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Abstract

We have developed a novel method for co-adding multiple under-sampled images that combines the iteratively
reweighted least squares and divide-and-conquer algorithms. Our approach not only allows for the anti-aliasing of
the images but also enables Point-Spread Function (PSF) deconvolution, resulting in enhanced restoration of
extended sources, the highest peak signal-to-noise ratio, and reduced ringing artefacts. To test our method, we
conducted numerical simulations that replicated observation runs of the China Space Station Telescope/ the VLT
Survey Telescope (VST) and compared our results to those obtained using previous algorithms. The simulation
showed that our method outperforms previous approaches in several ways, such as restoring the profile of extended
sources and minimizing ringing artefacts. Additionally, because our method relies on the inherent advantages of
least squares fitting, it is more versatile and does not depend on the local uniformity hypothesis for the PSF.
However, the new method consumes much more computation than the other approaches.

Key words: methods: analytical – techniques: image processing – gravitational lensing: weak – (ISM:) cosmic rays

1. Introduction

As technology has advanced, computer software has
become increasingly important in the field of image proces-
sing. To simplify data processing, an Image Acquisition
System (IAS) is often utilized for image digitization.
Essentially, an IAS acts as a digitizer that converts continuous
signals into digital ones by recording data with detectors, such
as pixels, which appear in a mosaic-like pattern known as
pixelation. However, due to the diffraction limit of the optics
equipment, the images captured by the IAS are band-limited.
This means that the signal recorded by the image has a
maximum spatial frequency or resolution, as described in
Fruchter (2011). A band-limited signal can be fully recon-
structed by high-sampling imaging, according to the Nyquist
sampling theorem. Nevertheless, many astronomical images
do not meet the Nyquist sampling criterion due to technical or
economic limitations, resulting in under-sampled images
(Fruchter & Hook 2002).

Under-sampled images suffer from an aliasing effect, which
blurs all signals below a sampling interval. To achieve a
resolving power that approaches the diffraction limit, the

sampling rate needs to be increased. This can be accomplished
by combining multiple exposures using various coaddition
methods, such as shift-and-add (Bates & Cady 1980; Farsiu
et al. 2004b), Drizzle (Fruchter & Hook 2002), Super-Drizzle
(Takeda et al. 2006), IMCOM (Rowe et al. 2011), iDrizzle
(Fruchter 2011), SPRITE (Ngolè Mboula et al. 2015), and
fiDrizzle (Wang & Li 2017), as well as iterative back-projection
(IBP, Irani & Peleg 1993; Symons et al. 2021). Drizzle has
become the standard for combining images taken by the
Hubble Space Telescope (HST) and the James Webb Space
Telescope (JWST). Some Drizzle-based methods are widely
used to restore fine details of under-sampled multi-exposures
and fuse images from different equipment. SPRITE and IBP are
developed to reconstruct the Point-Spread Function (PSF)
using stars in even one exposure.
Due to the diffraction of light, the image of a point-like source

in the image plane is not actually a point. Instead, it appears as an
extended object, known as the PSF effect. This degradation of the
observed image is caused by the convolved PSF, but PSF
deconvolution technology can improve resolution by compensat-
ing for this numerically. Along with resolution improvement,
PSF deconvolution also enhances contrast and reduces noise
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(Sage et al. 2017). There are various algorithms for PSF
deconvolution (Starck et al. 2002), including the Fourier-quotient
method, CLEAN method (Högbom & Cornwell 1974), Bayesian
approach [including Landweber method (Landweber 1951),
Richardson–Lucy algorithm (Richardson 1972; Lucy 1974;
Shepp & Vardi 1982)], wavelet-based deconvolution, and
super-resolution techniques (Gerchberg 1974; Hunt 1994; Elad
& Feuer 1999; Lauer 1999; Capel & Zisserman 2003; Park et al.
2003; Farsiu et al. 2004a; van Ouwerkerk 2006; Tian &
Ma 2011; Nasrollahi & Moeslund 2014; Yue et al. 2016; Symons
et al. 2021). The PSF deconvolution has numerous benefits, such
as its applicability to even the simplest optical setup, reduction of
financial costs, and streamlining of the acquisition pipeline.
However, when noise contaminates the PSF-convolved image,
PSF deconvolution becomes an ill-posed problem (Starck et al.
2002; Sage et al. 2017). Regularized methods are often employed
to generate an approximation (Ng et al. 2007; Takeda et al.
2007, 2009; Yuan et al. 2010; Babacan et al. 2011; Su et al.
2012; Zhang et al. 2012; Liu & Sun 2014), which is effective and
flexible in reducing noise amplification, ringing effect, and flux
divergence.

However, most previous works aim to either the PSF
deconvolution for single exposure (e.g., CLEAN, Landweber,
Richardson–Lucy, maximum entropy algorithm, etc.) or to
multiple exposures coaddition but without PSF deconvolution
(e.g., shift-and-add and Drizzle based methods). Only a few
works mention the under-sampled multi-exposures coaddition
(MEC) with PSF deconvolution, e.g., Stark-Pantin: Equation
(53) in Starck et al. (2002) and UPDC: Equation (10) in Wang
et al. (2022). In this paper, we systematically study how to
achieve superresolution in the iterative MEC by anti-aliasing
and PSF deconvolution coaddition (AAPD). We test several
recovery methods with numerical simulations.

2. Imaging Model and the Least Squares

The observation image records not only the shape or flux from
the objects of study but also a set of combined observational
effects, e.g., blurring effects (PSF, seeing, vignetting, etc.),
sampling effect (pixelation, image field distortion), noise effect
(equipment noise, environment noise), etc. Therefore, a reason-
able imaging model should take those observational effects into
account.

Let  be an image degrading operator (i.e., blurring) which
represents a combination of a series of image operations e.g.,
PSF convolution, pixelation, etc. The formation of an under-
sampled observation image  with the size of U× V pixels can
be formally expressed as

{ { }} ( )=   , 1 

where  is the intrinsic, continuous surface brightness of the
sky. Assuming that contains a fine grid of sizeM×N, we can
represent the downgraded effects of the image, except for the

noise, using { }  . The noise contamination on the downgraded
image is described by . To recover the original image from
 , we need to know the combined effects of { {·}}  in
Equation (1) in advance. In this study, we focus on the recovery
method and assume that the PSFs and the position shift on all
dithered exposures are well measured beforehand. Table 1
provides a list of important symbols and their representations.
Assuming that we have L blurred (PSF convolved and/or

under-sampled) exposures { }, ... L1 2   12 with U× V pixels
for the same object and the known blurring effects {·} , can we
mock another set of frames { }, ... L1 2   to approach the
observations, then constrain the original image? To answer this
question, we try to use the least squares to calculate a χ2 for all
pixels between the observation and mock samples. Theoreti-
cally, the χ2 can be represented as
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where { }=   and  is a target image with size of M× N
fine grids, i.e., the estimation of the original image , while
θk,i,j is the noise at the pixel of the ith row and jth column of the
kth observational frame. Note that the summation of the
squares is over L×U× V pixels. Since the blurring effects

{·} are known, minimizing the χ2 results in an estimation of
the target image  . By differentiating χ2 with respect to  and
setting the derivative to zero, we have

( )c¶
¶

= 0. 3
2



It is very difficult to solve Equation (3) directly, especially
for huge amounts of pixels. Actually, Equation (3) is a system
of linear equations with M× N unknowns and L×U× V
conditions. As a kind of fallback solution, we employ a divide-
and-conquer algorithm to solve Equation (3) on each target grid
(m, n) at a time. The Drizzled grids are used as the initial

Table 1
Important Variables Used in the Text

Variable Description

 intrinsic, continuous surface brightness of the sky

k the kth exposure
 fully sampled high resolution (or definition) image

k PSF measured from the kth frame
 weight for flux allocation
 sample for pixels on the same WCS position
β down-sampling factor
θ noise at the pixel

{·} noise operator
{·} blurring operator

{·}+P component-wise projection operator for constraints set

12 Frame k (k = 1...L) is obtained from the kth observation.
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values. The target grid (m, n) will be renewed after solving
Equation (3). The program checks if the output meets the preset
threshold13 when all grids are updated. If not, the updated grids
will take the place of the initial values in Equation (3). Then it
repeats the above steps until the updated grids meet the
threshold. Therefore, Equation (3) is solved in an iterative
approach as follows:
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where k is a fine PSF measured from the kth frame. The PSF
must have the same sampling rate as the target image. k i j p q, , , ,
is a flux allocation weight that stands for how many areas of an

observation pixel (k, i, j) are overlapped by the target pixel
(p, q), shown as Figure 1. In this work, the overlapped polygon
of two grids is clipped using a polygon clipping algorithm
Clipper2.14 The area of the clipped polygon is calculated using
the Green formula. Indexes r and r+ 1 represent the sequence
number of the iteration step. OS is a space that includes all
observation pixels that are overlapped with PSF k which is
centered at the target pixel (m, n), while TS includes all target
pixels that are overlapped with the OS observation pixels.
Let Y = åk i j m n p q

TS
k i j p q k p q m n, , , , , , , , , , , , ,  and ( )F =k i j m n

r
, , , ,
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which is an iterative solution to the least squares. ( )Fk i j m n
r
, , , , is the

mimic flux of pixels that are overlapped by the target grid ( )
m n
r
, .

In order to eliminate contaminations from cosmic rays or

Figure 1. Resampling mechanism. The target grid ( )
m n
r
, is shown as the fine (in black), the observation pixels k i j, , are shown as coarse (in red). The flux weight

k i j p q, , , , (in pink) is determined by the clipped area between the observation pixels and the target grid. Here the TS space (p, q) includes all target cells that overlap
with the observation pixel k i j, , (blue region).

13 In this work, we suggest using the χ2 as the threshold. 14 https://github.com/AngusJohnson/Clipper2

3

Research in Astronomy and Astrophysics, 24:045009 (11pp), 2024 April Wang et al.

https://github.com/AngusJohnson/Clipper2


abnormal pixels, the weight θk,i,j is dynamically adjusted with
the iterations, which results in robust regression of the
algorithm. This is actually an application of the Iteratively
Reweighted Least Squares (IRLS) method in image stacking.
We call this divide-and-conquer IRLS method i.e., Equation (5)
as Dirles. The initial value of the iteration ( )0 is set as the
Drizzled real exposures to automatically introduce telescope
effects such as vignetting, instrument noise, and saturation
overflow. Therefore, these effects do not need to be simulated
anymore in the Dirles.

In literature, there are two algorithms besides the Dirles that
can achieve the anti-aliasing and PSF deconvolution coaddi-
tion simultaneously. These algorithms are called Starck–Pantin
(Starck et al. 2002) and UPDC (Wang et al. 2022). Both
Starck–Pantin and UPDC are forward modeling methods that
infer the original image by maximizing the likelihood between
observations and mocks. The algorithms like Richardson–
Lucy, Starck–Pantin, and UPDC use FFT to convolve the PSF.
However, the Dirles algorithm convolves the PSF in the real
space, making it more suitable for situations where the PSF
changes dramatically. Although it consumes much more
computation than the previous algorithms, it is a better choice
for such situations.

Drizzling the multi-exposures of an ideal point source can
form a blurring effect in the target image (grid), which
originates from the pixelation. It is called pixelation blur to
distinguish it from the ordinary PSF (see Wang et al. 2022 for
more details). The pixelation blur is not homogeneous, even

not continuously changing in the whole target image. Because
different point sources have different positions therefore
different cases of pixels coaddition. Due to the heterogeneity
of pixelation blur, theoretically, it is not a good choice to
deconvolve the PSF by using ordinary methods e.g., Land-
weber or Richardson–Lucy algorithm on the Drizzled image.

3. Image Completion: Cosmic Rays and Bad Pixels
Replacement

Instead of using the Drizzle method for cosmic-ray removal
(Fruchter & Hook 2002), we apply an improved statistical
algorithm that identifies and replaces abnormal regions with
reasonable values. The new algorithm can significantly reduce
the mismatched cosmic rays (∼50%) in our China Space
Station Telescope - Multi-channel Imager (CSST-MCI) mock
test, e.g., Figure 2. The process of image completion involves
the following steps.

1. To start, let us create a target grid, denoted by m n, , with a
1:1 sampling rate. This grid will be utilized to resample
all L exposures k i j, , (k= 1...L) based on the WCS
parameters specified in their headers.

2. For each target pixel located at position (m, n), we collect
a statistical sample of overlapping exposure pixels,
denoted by ( ) m n,0 . We gather a total of M× N
samples. These statistical samples are then utilized to
calculate the median value, providing the first estimation

Figure 2. Cosmic-ray removal. For one of the exposures, there are four circles in the top panels and bottom left. The bottom right panel shows all the mismatched
cases (including 50 exposures). Circles in green stand for the misidentification cases (They are not real cosmic rays), while blue for the omissions.
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of an image that is free of cosmic rays or bad pixels,
known as ( )m n,mid .

3. The mean, μ0(m, n), and standard deviation, σ0(m, n), are
also calculated for each sample ( ) m n,0 . We use these
values to identify cosmic-ray candidates by checking if
the exposure pixels with a flux of ( )> +m n,k i j, , mid 

( )n s´ m n,0 0 meet the preliminary voting condition.
Here, ν0 is an artificial threshold set to 5 in our work. If a
region occasionally has multiple cosmic rays, the mean
μ0(m, n) can be overestimated. Therefore, we replace the
mean μ0(m, n) with the median ( )m n,mid in the
preliminary voting condition.

4. Typically, an exposure pixel, k i j, , , is covered by 1 to 5
neighboring target pixels that act as ”voters” in
determining whether a cosmic-ray candidate is present.
If a cosmic-ray candidate receives all the votes of the
voters in the district, it is flagged as a cosmic ray. We
remove the cosmic rays from the sample ( ) m n,0 to
obtain a relatively pure sample, denoted by ( ) m n,1 .

5. Once again, we calculate the mean, μ1(m, n), and
standard deviation, σ1(m, n), for each sample ( ) m n,1 .
We then perform a series of similar operations as
described above, but with a refreshed condition

( ) ( )m n s> + ´m n m n, ,k i j, , 1 1 1 , where ν1 is set to 5.
This allows us to remove cosmic rays from sample

( ) m n,1 , resulting in a reduced sample called ( ) m n,2 .
Please note that some exposure pixels with flux

( ) ( )m n s> + ´m n m n, ,k i j, , 1 0 1 are removed for their
cosmic-ray identification, but those with flux <k i j, ,

( ) ( )m n s- ´m n m n, ,1 0 1 are not. This means that using
the mean μ2(m, n) and standard deviation σ2(m, n) taken
from sample ( ) m n,2 to generate a Gaussian distribution
is biased. To avoid that issue, we fit the sample ( ) m n,2

to a Gaussian profile using the nonlinear least squares
fitting code MPFIT.15

6. Each bad pixel or cosmic ray exposure pixel will be
replaced with a random value generated by its corresp-
onding Gaussian profile.

The above method is not valid for pixels that are overlapped by
only one or two exposures due to the lack of a statistical
sample. These cases usually occur at the marginal area of the
target image m n, , and can be ignored. Figure 2 shows a case
for cosmic-ray removal. The circles and ellipticals denote the
mismatched cosmic rays. The bottom right panel shows the
total number of mismatched cases for 50 exposures. The blue
circles and ellipticals represent cosmic rays that were omitted
due to their low flux blending with the background, while the
green circles indicate cases of mistaken removal caused by the
threshold set-up, i.e., a small probability event below the
threshold.

4. Simulation Tests Based on the CSST-MCI Mock
Pipeline

By employing the CSST-MCI mock pipeline, we take one
HST Wide Field Camera 3 (WFC3) stamp from a real galaxy
database of Galsim (Rowe et al. 2015) as our mock input (or
original image, ground truth), to generate mock exposures with
random shifts and rotations for the g-band. In the CSST-MCI
mock, four blurring effects are taken into account: PSF
convolution, cosmic ray, down-sampling, and Gaussian/
Poisson noise. Following Wang et al. (2022), a non-strict
positivity constraint is adopted:

⎧
⎨⎩

{ } ( )( )
( ) ( )

( ) ( )
=

<
+

+ +

+
+




0

0
6i

i i

i i
1

1 1

1


 

 
P

where { }( )++ i 1P is a component-wise projection of ( )+i 1
onto the set + (not strictly). For the convenience of
comparison, we assumed that a PSF is uniform in a local
region. The region size is determined by the spatial growth rate
of the PSF. It is a local uniformity hypothesis for the PSFs.

4.1. Mock-I: Faint Sources Detection

This case centers on the application of mock and multi-
exposure coaddition to CSST-MCI, i.e., Figure 3. The image in
the lower left panel serves as the ground-truth input, extracted
from an HST observation and showcasing no less than 15
substructures16 on the central galaxy. The upper left panel features
one of the g-band exposures (512× 512 pixels, with a down-
sampling factor β= 2, convolved PSF size 128× 128 pixels),
which displays two easily identifiable substructures. The Drizzled
image for 50 exposures is displayed in the upper right panel,
revealing roughly seven substructures. Lastly, the final panel
showcases the coadded image generated by this work, where all
15 substructures on the central galaxy are clearly visible. There
are seven stars in the field of view, corresponding to seven
pixels with high flux in the ground-truth input. The stars are
visible in the rest panels but with different full half-maximum
widths (FHWM).

4.2. Mock-II: Strong Lensing Mock and Images
Coaddition

Figure 4 shows a strong gravitational lensing mock and
recoveries from four kinds of coaddition methods. The panel in
the bottom left displays the ground-truth image generated by a
lensing model and used as the mock input. Notably, the strong
lensed giant arc within the dashed annulus is known as the
Einstein ring. Moving to the top middle panel, we see an
example of one of the CSST-MCI mocked exposures in the
r-band with a down-sampling factor β= 4. Finally, the

15 https://pages.physics.wisc.edu/~craigm/idl/cmpfit.html

16 The substructures of galaxies are detected by the software SourceXtractor++
(https://sourcextractorplusplus.readthedocs.io/en/latest/Introduction.html). It may
be point-like sources or spiral arms in the figure.
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remaining panels showcase four distinct coaddition methods
that were used to recover images from the exposures
(128× 128 pixels, convolved PSF size 128× 128 pixels).
These methods are referred to as Drizzle (top right), UPDC
(bottom left), Starck–Pantin (bottom middle), and Dirles
(bottom right). Visually, UPDC and Dirles manifest better
results than the Drizzle or the Starck–Pantin in the Einstein
ring recovery from 100 mocked exposures.

Quantitatively, we measure the peak signal-to-noise ratio
(PSNR) within the region of the dashed annulus in Figure 4 for
each iteration of different coaddition methods. The result is
shown in Figure 5. The methods tested are Drizzle (with a
PSNR of 22.16), UPDC (in Red), Richardson–Lucy (in Green),
Starck–Pantin (in Blue) and Dirles (in Black). The curves end
at the optimal iteration with the highest PSNR. The Dirles
achieves the highest PSNR among all the recoveries with less
than 40 iterations. Richardson–Lucy method consumes the
most iterations but the least computation (see Table 2). Note

that the same PSFs are used in the PSF deconvolutions as those
for the mock input.

4.3. Mock-III: VST Mock and Image Restoration

To test the recovery methods, we have mocked the 100
frames r-band VOICE−CDFS− 1 multi-exposures data from
the OmegaCAM of the Very Large Telescope Survey
Telescope in the European Southern Observatory. To reduce
computation time, we extracted a square region that is centered
at [R.A.= 53°.1511, decl.=−27°.7175] and has a size of
101× 101 observation pixels. There is a high-resolution image
(goodss_3dhst_F606W_sci.fits) from the HST in this region.
The high-resolution HST image has been binned
1.77858× 1.778 58 times along the two-dimensions.
In our simulation process, we use a group of Moffat profiles

to replicate extended sources such as galaxies. To mimic the
central point source (the star) on the target grid, we adopt a
single pixel. By adjusting the Moffat profiles’ parameters and

Figure 3. CSST-MCI mock and multi-exposure coaddtion. The bottom left panel shows the ground-truth image as the mock input, which is extracted from the HST
observation with at least 15 substructures on the central galaxy. One of the g-band exposures with two obvious substructures is illustrated on the top left. There are
about seven substructures on the top right panel (the Drizzled image for 50 exposures). All the 15 substructures on the central galaxy can be found on the last panel,
which is coadded by this work.
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the central point’s brightness, and convolving a PSF from the
binned HST image on the same sky field, we can fit a target
image to the binned HST image. The target image is shown on
the top left panel of Figure 6, and we consider it to be true.

To produce the mock samples, we first combine the fine
PSFs and true PSFs measured in the 100 VOICE frames. The
fine PSFs, which have a dimension of 59× 59 pixels, are
generated by a Principal Component Analysis (PCA) based
method developed by our team’s cooperators Nie et al.
(2021a, 2021b). Next, we shift the image using the same
position shifts as the VOICE frames and down-sample the true
image to the same coarse grids as in the VOICE frames.
Finally, we add the Poisson and Gaussian noise from each
VOICE frame to the corresponding mock sample, as shown in
the middle panel of the top array of Figure 6.

To make the results more realistic, we create sets of
realizations by modifying the random seed in the Poisson and
Gaussian processes. For each set of realizations, we reconstruct
the mock samples using the methods mentioned in the text,
namely Drizzle, UPDC, Starck–Pantin, and Dirles, up to the
optimal number of iterations17 in the 2× 2 finer target grid.

According to the results depicted in Figure 6, the Dirles
approach appears to yield superior reconstructions in compar-
ison to earlier methods. This can be attributed to its ability to
effectively recover object shapes, minimize the ringing effect,

and suppress background noise. It should be noted, however,
that Dirles may disregard certain low SNR regions, such as the
tails of galaxies. To circumvent this potential concern,
decreasing the number of iterations and gradually balancing
noise reduction with signal enhancement is advisable.
Weak gravitational lensing is primarily concerned with

measuring the shear. This involves measuring the deformation
of the background galaxies compared to the randomly aligned
ones. By doing so, it is possible to constrain the properties of
the foreground lensing objects. Therefore, the ellipticity of
galaxies is the signal that researchers are interested in
extracting. Following Hirata & Seljak (2003), the ellipticity
of an object is defined as

( ) ( )
( ) ( )

= - +
= +

+

´

e M M M M

e M M M2 7
xx yy xx yy

xy xx yy

where Mij represents the moments, the spin-2 tensor e= (e+,
e×) is the so-called ellipticity tensor. To address the problem of
divergence, we apply a circular Gaussian weighting function to
the largest galaxy, with a weight radius of rw. The variance of
shape parameters is then plotted in Figure 7 against the weight
radius rw. By analyzing the visual illustration in Figure 6 and
the quantitative results in Figure 7, we can conclude that the
Dirles and UPDC methods outperform other methods in
reconstructing shape parameters for extended sources. It is
worth noting that the Drizzle method produced the largest
deviation from the ground truth.

Figure 4. A strong gravitational lensing mock. The bottom left panel shows the ground-truth image as the mock input, which is generated by a lensing model. One of
the CSST-MCI mocked exposures in the r-band is illustrated on the top middle panel (with a down-sampling factor β = 4). Four kinds of coaddition methods
recovered images from exposures are shown on the rest panels: Drizzle (top right), UPDC (bottom left), Starck–Pantin (bottom middle) and Dirles (bottom right).

17 The iteration has the highest PSNR.
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In the field of photometry, the reconstructed source profile
plays a pivotal role in estimating the performance of recovery
algorithms. To analyze the profiles for both the central star and
the largest nearby galaxy, we have presented graphical
representations in Figures 8 and 9, respectively. Our analysis
based on Figures 6, 8, and 9 demonstrates that Dirles
outperforms other methods by effectively recovering high peak
intensities in point sources, providing superior profiles for
extended sources, and minimizing undesirable ringing arte-
facts. It is noteworthy that, for a given recovery method, the
optimal number of iterations exhibits minimal variation across
different realizations.

We have conducted a comprehensive study of the computa-
tion time required by different coaddition methods during each
iteration. The results are presented in Table 2. All calculations
were performed on a two-socket AMD server equipped with

two CPUs of EPYC 7763@2.45–3.5 GHz and 1 TB DDR4
memory.
The Richardson–Lucy method has the lowest computation

cost as it mainly executes the FFT in the calculation, which
increases with an ( )O N Nlog trend. On the other hand,
Drizzle consumes the most time on the exposure up-sampling
process. Both Starck–Pantin and UPDC involve similar
operations such as PSF convolving (via FFT), down-
sampling, comparing, and up-sampling. Hence, they have
almost the same computation cost, which is mainly con-
tributed by the sampling.
Dirles has the highest computation cost compared to the

other methods. Instead of the FFT-based convolution, its PSF
convolution is performed in real space, which significantly
increases computational time. Apart from the size of input
exposures, the computation also depends on the dimension of

Figure 5. A comparison of the PSNR from different coaddition methods: Drizzle (PSNR = 22.16), UPDC (in Red), Richardson–Lucy (in Green), Starck–Pantin (in
Blue) and Dirles (in Black). The curves end at the optimal iteration with the highest PSNR.

Table 2
Computational Resources Consumed by Various Coaddition Approaches During Each Iteration

Simu No. Drizzle Richardson–Lucy Starck–Pantin UPDC Dirles

Mock-I (512 × 512 × 50, β = 2) 3.7 s 220.4 ms 7.9 s 7.8 s 272.2 s
Mock-II (128 × 128 × 100, β = 4) 1.9 s 90.1 ms 3.8 s 3.9 s 144.3 s
Mock-III (101 × 101 × 100, β = 2) 0.3 s 6.8 ms 0.6 s 0.6 s 5.4 s
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the PSF provided in advance. However, the Dirles method
stands out from other approaches as it does not assume local
uniformity for the PSF. Consequently, it is a better fit for
scenarios where the PSF undergoes significant changes within

an exposure space. With Dirles, we can convolve a PSF map
that is different everywhere in the field of view. D. Liu et al.
(2023, in preparation) are constructing such a PSF map by
using a set of basic functions for fitting.

Figure 6. Recoveries from the VST mock. The top left panel displays the ground truth, which is a model fitting to the binned HST observation. One of the VST mock
exposures is shown on the top middle panel. The top right panel displays the image recovered by using Drizzle method. The three panels at the bottom, from left to
right, represent the recoveries by UPDC, Starck–Pantin, and Dirles methods respectively.

Figure 7. Shape parameters comparison between the true and the recoveries: left for e+ and right for e×.

9

Research in Astronomy and Astrophysics, 24:045009 (11pp), 2024 April Wang et al.



5. Conclusions

In this article, we propose a novel AAPD method, named
Dirles, which is based on the least squares fitting technique.
Following a series of rigorous simulation tests conducted on
these algorithms, our findings can be summarized as follows.

1. In detecting faint sources, Dirles recovered all 15
substructures while Drizzle missed 8.

2. The Dirles approach outperforms previous methods by
achieving the highest PSNR, recovering object shapes,
minimizing the ringing effect and suppressing noise.
However, it may ignore low SNR regions. To address
this, gradually reduce iterations and balance noise
reduction with signal enhancement.

3. The Dirles method outperforms other methods in
reconstructing shape parameters for extended sources.

Figure 8. The left panel shows the normalized profiles of the central star drawn in different colors to differentiate between them: Drizzle (in Magenta), UPDC (in Red),
Richardson–Lucy (in Green), Starck–Pantin (in Blue), and Dirles (in Black). The right panel is a zoomed-in version that focuses on the area around the zero flux. This
view highlights the ringing effect and other details around the point source.

Figure 9. Profiles of the largest galaxy from ground truth (in Cyan) and five recoveries: Drizzle (in Magenta), UPDC (in Red), Richardson–Lucy (in Green), Starck–
Pantin (in Blue) and Dirles (in Black).
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In radiometry, the Dirles method performs the best in
terms of recovering the highest peak in point sources,
providing the best profile for extended sources, and
reducing the ringing effect.

4. Compared to the other methods, Dirles has the highest
computation cost. However, it stands out from other
approaches as it does not assume local uniformity for the
PSF, making it a better fit for scenarios where the PSF
undergoes significant changes within an exposure space.

After extensive simulations, it can be concluded that Dirles
outperforms previous works in restoring point/extended
sources, maintaining extended source shapes, and reducing
ringing despite high computation consumption.

In the future, numerous upcoming telescopes will commence
astronomical observations, such as NASA’s Wide Field
Infrared Survey Telescope (WFIRST), the European Space
Agency’s Euclid mission, the National Science Foundation-
funded Large Synoptic Survey Telescope (LSST), and China’s
Space Station Optical Telescope (CSST). These advanced
instruments will generate a vast volume of imaging data.
Effectively processing these images while maintaining high
fidelity is an imminent necessity. As the implementation of
Dirles algorithm uses a divide-and-conquer approach, it may be
possible to accelerate it to a considerable extent using GPU-
based parallel computing. We are confident that there is a
significant potential for improving the speed and effectiveness
of the Dirles method even further.
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In this study, a cluster is used with the SIMT accelerator
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