid model and
Hipparcos data by Lu & Ip (2015), Lu et al. (2016, 2017),
Lu et al. (2018) and Lu & Jewitt (2019). These studies also
advocated the use of the Lebedev quadrature method to
accelerate the inversion process. In addition, Muinonen et al.
(2020) offered the first Markov chain Monte Carlo method to
account for the uncertainties of the spin, shape, and scattering
parameter solutions with ellipsoids and general convex shapes.
Martikainen et al. (2021) developed a method for deriving
reference absolute magnitudes and phase curves from the Gaia
data, which allows for comparative studies involving hundreds
of asteroids. The study found wide variations in the derived
photometric slope values within each assumed Tholen class.
Muinonen et al. (2022) provided error models for four classes
of lightcurves and used linear or linear-exponential phase
functions for phase angles below 50°. Tian et al. (2022)
measured the YORP effect of (1685) Toro and (85989) 1999
JD6 by inverting their lightcurves, providing new detections of
this effect and insights into the evolution of small asteroids.

As established by Karttunen (1989) and Karttunen & Bowell
(1989), the fluctuation in an asteroid’s luminosity is primarily
governed by its form rather than the scattering principles.
Furthermore, as shown by Kaasalainen & Torppa (2001) and
Kaasalainen et al. (2001), the physical attributes of asteroids
can be inferred from their lightcurves. They utilized inversion
techniques that use a “convex hull” to approximate the shape,
assuming a universal albedo. As some asteroids are diminutive
bodies formed during the early epoch of the solar system and
have not undergone frequently collisional evolution, their
surfaces remain relatively unaltered. However, Bottke et al.
(2005) showed that small asteroids (less than tens of
kilometers) are likely multi-generations of collisional fragments
rather than primordial planetesimals. The influence of varia-
tions in albedo is less pronounced than that of irregular shape

changes. Therefore, these lightcurve inversion methodologies
are capable of deriving a comprehensive shape model. To
streamline the inversion process, the assumption of universal
albedo is frequently employed in these techniques. The convex
hull may correspond to a triaxial ellipsoidal form, a convex
polyhedral shape, or a Cellinoid shape. As highlighted by Lu
et al. (2017), when compared to the Cellinoid shape model, the
convex polyhedral shape model is excessively intricate. More
specifically, this model incorporates more than 50 parameters,
necessitating the collection of a substantial volume of
observational data to accommodate these parameters. Even
when employing methods based on low-degree spherical
harmonics models (Muinonen et al. 2020, 2022), around 15
parameters are needed, which is more complex than the
Cellinoid model.
Zhang et al. (2023) introduced a parallel acceleration-based

three-step reduced voting (TRV) method aimed at expediting
the inversion process. This method notably enhances computa-
tional efficiency, enabling the rapid determination of asteroid
rotational periods. The TRV algorithm is a parallelization
scheme of the Levenberg–Marquardt (LM) algorithm, which
significantly accelerates the inversion process. However, given
that the LM algorithm optimizes locally, additional iterations
are necessary to ensure inversion accuracy. To address this
limitation, Li et al. (2023) devised a hybrid optimization
algorithm that combines the genetic algorithm with the LM
algorithm, all based on a Cellinoid shape model. This
combination substantially boosts the efficiency of inversion.
Initially, the hybrid algorithm employs the genetic algorithm to
search the vicinity of the global optimal solution, then the LM
algorithm refines the accuracy of the optimal solution.
However, despite the significant efficiency improvement, this
algorithm is confined to the comparison of serial execution.
Collectively, these studies illustrate that evolutionary algo-
rithms are effective for the inversion of such problems, and
parallel computing can enhance inversion efficiency. The
asteroid package for the shape model used in this work will
consider the astrometric tools provided by PyMsOfa (Ji
et al. 2023) in the future. This paper introduces a novel
Parallel Differential Evolution (PDE) algorithm, developed
based on the Cellinoid model. This approach combines the
benefits of evolutionary algorithms and parallel computing for
improved efficiency and precision.
The inversion process is depicted in Figure 1. The inversion

process begins with the collection of asteroid lightcurve data
from ground-based telescopic observations. These lightcurves
capture the changing brightness of an asteroid over time as its
irregular shape rotates. This paper then applies a novel PDE
algorithm to rapidly invert these lightcurve data into the
asteroid’s rotation period and pole orientation. The algorithm
maintains a population of candidate solutions that are evolved
through iterative mutation, crossover, and selection operators
executed in parallel. By evaluating candidates concurrently at
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each generation on a multicore CPU devices, the algorithm
significantly accelerates the global search. The improved
computational efficiency enables fast determination of the
asteroid’s physical parameters from large photometric data sets.
The PDE algorithm provides an efficient and robust optim-
ization framework for asteroid inversion utilizing multicore
CPU parallel computing hardware.

This work primarily focuses on the following key
contributions.

1. This paper introduces an innovative PDE algorithm for
asteroid lightcurve inversion. The parallel implementa-
tion on multicore CPUs leads to significant speed
improvements over former serial optimization methods,
including the Hybrid Optimization Algorithm (Li
et al. 2023), and reduces the iteration count compared
to local optimization algorithms designed for parallel
computation, such as TRV (Zhang et al. 2023).

2. The PDE algorithm is shown to quickly and accurately
determine asteroid rotational periods from lightcurve data.
Experimental findings indicate that rotational periods
determined through this method exhibit a high degree of
concordance with the reference values established in the
DAMIT database (Ďurech et al. 2010), demonstrating the
effectiveness of the Cellinoid model despite its simplicity.
Furthermore, when the observation geometries are favor-
able, the calculated pole positions are found to be
generally consistent with the pole orientations listed in
the DAMIT database (Ďurech et al. 2010).

3. The computational efficiency of the PDE algorithm is
demonstrated by its ability to converge to solutions
within 20,000 iterations and under one hour for all test
cases. This marks a significant advancement in the
analysis of asteroid photometric data, offering a rapid and
reliable method that aligns with reference values from the
DAMIT database (Ďurech et al. 2010). Consequently, this
algorithm provides a time-efficient solution for managing
the increasing volume of asteroid observations.

The rest of this paper is structured as follows: Section 2
describes the Cellinoid shape model, brightness calculation, and
the Mean Square Error (MSE). Section 3 provides details on the
PDE algorithm, delving into the differential evolutionary metho-
dology and the parallel acceleration scheme. Section 4 offers a
performance analysis of the PDE algorithm, validation of the
method through synthetic lightcurve analysis, a detailed case study
on asteroid (15) Eunomia, and experiments on 16 other real
asteroids. This section also includes a discussion on a methodology
for inverting observational data that accounts for observational
uncertainties. Lastly, Section 5 presents the conclusion of this
paper, summarizing the key findings and implications.

2. Methodology

This section provides an in-depth overview of the Cellinoid
shape model, a crucial tool for understanding the physical
characteristics of asteroids. The focus then shifts to the
brightness calculations, essential for interpreting asteroid

Figure 1. Overview of the proposed Parallel Differential Evolution algorithm.

3

Research in Astronomy and Astrophysics, 24:045024 (16pp), 2024 April Zhang et al.



lightcurve data. Concluding the section is a comprehensive
explanation of the MSE, a statistical measure that provides a
quantitative assessment of the accuracy of predictions; it is
integral to optimizing model parameters.

2.1. Cellinoid Shape Model

As described by Lu et al. (2014), the Cellinoid model is a
geometric construct that effectively represents the shape of an
asteroid. This model is characterized as a composite structure,
comprised of eight distinct octant surfaces. Each of these
surfaces originates from ellipsoids, which are in turn defined by
a set of six semiaxes: a1, a2, b1, b2, c1, and c2. This intricate
configuration allows the Cellinoid model to account for a variety
of asteroid shapes, making it a versatile tool in asteroid studies.
A visual representation of this model is provided in Figure 2.

In the 3D coordinates of this model, the volume equation can
be derived as Equation (1):

( )( )( ) ( )V a a b b c c
6

, 11 2 1 2 1 2
p

= + + +

In addition, it is assumed that the volume density ρ is
uniformly distributed throughout the Cellinoid shape. Under
this assumption, the mass M of the Cellinoid shape can be
calculated by multiplying the density over the volume, as
shown in Equation (2):

( )M V , 2r=

After deriving the expression for the total mass M of the
Cellinoid shape using Equation (2), the center of mass position
can be calculated. The coordinates (x y z, , ) of the mass center
are given by Equation (3):

( ) ( ) ( )

( ) ( )
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In addition to mass properties, Lu et al. (2014) also analyzed
the rotational dynamics of the Cellinoid shape model. They
calculated the moment of inertia tensor for the Cellinoid based
on its geometry and mass distribution. By diagonalizing this
inertia tensor, the principal axes of rotation were determined.
The axis corresponding to the maximum moment of inertia was
found to be the stable rotational axis for the Cellinoid shape
model under free rotational motion. This provides insights into
the spin dynamics and rotational stability of asteroids
approximated by this Cellinoid shape model.
The matrices A and B are presented by Lu et al. (2014), as

depicted in Equation (4).
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The inertia tensor matrix A−MB can be diagonalized
through an eigendecomposition. This decomposition expresses
the tensor as a product of an orthogonal matrix Q, a diagonal
matrix Λ, and the transpose QT, as shown in Equation (5):

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )A Q Q
I

I
I

MB ,
0 0

0 0
0 0

. 5T
1

2

3

- = L L =

where Λ is a diagonal matrix containing the principal moments
of inertia as diagonal elements, and Q is an orthogonal matrix
whose columns are the principal axes of rotation. The
eigendecomposition allows the principal moments and axes
to be extracted from the inertia tensor.
The definition of the rotation matrix R, as represented in

Equation (6), incorporates the pole coordinates (λ, β) of the
asteroid and the rotational phase (θ) within the ecliptic
coordinate system.

Figure 2. Cellinoid shape model.
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Hence, the 3D coordinates in the ecliptic coordinate system
can be transformed to the coordinates in the Cellinoid model’s
system using Equation (7):

( ) ( )P PQR Loc 7Asteroid¢ = -

Here, LocAsteroid signifies the 3D coordinates of the asteroid
within the ecliptic coordinate system, P denotes the coordinates
of any given point within the same ecliptic system, and P¢
corresponds to the coordinates in the system where P is
translated to the Cellinoid model’s locale.

2.2. Brightness Calculation

The examination of scattering behavior is a critical aspect of
asteroid modeling. A variety of physical parameters such as the
single-scattering albedo Ω0, the asymmetry factor g, the
volume density of the surface material D, and the surface
roughness ñ were incorporated into the studies by several
researchers, as cited (Lumme & Bowell 1981a, 1981b). These
collective efforts culminated in the creation of a complex
scattering model, designed to mimic the reflection of sunlight
on asteroid surfaces. In a different approach, Hapke (1984)
considered the opposition effect and shadowing within surface
particle interactions. While these models are capable of
representing the physical characteristics of light reflection,
their practical application is impeded by uncertain physical
parameters. To further explore this issue, Kaasalainen et al.
(2005) carried out photometric research on an artificial asteroid
in laboratory experiments. Their results indicate that the
primary source of brightness variation is shape variation, not
the scattering law. Additionally, they pinpointed a difficulty in
differentiating between the scattering law and random error,
highlighting the necessity for a simpler scattering law for
efficient derivation of shape models. Addressing this need,
Kaasalainen et al. (2001) introduced a practical method for
simulating scattering behavior. This method consists of a linear
combination of both the single scattering factor SLS (Lommel–
Seeliger) and the multiple scattering factor SL (Lambert). This
refined approach simplifies the process while still providing
important insights into the scattering behavior of celestial
bodies. By diminishing the complexity of the scattering law, it
becomes easier for researchers to derive accurate shape models,
thereby improving comprehension of asteroid surfaces and
their interactions with sunlight. This improved understanding
has wider implications for celestial mechanics and can provide
relevant context for other aspects of asteroid research, such as
trajectory prediction. In summary, the development and use of
simpler, more efficient scattering laws have the potential to
significantly enhance understanding of the complex and
dynamic behavior of asteroids. The scattering law can be

computed as Equation (8).

⎜ ⎟
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Here, α represents the solar phase angle (Sun–object–observer).
Meanwhile, f (α) is the solar phase function, which is
characterized by four parameters, as indicated in Equation (9):

⎛
⎝

⎞
⎠

( ) ( )f A
D

K Bexp . 9a
a

a= - + +

In addition, μ and μ0 are defined as follows in Equation (10):

· · ( )E E, , 100 0m h m h= =

where η symbolizes the outward unit normal vector of the
surface. Additionally, the unit vectors E and E0 correspond to
the directions toward Earth and the Sun respectively, as
perceived from the asteroid’s perspective.
Utilizing the Cellinoid model, the brightness of the asteroid

can be determined via surface integration, as demonstrated in
Equation (11):

∬( ) ( ) ( )L E E S ds, , , , 11
C

0 0m m a=
+

where C+ refers to the portion of the Cellinoid shape model’s
surface that is both visible and illuminated.
Moreover, a Cellinoid shape can be discretized utilizing a

triangularization scheme. Consequently, the surface integral in
Equation (11) can be approximately computed as Equation (12):

⎛

⎝
⎜

⎞

⎠
⎟( ) [ ( ) ] ( )L E E S s, , , , 12

i j

N

i j0
1

8

1
0 ,å å m m a»

= =

Here, i signifies the index of the octants, while j denotes the
index of the triangular facets within each octant. Meanwhile,
!si,j represents the area of the j-th facet in the i-th octant.

2.3. Mean Square Error

The MSE is an essential metric used in this research to
evaluate the difference between the observed and simulated
lightcurves generated using the Cellinoid shape model. The
MSE is a common measure of prediction error in regression
analyses and is particularly useful in this context as it provides a
quantifiable measure of the accuracy of the model’s predictions.
The MSE is calculated as the average of the squared

differences between the observed and predicted values. This
calculation is expressed mathematically as follows:

( ˜ ) ( )
M

L LMSE
1

13
i

M

i i
1

2å= -
=

Here, Li denotes the observed brightness for the i-th lightcurve,
whereas L̃i stands for the calculated brightness aligned with the
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observation geometry. The summation extends across all M
data points.

In cases where the observed lightcurve is uncalibrated, a
modified form of the MSE function is employed, as detailed in
Equation (14).

⎜ ⎟
⎛
⎝

⎞
⎠

˜
˜ ( )

M

L

L

Li

Li
MSE

1
14

i

M
i

i1

2

å=
á ñ

-
á ñ=

In Equation (14), 〈Li〉 and L̃iá ñ correspond to the mean
observed and synthetic brightness, respectively. Similar to
previous instances, the summation is conducted across all M
data points.

3. Parallel Differential Evolution Algorithm

With the fundamentals of the Cellinoid shape model and the
mean square error metric established, the focus now shifts to
utilizing these components within an optimization framework to
reconstruct asteroid models from observed brightness data.
Specifically, a PDE algorithm is developed to efficiently search
the high-dimensional parameter space and determine the Cellinoid
parameters that best reproduce the lightcurve observations. The
following sections describe the differential evolutionary algorithm
and the parallel acceleration scheme implemented to expedite
convergence. First, the basic differential evolutionary algorithm is
outlined, including details of the mutation, crossover, and selection
operations that underlie this global optimization technique.
Building upon this foundation, the parallelization approach is then
presented, introducing concurrent fitness evaluation across sub-
populations and a periodic exchange of solutions between
subpopulations to enhance the search diversity and rate of
convergence. Together, these methods provide an optimized
framework for accelerating the asteroidal properties inversion
process by fitting Cellinoid shapes to lightcurve observations using
an accelerated, parallelized differential evolutionary algorithm.

3.1. Differential Evolutionary Algorithm

Differential Evolution (DE) is an evolutionary algorithm
uniquely suited for optimizing problems that involve real-
valued parameters. This makes it ideal for tasks such as fitting
the Cellinoid model to lightcurve data. DE optimizes candidate
solutions by iteratively refining a population through mutation,
crossover, and selection operations, all of which are inspired by
biological evolution. In DE, each member of the population is a
vector representing a potential solution. In the context of fitting
Cellinoid models, an individual vector would contain the six
shape parameters, two pole orientation angles, period,
rotational phase angle, and phase function coefficients.

The DE algorithm operates on a population of potential
solutions, enhancing these solutions iteratively through a series
of mutation, crossover, and selection operations. These
operations are elaborated as follows:

3.1.1. Mutation

The first step in the DE algorithm is mutation. During this
operation, new trial vectors are generated by adding the
weighted difference between two population vectors to a third
vector. This can be mathematically represented as:

· ( ) ( )V X F X X 15r r r0 1 2= + -

In Equation (15), Xr0, Xr1, and Xr2 are vectors randomly
selected from the current population, and F is a scaling factor
that controls the amplification of the differential variation
(Xr1− Xr2). The mutation operation introduces diversity into
the population and enables the exploration of the search space.

3.1.2. Crossover

The crossover operation is designed to further enhance the
diversity of the population and explore the search space. In
Equation (16), components of the mutant vector V (created
during the mutation stage) are mixed with the components of the
target vector Xi to generate a trial vector U. This combination is
governed by a crossover probability recombination:

⎧
⎨⎩

[ ]
( )


U

V j n i

X

if rand recombination or rand

otherwise
16j

j j

i j,
=

=

Here, randj is a uniformly distributed random number
between 0 and 1, and [ ]irandn is a randomly selected index.

3.1.3. Selection

In the selection operation, as shown in Equation (17), the
trial vector U competes against the target vector Xi from the
original population. The vector with the lower objective
function value (Equation (13) or Equation (14)) remains and
proceeds to the next generation:

⎧
⎨⎩

( ) ( ) ( )
X

U f U f X
X

if
otherwise

17i
i

i
=

Here, f (U) and f (Xi) represent the objective function values
of the trial and target vectors, respectively. This selection
operation ensures the quality of solutions in the population
improves over generations.
The DE algorithm repeats these mutations, crossover, and

selection operations until a stopping criterion is met, such as a
maximum number of generations or a satisfactory objective
function value. Through these iterative operations, the DE
algorithm efficiently navigates the high-dimensional parameter
space and finds the optimal set of parameters that minimize the
objective function, in this case, the MSE between observed and
simulated lightcurve data.
Through this simple but powerful evolutionary process, the

DE implementation is able to robustly optimize solutions for
the complex, high-dimensional Cellinoid fitting problem.
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3.2. Parallel Acceleration Scheme

The PDF algorithm is designed to enhance the computational
efficiency of the DE algorithm for physical properties inversion
of asteroids. It takes advantage of parallel processing to
simultaneously evaluate and evolve multiple individuals in the
population. This algorithm is particularly advantageous when
dealing with large populations or complex objective functions
that require substantially computational resources. The proce-
dure of this algorithm is shown in Figure 3, and its pseudocode
is shown in Algorithm 1.

Algorithm 1. Parallel Differential Evolution for Asteroid
Physical Properties Inversion

Input: f: objective function, bounds: boundaries of parameters, popsize:
population size, F: scaling factor, atol: absolute tolerance, tol: relative tol-
erance, recombination: crossover probability, maxiter: maximum iterations,
workers: parallel processes

Output: x∗: optimal solution
1: Initialize population x x x, , , popsize1 2 ¼ randomly within bounds
2: Evaluate fitnesses ( )f xi for all individuals in parallel using workers

processes
3: Set iter Converged False0,¬ ¬
4: while iter maxiter< and not Convergeddo
5: Calculate mean, stddev of ( ) ( ) ( )f x f x f x, , , popsize1 2 ¼
6: if ∣ ∣stddev atol tol mean+ * then

(Continued)

7: Converged True¬
8: break
9: end if
10: Evolve population for one generation:
11: for i 1¬ to popsize in parallel do
12: vi¬ Mutate(xi) with scaling factor F
13: end for
14: for i 1¬ to popsize in parallel do
15: xi¢¬ Crossover(vi) with probability recombination
16: end for
17: Selection:
18: for i 1¬ to popsize in parallel do
19: Evaluate fitnesses ( )f xi¢
20: if ( ) ( )f x f xi i¢ then
21: x xi i¬ ¢
22: end if
23: end for
24: iter++
25: end while
26: return argmin ( )f xi i as x*

The PDE algorithm works similarly to the standard DE
algorithm, but with a crucial modification: multiple evolu-
tionary operations (such as mutation, crossover, and selection)

Figure 3. Flowchart of the PDE algorithm.
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are performed concurrently using multiple parallel processes.
The number of parallel processes, or workers, is a parameter
that can be adjusted based on the computational resources
available.

The PDE algorithm begins by initializing a population of
potential solutions within the provided parameter bounds. The
fitness of each individual, evaluated by the objective function
(Equations (13) or (14)), is then determined in parallel. The
algorithm then enters a loop, which continues until either the
maximum number of iterations is reached or the population has
converged to a satisfactory solution, as determined by the
standard deviation of the fitnesses being less than a specified
tolerance.

Within the loop, the population is evolved for one
generation. Each individual in the population is first mutated
and then undergoes crossover, with each operation conducted
in parallel across the population. The fitness of each resulting
individual is then evaluated, and the selection operation is
performed to determine which individuals proceed to the next
generation. This process effectively utilizes parallel processing
to expedite the evolutionary process.

At the end of the loop, the individual with the lowest fitness
(i.e., the best solution) is returned as the optimal solution. This
parallel acceleration scheme allows the DE algorithm to
efficiently tackle the high-dimensional parameter optimization
problem involved in asteroid physical properties inversion.

4. Numerical Experiments and Discussion

This section explores the practical application of the PDE
algorithm for inverting the physical properties of asteroids. The
exploration begins with an analysis of the performance of the
PDE algorithm. Next come the generation and analysis of
synthetic lightcurves. This controlled setting, where the real
properties of the asteroids are known, allows for a precise
evaluation of the algorithm’s accuracy and efficiency. Follow-
ing this, the focus shifts to a real-world case study of asteroid
(15) Eunomia, using real observational data to demonstrate the
algorithm’s capabilities in a practical context. After examining
the case study, the application of the PDE algorithm is
extended to other real asteroids, further validating its robust-
ness and general applicability. The section concludes with a
discussion on a methodology for inverting observational data
that accounts for observational uncertainties.

4.1. Performance Analysis of PDE Algorithms

This section presents an analysis of the performance of PDE
algorithms on a dual multicore CPU architecture. The focus is
on evaluating the computational efficiency of the PDE
algorithms under varying degrees of parallelization. The PDE
algorithm was implemented using a combination of the C and
Python programming languages. C was chosen for its low-level
control over hardware interactions, which is critical for

performance optimization, while Python was utilized for its
robust scientific computing libraries and ease of code
integration. The experimental platform employed was a PC
server configured with two Hygon C86 7185 CPUs, each with
32 cores and a 2000MHz clock rate, and 128 GB of RAM.
This high-performance setup was selected to subject the PDE
algorithms to computationally demanding tasks.
The PDE algorithm was configured with specific parameters

for the evaluation:

1. The population size was set at 30, which is standard for
ensuring a stable evolutionary process.

2. The convergence criteria were defined by a relative
tolerance of 0.000 001 and an absolute tolerance of zero.

3. A dithering scaling factor with a range between 0.5 and 1
was employed. This involved dynamically adjusting the
mutation constant for each generation from a uniform
distribution within the given range.

4. The crossover probability was set at 0.7 to dictate the
mixing of solution traits.

The chosen test case for the performance analysis was
asteroid (85) Io, with a data set of 557 points. Workers were
distributed in a series of tests with 1, 2, 4, 8, 16, 32, and 64
workers to assess the algorithm’s efficiency. This distribution
pattern allowed for the observation of performance changes in
response to the doubling of the number of processors,
indicative of the algorithm’s parallel efficiency. For consis-
tency, the maximum number of iterations was capped at 1000
for all tests. This uniformity ensured that each computation was
allowed to progress through an equal number of iterations,
providing a fair basis for comparison of the execution duration
and resource utilization across various worker configurations.
The elapsed time, speedup ratio, and parallelization

efficiency are employed as metrics to evaluate the parallel
performance of the PDE algorithm. In this paper, the definitions
used by Zhang et al. (2023) for the speedup ratio and
parallelization efficiency are adopted. The speedup ratio is
shown in Equation (18), and the parallelization efficiency is
shown in Equation (19).

( )T

T
speedup , 18

n

1=

·
( )T

n T
efficiency , 19

n

1=

where n denotes the number of workers and Tn denotes the time
required to complete the PDE algorithm with n workers.
The computational efficacy of a PDE algorithm executed on

a dual multicore CPU architecture was scrutinized through the
systematic increase of worker processes, with particular
attention to the metrics of elapsed time, speedup, and
computational efficiency, as illustrated in Table 1. When using
a single worker, the PDE algorithm is the DE algorithm.

8

Research in Astronomy and Astrophysics, 24:045024 (16pp), 2024 April Zhang et al.



Starting with this single worker, which establishes a benchmark
duration of 3.592 hr, the PDE algorithm consistently achieves
reduced processing times and enhanced speedup with the
addition of more workers. Peak efficiency was attained with
two workers, reaching 0.981, after which it demonstrated a
gradual decline. This pattern emphasizes the principle of
diminishing returns as the worker count escalates. Remarkably,
64 workers achieved an extraordinary speedup of 37.983;
however, this was accompanied by the lowest efficiency of
0.593, indicating that the drawbacks of increased overhead
could outweigh the benefits of extensive parallelism.

Through analysis, the experiments conducted in the
subsequent sections of this paper employ a maximum of
20,000 iterations to ensure that the algorithms run until
convergence criteria are met, with a relative tolerance of
0.000001 and an absolute tolerance of zero. Additionally, the
number of workers is set to 60.

4.2. Generation and Analysis of Synthetic Lightcurves

This section validates the PDE algorithm through the use of
a Cellinoid shape as an asteroid model. The positional data for
the Earth and asteroid (433) Eros were sourced from the Jet
Propulsion Laboratory (JPL) Horizons On-Line Ephemeris
System,6 which is maintained by NASA, for the period 2019
November 1–2021 October 31.

A Cellinoid model-based shape was created using the real
parameter values, which include information on the shape,
pole, period, and rotational phase angle: a1= 1, a2= 0.78,
b1= 0.90, b2= 0.73, c1= 0.61, c2= 0.82, λ= 132°,
β=− 42°, P= 5.8 hr, and θ= 191°. Six apparitions were
selected for analysis: day 19, day 51, day 212, day 261, day
299, and day 544. The average solar phase angles of these
apparitions were 19°, 12°, 24°, 33°, 39°, and 35°, respectively.
Subsequently, lightcurve data for each apparition was gener-
ated, with each apparition’s time span kept below the set period
of 5.8 hr.

The study extends to the generation of synthetic lightcurves
with the incorporation of controlled noise, aiming to simulate

the intensity fluctuations observed in real astronomical data.
This technique is essential for validating the analytical methods
utilized in the processing of observational lightcurves. Uniform
noise, drawn from a distribution within the interval [−1, 1],
was introduced to the intensity data. A uniform distribution was
selected to ensure that all potential noise values within the
range are equally probable. The intensity of the noise was
adjusted using a coefficient of 0.02, serving to scale the noise
relative to the original data values. The formula for the noised
intensity Inoised is shown in Equation (20).

· ( · ) ( )I I N1 0.02 20noised original= +

Here, Ioriginal denotes the original intensity value, and N
represents the noise value from the uniform distribution.
The experiment utilized the lightcurves of these six

apparitions with uniform noise as the data set. Initial
parameters were randomly generated, and the PDE algorithm
was used to derive optimal results. These results yielded
optimal parameters for shape, pole, period, and rotational phase
angle: a1= 0.93, a2= 0.73, b1= 0.46, b2= 0.89, c1= 0.69,
c2= 0.83, λ= 129°.00, β=− 43°.59, P= 5.800004 hr, and
θ= 188°.61. Despite a slight deviation in the rotational phase
angle and the inverted pole, the inverted and preset periods
were highly consistent. Additionally, a good fit using the noisy
data is evident, as illustrated in Figure 4.
The PDE algorithm reached convergence after 2242

iterations and the elapsed time is 0.132167 hr. Throughout this
process, the values for period, longitude, and latitude oscillated
around 5.800004 hr, 129°.00, and −43°.59, respectively, as
shown in Figures 5(b), (c), (d). In the analysis of synthetic
lightcurves, the stability of the MSE values plays a crucial role
in determining the reliability of the iterative process used for
uncertainty estimation. As observed in Figure 5(a), the MSE
values stabilize and maintain consistency in the final third of
the iterations.
This paper presents a specific method for estimating the

uncertainty in the outcomes of the PDE algorithm. The PDE
algorithm obtains the optimal solution at each iteration during
the iterative process. Recognizing that earlier iterations may
yield optimal solutions that deviate from the true solution, this
paper considers the optimal solutions from the final third of
the iteration process to estimate uncertainty. Solutions from
later iterations are more likely to approximate the true
solution, and the fluctuations among these later solutions
serve as a measure of the uncertainty estimation. This
approach resulted in estimated uncertainties for the inverted
pole (128°.96± 0°.06, −43°.57± 0°.03) and the inverted
period (5.800004± 0.000 001 hr). This uncertainty estimation
approach will be adopted in all subsequent experiments
presented in this paper.

Table 1
Performance on Multicore CPUs with Different Numbers of Workers (n)

Workers (n) Elapsed Time (hr) Speedup Efficiency

1 3.592 1.000 1.000
2 1.830 1.963 0.981
4 0.957 3.752 0.938
8 0.520 6.904 0.863
16 0.278 12.944 0.809
32 0.159 22.604 0.706
64 0.095 37.983 0.593

6 The web address for accessing the Jet Propulsion Laboratory (JPL)
Horizons On-Line Ephemeris System is https://ssd.jpl.nasa.gov/horizons.
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4.3. Case Study: Asteroid (15) Eunomia

This section presents a comprehensive analysis of asteroid
(15) Eunomia, utilizing data from various observations.
According to Lu et al. (2017), the precision of the inverted
pole orientation can be enhanced by using observations
collected from diverse viewing geometries. Therefore, light-
curves from 12 separate apparitions have been employed in the
search for the best-fit parameters, applying the PDE algorithm.

The existing literature provides fundamental parameters for
asteroid (15) Eunomia, such as pole orientation and rotation
period. Kaasalainen et al. (2002), Nathues et al. (2005), Hanuš
et al. (2013) report a rotation period of 6.082753 hr with pole
orientation of (3°, − 67°). In contrast, Viikinkoski et al. (2017)
report a period of 6.082752 hr and pole orientation of (0°,
− 68°), while Vernazza et al. (2021) report a period of
6.082754 hr with pole orientation of (356°, − 70°). Additionally,
lightcurves from 12 apparitions have been analyzed, which were
collected over the years from 1952 to 2009 (Ďurech et al. 2010).

The average solar phase angles for these apparitions ranged from
5°.78 to 20°.93. The total sample size is 554.
The PDE algorithm was applied to the lightcurve data from

these 12 apparitions to derive optimal results. The resulting
optimal parameters for shape, pole, period, and rotational phase
angle were as follows: a1= 0.94, a2= 0.83, b1= 0.82, b2= 0.45,
c1= 0.70, c2= 0.51, λ= 358°.23, β=− 64°.07, P= 6.082753 hr,
and θ= 0°. A notably good fit was achieved with the observed
data, as illustrated in Figure 6. The inverted pole closely aligns
with the values sourced from the literature (Kaasalainen
et al. 2002; Nathues et al. 2005; Hanuš et al. 2013; Viikinkoski
et al. 2017; Vernazza et al. 2021). Consistency was also found
between the inverted periods and those sourced from the literature.
The PDE algorithm achieved convergence after 3430

iterations; the elapsed time was 0.322225 hr, during which
the values of period, longitude, and latitude oscillated around
6.082753 hr, 358°.23, and −64°.07, respectively, as depicted in
Figures 7(b) (c) (d). This paper selects the results from the last
third of the iterations for uncertainty estimation, yielding

Figure 4. Simulated noisy lightcurves and fitted models for the synthetic lightcurves at six geometries.
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estimated uncertainties for the inverted pole (358°.22± 0°.05,
−64°.06± 0°.02) and the inverted period (6.082753±
0.000001 hr).

4.4. Application to Other Real Asteroids

The PDE algorithm was applied to the lightcurve data of 16
different asteroids, with the results presented in Table 2. The
table includes the inverted pole orientations and rotational
periods, as determined both by the DAMIT database values
(Ďurech et al. 2010) and by the PDE algorithm.

The algorithm was executed on a PC server equipped with
two Hygon C86 7185 CPUs and 128 GB of RAM. Table 2
demonstrates the efficiency of the PDE algorithm, which
computed the results for each asteroid in less than an hour, all
while staying within the maximum limit of 20,000 iterations.
The PDE results for the pole orientations (longitude and

latitude) and rotational periods are presented with their
associated uncertainties. The PDE algorithm was able to
accurately derive the rotational periods of the asteroids from the
lightcurve data, and the latitude of the pole orientation was also
close to the reference values (Ďurech et al. 2010). A significant

Figure 5. Convergence analysis of PDE results for the synthetic lightcurves. (a) Mean squared error (MSE) at each iteration. (b) Optimal period identified at each
iteration, with final optimal period of 5.800004 hr. (c) Optimal longitude identified at each iteration, with final optimal longitude of 129°. 00. (d) Optimal latitude
identified at each iteration, with final optimal latitude of −43°. 59.
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Figure 6. Observed photometric lightcurves and fitted models for asteroid (15) Eunomia at 12 apparitions on 1952 January 25, 1955 December 24, 1959 September 9,
1970 March 7, 1983 February 1, 2006 June 3, 2006 June 5, 2009 April 13, 2009 May 12, 2009 May 13, 2009 May 19, and 2009 May 26.
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deviation in longitude was observed for eight asteroids
compared to the reference values (Ďurech et al. 2010), which
can be attributed to the geometric flexibility of the Cellinoid
shape model. As suggested by Lu et al. (2017), this deviation in
longitude can be explained by adjusting the rotational phase
angle and the octant positions in the model.

These results indicate that the PDE algorithm can be
effectively applied to determine the pole orientations and
rotational periods of other real asteroids. This opens up new
possibilities for future research in asteroid science and can
contribute to a more comprehensive understanding of the
physical properties of asteroids.

4.5. Discussion

The results obtained in this study underscore the effective-
ness and reliability of the PDE algorithm in determining the

pole orientations and rotational periods of asteroids from
lightcurve data. The consistency between the inverted rota-
tional periods from PDE and the values listed in the DAMIT
database (Ďurech et al. 2010) provides an indication of the
algorithm’s accuracy and, by extension, its potential utility in
asteroid science.
A noteworthy aspect of the PDE algorithm’s performance is

its computational efficiency. The ability to compute results for
each asteroid in less than an hour, while staying within the
maximum limit of 20,000 iterations, suggests that the algorithm
could be applicable to large-scale data sets. This opens up new
possibilities for the analysis of extensive asteroid lightcurve
data, which could, in turn, lead to more robust findings in
asteroid science.
The results of this research accentuate the effectiveness and

reliability of the PDE algorithm for determining the pole

Figure 7. Convergence analysis of PDE results for the asteroid (15) Eunomia. (a) Mean squared error (MSE) at each iteration. (b) Optimal period identified at each
iteration, with final optimal period of 6.082753 hr. (c) Optimal longitude identified at each iteration, with final optimal longitude of 358°. 23. (d) Optimal latitude
identified at each iteration, with final optimal latitude of −64°. 07.

13

Research in Astronomy and Astrophysics, 24:045024 (16pp), 2024 April Zhang et al.



Table 2
Comparison of Asteroid Pole Orientations and Rotational Periods from the DAMIT Database (Ďurech et al. 2010) vs. the PDE Algorithm Results

Asteroid LCs Size DAMIT PDE Result PDE Result with Uncertainty Elapsed Time Iterations
(λ, β, P) (λ, β, P) (λ, β, P)

(19) Fortuna 14 534 (98°, 57°, 7.443224 hr) (109°. 36, (109°. 37 ± 0°. 46, 0.499642 hr 5557
(97°, 69°, 7.443222 hr) 81°. 22, 81°. 24 ± 0°. 13,
(103°, 60°, 7.443224 hr) 7.443222 hr) 7.443222 ± 0.000001 hr)

(21) Lutetia 13 622 (54°, − 7°, 8.168269 hr) (54°. 56, (54°. 63 ± 0°. 67, 0.334544 hr 3221
(52°, − 6°, 8.168271 hr) −6°. 08, −6°. 21 ± 0°. 78,

8.168 271 hr) 8.168271 ± 0.000001 hr)
(29) Amphitrite 10 542 (322°, − 28°, 5.390119 hr) (131°. 42, (130°. 39 ± 2°. 62, 0.447484 hr 4785

(324°, − 26°, 5.390119 hr) −26°. 99, −27°. 88 ± 2°. 12,
(323°, − 29°, 5.39012 hr) 5.390127 hr) 5.390127 ± 0.000001 hr)

(43) Ariadne 11 521 (253°, − 15°, 5.76199 hr) (252°. 44, (252°. 43 ± 0°. 01, 0.219741 hr 2509
(251°, − 10°, 5.761987 hr) −15°. 15, −15°. 14 ± 0°. 03,

5.760 681 hr) 5.760681 ± 0.000001 hr)
(44) Nysa 16 661 (101°, 51°, 6.421417 hr) (103°. 09, (103°. 09 ± 0°. 06, 0.332210 hr 3070

51°. 92, 51°. 91 ± 0°. 03,
6.421 416 hr) 6.421416 ± 0.000001 hr)

(45) Eugenia 16 654 (124°, − 33°, 5.699152 hr) (124°. 64, (124°. 56 ± 0°. 11, 0.378442 hr 3512
(127°, − 35°, 5.699152 hr) −32°. 17, −32°. 22 ± 0°. 09,

5.699 150 hr) 5.699150 ± 0.000001 hr)
(55) Pandora 8 499 (223°, 18°, 4.804043 hr) (32°. 57, (32°. 61 ± 0°. 90, 0.423068 hr 4907

21°. 79, 21°. 78 ± 0°. 55,
4.804 802 hr) 4.804802 ± 0.000001 hr)

(66) Maja 16 638 (49°, − 70°, 9.7357 hr) (314°. 12, (313°. 88 ± 1°. 15, 0.571718 hr 5419
(225°, − 68°, 9.73572 hr) −64°. 98, −65°. 10 ± 0°. 41,

9.735 703 hr) 9.735703 ± 0.000001 hr)
(69) Hesperia 18 588 (250°, 17°, 5.65534 hr) (267°. 93, (267°. 28 ± 1°. 47, 0.554159 hr 5551

(71°, − 2°, 5.65534 hr) −1°. 99, −1°. 36 ± 1°. 88,
5.655332 hr) 5.655332 ± 0.000001 hr)

(73) Klytia 12 474 (44°, 83°, 8.28307 hr) (65°. 78, (65°. 73 ± 0°. 07, 0.390488 hr 4630
(266°, 68°, 8.28307 hr) 81°. 87, 81°. 93 ± 0°. 10

8.283 067 hr) 8.283067 ± 0.000001 hr)
(85) Io 12 557 (95°, − 65°, 6.874783 hr) (296°. 12, (295°. 64 ± 1°. 84, 0.809104 hr 8588

(92°, − 68°, 6.874784 hr) −74°. 16, −74°. 19 ± 0°. 59,
6.874 796 hr) 6.874796 ± 0.000001 hr)

(130) Elektra 14 579 (64°, − 88°, 5.224664 hr) (164°. 53, (164°. 80 ± 1°. 37, 0.461312 hr 4770
(64°, − 90°, 5.224663 hr) −88°. 08, −88°. 08 ± 0°. 02,

5.224 663 hr) 5.224663 ± 0.000001 hr)
(166) Rhodope 7 279 (173°, − 3°, 4.714799 hr) (185°. 08, (184°. 95 ± 0°. 59, 0.290588 hr 5266

(345°, − 22°, 4.714793 hr) −3°. 04, −2°. 13 ± 3°. 05,
4.715 909 hr) 4.715904 ± 0.000029 hr)

(281) Lucretia 8 446 (128°, − 49°, 4.349711 hr) (26°. 36, (34°. 50 ± 8°. 17, 0.482110 hr 6059
(309°, − 61°, 4.349711 hr) −72°. 34, −76°. 20 ± 3°. 81,

4.349 684 hr) 4.349684 ± 0.000001 hr)
(311) Claudia 23 386 (30°, 40°, 7.53138 hr) (215°. 59, (215°. 56 ± 0°. 13, 0.289181 hr 4021

(214°, 43°, 7.53138 hr) 42°. 37, 42°. 34 ± 0°. 24,
7.531390 hr) 7.531390 ± 0.000001 hr)

(355) Gabriella 9 435 (341°, 83°, 4.828994 hr) (243°. 35, (243°. 26 ± 0°. 08, 0.349521 hr 4494
(159°, 88°, 4.828994 hr) 86°. 52, 86°. 51 ± 0°. 01,

4.828994 hr) 4.828994 ± 0.000001 hr)

Note. “LCs” represents the number of lightcurves. “Size” indicates the size of the sample. “(λ, β)” denotes the longitude and latitude of poles in the ecliptic frame,
respectively. Longitude varies from 0° to 360°, while latitude ranges from −90° to 90°. “P” is the derived rotational period, measured in hours. “DAMIT” represents
data obtained from the source cited as Ďurech et al. (2010). “PDE Result” represents the optimal solution obtained from the last iteration of the PDE algorithm. “PDE
Result with uncertainty” indicates that this paper selects the results from the final third of the iterations for uncertainty estimation by the PDE algorithm. “Elapsed
Time” denotes the total time taken by the PDE algorithm to reach the solution, measured in hours. “Iterations” represents the number of iterations performed by the
PDE algorithm to reach the solution. The maximum limit for iterations is set at 20,000. As suggested by Lu et al. (2017), this deviation in longitude can be explained
by the geometric flexibility of the Cellinoid shape model, which can be adjusted by altering the rotational phase angle and the octant positions.
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orientations and rotational periods of asteroids from lightcurve
data. Nonetheless, the DAMIT database (Ďurech et al. 2010)
does not provide observational uncertainties. The section
addresses a methodology for inverting observational data that
includes observational uncertainties. This involves enhancing
Equations (13) and (14) by incorporating the observational
uncertainty parameter σi, as delineated below:
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This paper employs sparse photometric data from the
Hipparcos data set (Cellino et al. 2019), which includes
observational uncertainties. Asteroids (6) Hebe, (15) Eunomia,
and (39) Laetitia are selected for experimentation, with the
results presented in Table 3.

As indicated by Table 3, even though sparse photometric data
from the Hipparcos data set (Cellino et al. 2019) were used,
accurate rotational periods were still obtained. However, only
the pole orientation of asteroid (15) Eunomia achieved relatively
good results, whereas the other two asteroids showed deviations
from the reference values (Ďurech et al. 2010). This is in
agreement with the conclusion drawn by Lu et al. (2017), which
states that more observations collected in various viewing
geometries can improve the accuracy of the inverted pole
orientation. In other words, obtaining accurate results for pole
orientations requires more varied viewing geometries. The issue
of deviated longitudes for the eight asteroids in Table 2 can also
be addressed by increasing the number of viewing geometries.

As with any algorithm, there is always room for improve-
ment. Future research could focus on enhancing the PDE

algorithm’s efficiency and accuracy. For instance, exploring
methods for optimizing the algorithm’s parameters or imple-
menting machine learning approaches could potentially
improve its performance. Furthermore, the algorithm could be
tested on a wider range of asteroid types and sizes to assess its
versatility and adaptability.

5. Conclusion

This study demonstrates a new approach for efficiently
determining the rotational periods and pole orientations of
asteroids from observed lightcurve data. The proposed Parallel
Differential Evolution (PDE) algorithm leverages a Cellinoid
shape model and parallel computing to accelerate the inversion
process.
During performance testing of the PDE algorithm, it was

discovered that the PDE is more efficient than the DE
algorithm, achieving an extraordinary speedup of 37.983 with
64 workers. Additionally, the results confirm the effectiveness
of the PDE algorithm and the Cellinoid model on both
simulated and real asteroid data. For simulated asteroids, the
PDE method recovers the real rotational periods and pole
positions with high precision, even when uniform noise is
introduced. The Cellinoid shape model provides a robust
approximation for the irregular shapes of asteroids, enabling
efficient computation. Further analysis of asteroid lightcurves
has substantiated the reliability of the PDE algorithm. The
derived rotational periods show excellent concordance with the
reference values from the DAMIT database (Ďurech
et al. 2010), despite the simplicity of the Cellinoid model.
With adequate viewing geometries, the derived pole orienta-
tions generally match the reference values from the DAMIT
database (Ďurech et al. 2010). Furthermore, the PDE approach
demonstrates satisfactory computational efficiency, converging

Table 3
Comparison of Asteroid Pole Orientations and Rotational Periods from the Hipparcos Dataset (Cellino et al. 2019) vs. the PDE Algorithm Results

Asteroid Size DAMIT PDE Result PDE Result with Uncertainty Elapsed Time Iterations
(λ, β, P) (λ, β, P) (λ, β, P)

(6) Hebe 91 (340°, 42°, 7.274471 hr) (316°. 17, (315°. 97 ± 1°. 19, 0.409761 hr 14,011
(342°, 50°, 7.274467 hr) 20°. 46, 20°. 64 ± 1°. 38,
(342°, 51°, 7.274467 hr) 7.274408 hr) 7.274419 ± 0.000001 hr)

(15) Eunomia 83 (3°, − 67°, 6.082753 hr) (360°. 00, (355°. 86 ± 4°. 20, 0.234453 hr 8127
(0°, − 68°, 6.082752 hr) −71°. 21, −70°. 65 ± 0°. 82,
(356°, − 70°, 6.082754 hr) 6.082 794 hr) 6.082783 ± 0.000024 hr)

(39) Laetitia 112 (323°, 32°, 5.138238 hr) (316°. 33, (316°. 23 ± 0°. 37, 0.182914 hr 5661
(323°, 33°, 5.138238 hr) 10°. 61, 10°. 51 ± 0°. 57,

5.138238 hr) 5.138238 ± 0.000001 hr)

Note. “Size” indicates the size of the sample. “(λ, β)” denotes the longitude and latitude of poles in the ecliptic frame, respectively. Longitude varies from 0° to 360°,
while latitude ranges from −90° to 90°. “P” is the derived rotational period, measured in hours. “DAMIT” represents data obtained from the source cited as Ďurech
et al. (2010). “PDE Result” represents the optimal solution obtained from the last iteration of the PDE algorithm. “PDE Result with uncertainty” indicates that this
paper selects the results from the final third of the iterations for uncertainty estimation by the PDE algorithm. “Elapsed Time” denotes the total time taken by the PDE
algorithm to reach the solution, measured in hours. “Iterations” represents the number of iterations performed by the PDE algorithm to reach the solution. The
maximum limit for iterations is set at 20,000.
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to solutions within 20,000 iterations and under one hour for all
test cases. The statistical approach adopted in this work to
estimate the uncertainties is a simple one, which can be further
improved in future research.

This work demonstrates a promising new technique for
gaining insight into the rotational dynamics of asteroids from
photometric observations. By accelerating the inversion process,
the PDE algorithm and Cellinoid model could enable analysis of
large data sets and more detailed asteroid shape modeling.
Future research can build on these methods to construct a more
comprehensive understanding of asteroid properties and
dynamics. Improvements such as parameter optimization,
incorporation of additional shape models, and machine learning
integration could further enhance the capabilities.

Overall, this study presents an important advancement in an
area of significance to planetary science and solar system
dynamics. The results highlight the potential for synergistic
approaches that combine robust optimization algorithms, parallel
computing, and simplified shape modeling to reveal new
insights from asteroid lightcurve data. Further development of
these techniques promises to accelerate our understanding of
these small bodies and their interactions within our solar system.
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