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Abstract

The large-scale imaging survey will produce massive photometric data in multi-bands for billions of galaxies.
Defining strategies to quickly and efficiently extract useful physical information from this data is mandatory. Among
the stellar population parameters for galaxies, their stellar masses and star formation rates (SFRs) are the most
fundamental. We develop a novel tool, Multi-Layer Perceptron for Predicting Galaxy Parameters (MLP-GaP), that
uses a machine learning (ML) algorithm to accurately and efficiently derive the stellar masses and SFRs from multi-
band catalogs. We first adopt a mock data set generated by the Code Investigating GALaxy Emission (CIGALE) for
training and testing data sets. Subsequently, we used a multi-layer perceptron model to build MLP-GaP and
effectively trained it with the training data set. The results of the test performed on the mock data set show that
MLP-GaP can accurately predict the reference values. Besides MLP-GaP has a significantly faster processing speed
than CIGALE. To demonstrate the science-readiness of the MLP-GaP, we also apply it to a real data sample and
compare the stellar masses and SFRs with CIGALE. Overall, the predicted values of MLP-GaP show a very good
consistency with the estimated values derived from spectral energy distribution fitting. Therefore, the capability of
MLP-GaP to rapidly and accurately predict stellar masses and SFRs makes it particularly well-suited for analyzing
huge amounts of galaxies in the era of large sky surveys.
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1. Introduction

Galaxies are fundamental building blocks of the cosmic
large-scale structures and have played a crucial role in the
evolution of baryons in the universe's history. We are entering
the season of the Stage-IV all-sky surveys, which will observe
billions of galaxies. Large sky surveys have become a
fundamental tool for cosmology and galaxy formation studies
over the past few decades. In particular, Stage-III surveys have
provided multi-band data for tens to hundreds of millions of
galaxies and other celestial objects, such as the Kilo-Degree
Survey (KiDS; Wright et al. 2024), Hyper Suprime-Cam (HSC;
Aihara et al. 2018), and the Dark Energy Survey (DES; Abbott
et al. 2021). Over the past decade, these large-scale surveys
have definitely pushed our understanding of the dark matter
distribution in the universe via weak lensing (e.g., Laureijs
et al. 2011; Hildebrandt et al. 2017; Abbott et al. 2018;
Heymans et al. 2021; Joachimi et al. 2021; Mistele et al. 2023).
However, they have also provided useful data to significantly
grow our understanding of the formation and evolution of
galaxies (e.g., Greco et al. 2018; Goulding et al. 2018; Roy
et al. 2018; Adhikari et al. 2021; Xie et al. 2023). In this
context, the ability to collect accurate stellar population
properties of all examined galaxies, despite being crucial

(e.g., Wright et al. 2019), has been a bottleneck in the science
outcomes (e.g., Bilicki et al. 2021).
In the next decade, Stage-IV surveys will observe billions of

galaxies, providing data that is both more in-depth and of
higher quality and covering the wavelengths from ultraviolet
(UV) to near-infrared (NIR). Observational programs for the
Stage-IV surveys include Euclid (Laureijs et al. 2011), Vera
Rubin Legacy Survey in Space and Time (VR/LSST; Ivezić
et al. 2019), and the China Space Station Telescope (e.g.,
Zhan 2011; Zhan & Tyson 2018; Gong et al. 2019). The data
for Stage-IV surveys will offer unprecedented insights into
cosmology and galaxy evolution, including crucial revelations
on dark matter, dark energy, and the formation and evolution of
galaxies.
Galaxies are complex systems with numerous physical

parameters, such as stellar mass (Må), size, morphology, star
formation rate (SFR), age, metallicity and chemical composi-
tion. Accurately measuring these parameters is essential for
understanding the formation and evolution of galaxies and their
role in shaping the structure and evolution of the universe.
However, obtaining unbiased stellar population parameters for
galaxies remains a significant challenge due to the well-known
age/metallicity degeneracies. Currently, there is no consensus
on how to mitigate these degeneracies, and various attempts
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have been made to account for different phases of stellar
evolution (e.g., Maraston 2005; Vazdekis et al. 2016) to solve
this problem. On the other hand, combining different codes and
stellar libraries, along with stellar population priors and star
formation histories, can help reduce the impact of systematic
errors (e.g., Xie et al. 2023). This approach, though, is time
consuming and new strategies are needed to reduce the
computational times for testing the largest variety of stellar
population models and priors, especially over large data sets.

Among the different stellar population parameters for
galaxies, Må and SFR stand out as the most crucial ones. In
particular, they have a rather tight relation, the so-called main
sequence of galaxies (e.g., Brinchmann et al. 2004; Daddi et al.
2007; Elbaz et al. 2007; Noeske et al. 2007; Schreiber et al.
2015), that is a fundamental diagnostic for galaxy formation
theories (e.g., Furlong et al. 2015; Donnari et al. 2019; Popesso
et al. 2023). Nevertheless, estimating Må and SFR is also a
complex task (Kennicutt & Evans 2012) as they are directly or
indirectly related to the observations of stars. Må represents the
total mass of stars within a galaxy. Low-mass, non-ionizing old
stars are the most abundant within a galaxy and contribute
significantly to its optical luminosities. Consequently, Må is
closely associated with its optical luminosity. Moreover, the
estimation of Må also depends on the stellar population model
(e.g., Bruzual & Charlot 2003; Maraston 2005) and the Initial
Mass Function (IMF; e.g., Salpeter 1955; Chabrier 2003), and
the form of the star formation history (SFH), for which there is
no consensus on the impact of systematics (e.g., Mitchell et al.
2013). The SFR represents the rate at which new stars are being
formed within a galaxy. It is closely tied to the presence of
young stars and the ionized gas that envelops massive stars.
The emission from young and massive O/B-type stars is
predominantly in the UV band. As a result, UV emission can
serve as a valuable indicator of the SFR (e.g., Hao et al. 2011;
Kennicutt & Evans 2012). Additionally, emission lines (such as
Hα) from ionized gas can be observed in the optical and NIR
bands, further tracing the SFR (e.g., Buat et al. 2002; Treyer
et al. 2007). Dust also plays an important role, as this is heavily
produced around new stars. This dust absorbs approximately
half of the starlight and re-emits it in the far-IR, meaning that
far-IR luminosities can also trace the SFR (e.g., Fixsen et al.
1998; Salim & Narayanan 2020).

Traditionally, the quantities Må and SFR have been
estimated primarily through techniques like optical spectrosc-
opy, which involves fitting theoretical models to observed data.
For instance, the Sloan Digital Sky Survey (SDSS) MPA–JHU
Data Release 8 (DR8) catalog provides stellar masses and SFRs
for 1 843 200 galaxies (Kauffmann et al. 2003; Brinchmann
et al. 2004). However, many surveys lack spectroscopic
observations and only provide photometry data, such as KiDS
(e.g., Wright et al. 2024). Despite this, it is still feasible to
derive the Må and SFR by using their spectral energy
distribution (SED) constructed from multi-band photometric

data. For example, Gao et al. (2019) used SED fitting to obtain
the SFRs and stellar masses of 145 635 galaxies in the Hawaii-
Hubble Deep Field-North. When we look toward the future
with the expected release of multi-band photometric data for
billions of galaxies, as there is no way to solve the degeneracies
among all the stellar population parameters, the only approach
we have is to derive Må and SFR using different set-up (e.g.,
Xie et al. 2023), make this dramatically time-consuming. Given
the immense volume of data that will be available, developing a
highly efficient method is crucial for extracting meaningful
information from these data sets.
In recent years, the rapid development of machine learning

(ML) algorithms has brought revolutionary changes to various
fields, including astronomy. ML has become an integral part of
astronomical research, being widely used for a variety of
classifications, including astronomical object categorization
(e.g., Zeraatgari et al. 2024), galaxy morphology classification
(e.g., Fang et al. 2023; Xu et al. 2023; Song et al. 2024), and
much more. Moreover, ML is also used to predict various
parameters and properties of astronomical objects. Li et al.
(2022b) has developed an innovative ML tool (called GaZNet)
capable of predicting galaxy redshifts by integrating both
image data and multi-band photometric information. Wu &
Boada (2019) have trained a deep residual convolutional neural
network to predict the gas-phase metallicity of galaxies using
three-band gri images from the SDSS. Bonjean et al. (2019)
have used the Random Forest to estimate the stellar masses and
SFRs of galaxies at redshifts in the range 0.01< z< 0.3. When
compared to traditional methods, ML not only offers enhanced
efficiency but also delivers accuracy. Therefore, to efficiently
and accurately derive stellar population parameters for billions
of galaxies, we plan to develop an ML algorithm called
Multi-Layer Perceptron for Predicting Galaxy Parameters
(MLP-GaP), which first is used to estimate the stellar masses
and SFRs for galaxies with redshift z < 3 in this work.
The structure of this work is as follows. Section 2 presents the

data used in this work and the process of generating a mock
catalog. Section 3 describes the ML model used to build the
MLP-GaP and outlines its training process. In Section 4, we
comprehensively evaluate the performance of the MLP-GaP in
the testing data set, offering a comparative analysis between
MLP-GaP and traditional SED fitting techniques. In Section 5,
we discuss the performance of the MLP-GaP on observational
data of actual galaxies and provide its possible future application
scenarios, as well as subsequent improvement methods for the
algorithm. Finally, a brief summary is presented in Section 6.

2. Data

In this work, we want to develop an ML algorithm that uses
multi-band photometric data (i.e., aperture fluxes or magni-
tudes) to predict the stellar population parameters of a given
galaxy data set, similar to the standard SED fitting techniques
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(e.g., Boquien et al. 2019; Ilbert et al. 2006). To train and test
such a “supervised” algorithm (see Section 3), it is essential to
dispose of a galaxy catalog with “ground truth” stellar
population parameters. Unfortunately, unlike other galaxy
parameters that are straightforward to measure, the stellar
population parameters of galaxies can only be indirectly
derived from measured parameters. stellar population para-
meters of galaxies cannot obtain “ground truth” values.
However, the derivation of these parameters relies on various
assumptions, models, and inherent uncertainties, which means
that the parameters obtained from different techniques are not
uniform (see Xie et al. 2023) and do not represent their “ground
truth” values.

In absence of real data set with “ground truth” values, a
viable strategy is to produce a realistic mock data set, which
include synthetic photometric data of the realistic galaxies and
their known stellar population parameters. To construct such a
catalog of galaxies or data set, we use the Code Investigating
GALaxy Emission (CIGALE, V2022.1, Boquien et al. 2019) to
generate a catalog of mock galaxies with known stellar
population parameters (see Section 2.2). CIGALE is an open-
source Python code designed to analyze the SEDs of galaxies
across a wide range of wavelengths, from X-ray to radio.
CIGALE models galaxy SEDs by employing composite stellar
populations from simple stellar populations combined with
highly flexible star formation histories (SFHs), and this
approach can provide the flux densities for various bands,
Må, SFR, attenuation, dust luminosity, and many other physical
quantities. In particular, Må and SFR which can be considered
as reference values for developing MLP-GaP. For this work,
we adopt a delayed SFH model ( / /t tµ ´ -t tSFR exp2 ),
which is currently popular and aligns well with observational
data. To derive the stellar population spectrum, we use the
stellar population synthesis model from Bruzual & Charlot
(2003, referred to as BC03), assuming that the IMF adopts
Chabrier (2003). In addition, we also adopt attenuation law
(Calzetti et al. 2000), and dust emission (Dale et al. 2014). As
mentioned, we also use actual observational data as the basis
for generating the catalog to ensure that the redshift and
luminosity distributions of the mock galaxy sample are well-
aligned with observations and to mimic the observation
uncertainties on the photometry (i.e., data noise).

2.1. Observation Data

KiDS provides a unique data set, with 9-band photometry
including four optical (ugri) and five NIR bands (ZYHJKs), to
study stellar populations of galaxies among Stage-III surveys,
down to a limiting magnitude of r ∼ 24. MLP-GaP is suitable for
application in the KiDS data set. Therefore, we develop MLP-GaP
based on KiDS data. We first have collected redshifts and 9-band
magnitudes for 120,000 random galaxies, providing a solid
foundation for generating a mock sample that closely aligns with

actual observational data. We only used redshifts and r-band
magnitudes from actual observation data to generate the mock
sample. The redshifts used are “morphoto-z” obtained by GaZNet
(Li et al. 2022b), ranging from 0 to 3. The “morphoto-z” is
derived by combining imaging and multi-band photometric data.
It offers superior accuracy, precision, and fewer outliers than
traditional photometric redshifts. Figure 1 shows the distribution
of redshifts and r-band magnitudes for 120,000 galaxies.

2.2. The Catalog for Mock Galaxies

To construct a catalog for mock galaxies, we need to
simulate the generation of intrinsic parameters (e.g., age,
extinction coefficient) and the observation information (photo-
metry of each band). The intrinsic parameters are input
parameters for SED fitting, and they are generated randomly
within a predefined range (see Table 1) to emulate the natural
variation in galactic properties. Among observation informa-
tion, redshifts and r-band photometric data are from actual
observation data. The aperture photometry from the other
bands, their uncertainties, as well as corresponding stellar
masses and SFRs are all generated through CIGALE.

Figure 1. The distribution of r-band magnitude with redshift in real
observation data.

Table 1
The Range of SED Parameters

Parameter Unit Range Interval

tau Myr 250–8000 50
age Myr 250—Cosmology age at the redshift 50
metallicity L 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05 L
AV mag 0–2 0.01
alpha L 0.0625–4 0.0625
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First, we create a data file for each galaxy, which includes
observed photometric data and redshift. Among them, the
redshift and flux density of the r-band are based on actual
observation data from 120,000 galaxies. Assuming that the error
of the r-band magnitude is 0.1 mag, it can convert that into the
error of the flux density of the r-band. Using placeholder values,
such as “−9999,” represent data from other missing bands.
Then, we initialize CIGALE in the directory where data files are
located and generate configuration files. Next, we modify and
update the configuration files. In this process, we write the file
names, the specific modules used, and the corresponding
parameters (i.e., tau, age, metallicity) into the configuration file.
The modules and parameters for SED fitting are summarized in
Table 2. Final, running CIGALE, to generate the photometric
data for missing bands in the input data file, along with
calculating the stellar masses and SFRs. To have realistic
uncertainties on the photometry of the mock galaxies derived as
above, we start from the errors reported in the catalog and
perform a random sampling within a certain range. Suppose we
need to generate a realistic error for the u-band photometry of a
mock galaxy with a magnitude of 19.3. We first identify galaxies
in the actual galaxy sample with u-band magnitudes close to this
value, specifically within a ±0.01mag range (i.e., from 19.29 to
19.31). If the magnitudes of all galaxies reported in the catalog
do not fall within a specified range, we will expand our search to
a broader range until we find galaxies that meet the criteria.
Then, the error is randomly selected from among these errors.
Figure 2 presents a flowchart that comprehensively outlines the
process for generating the mock catalog for galaxies.

2.3. Partition of Datasets

The mock data set of 120,000 galaxies, as generated in the
previous section, consists of redshifts, 9-band magnitudes, their
associated errors, their stellar masses, and SFRs. Within this
data set, the redshifts, 9-band magnitudes, and their associated

errors are utilized as the input parameters, or “features,” for our
ML algorithm. Furthermore, the corresponding stellar masses
and SFRs are the desired outcomes, or “targets,” that our ML
algorithm aims to predict.
This data set is used to train and test the MLP-GaP. To proceed

with the training, validation and testing of the MLP-GaP, it is
important to partition the data set appropriately. Hence, we split
the data set of 120,000 mock galaxies into three separate samples:

1. Training data set. Consisting of 90,000 galaxies, this data
set is used to train the MLP-GaP.

2. Validation data set. Comprising 10,000 galaxies, this
data set is utilized to tune hyperparameters and prevent
overfitting during the training process.

3. Testing data set. With 20,000 galaxies, this data set
serves as unseen data to assess the MLP-GaP's perfor-
mance and conduct error statistical analysis.

This partitioning strategy comprehensively evaluates the
performance of the MLP-GaP while maintaining a balance
between training, validation, and testing data sets.

3. MLP-GaP Architecture and Training

Due to our goal of constructing a mapping between
photometric data of galaxies and their parameters, we use
supervised ML algorithms. Given our algorithm is expected to
predict continuous values, which aligns with a regression problem,
using multi-layer perceptrons (MLPs) is the best choice. MLPs are
a class of feedforward artificial neural networks characterized by
their fully connected architecture and the use of nonlinear
activation functions. MLPs include at least three layers: an input
layer, one or more hidden layers, and an output layer.

3.1. Architecture

To accurately predict both Må and SFR, MLP-GaP is built
using an MLP model with 10 layers. Its architecture can be
described as follows:

1. Input Layer. 19 nodes;
2. Hidden Layers. 512, 512, 512, 512, 256, 256, 128, 64, 32

nodes with Rectified Linear Unit activation function;
3. Output Layer. Two nodes for predicting Må and SFR.

To enhance our model's performance and mitigate the risk of
overfitting, we incorporate both training and validation data
sets within our training domain. Our model uses the Huber loss
(Friedman 1999) function, which provides a balanced approach
for evaluating the performance of a regression model (e.g., Li
et al. 2022a). The Huber loss is defined as

( )
∣ ∣

(∣ ∣ )
( )

⎧

⎨
⎩

 d

d d
=

-dL a
a a

a

,

, otherwise .
1

1

2
2

1

2

Table 2
The Module Assumptions for Mock Dataset

Module Parameters Value

SFH(delayed) Tau_main (Myr) tau
Age (Myr) age
f_burst 0

Tau_burst (Myr) 50
burst_Age (Myr) 100

BC03 IMF 1(Chabrier)
Metallicity metallicity

dustatt_modified_starburst E_BV_lines (mag)
*

A

3.1 0.44
V

dale2014 Alpha alpha

Note. Tau, age, metallicity, AV, alpha are the parameters generated by the
simulation of each galaxy, and their ranges are in Table 1.
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Here a = yture − ypred, yture is the reference values for the
simulations, ypred is the predicted values by the MLP model. δ
is a threshold parameter that can be pre-setted and fixed to
0.001 in this work. Compared to traditional loss functions, the
Huber loss function can provide better robustness, effectively
mitigate the impact of outliers, maintain sensitivity when errors
are small, and exhibit linear characteristics when errors are
large, making the optimization process more stable and rapid.
Additionally, we use the Adam optimizer (Kingma & Ba 2014)
to facilitate the optimization process, ensuring efficient and
effective model training.

3.2. Training

To enhance the training process and ensure that the model
can converge effectively to the global optimum while avoiding
entrapment in local optima, we have adopted a segmented
training method. This method is more flexible than the decay
rate strategy, permitting us to make necessary adjustments to
the learning rate at various training stages based on the model's
performance. Furthermore, considering that adjustments may

need to be made to the model during the training process, the
segmented training method provides us with increased control,
thereby significantly improving the efficiency and effectiveness
of our model training. Next, we will provide a detailed
exposition of our training process.
Initially, the model was trained for 20 epochs with a learning

rate of 10−3. Starting with a high learning rate can lead to a
faster reduction of the loss and accelerate the convergence of
the model by making larger updates to the weights. Then, the
learning rate is set to 10−4, the pre-trained model is re-loaded,
and the model is trained for 50 epochs. Next, the learning rate
is reduced again to 10−5, and the model is trained for another
50 epochs. If the model has not fully converged, we repeat the
previous training until the model is well-trained. Ultimately,
our model converged with a loss function value of
7.63 × 10−6.

4. Evaluation of MLP-GaP on Testing Dataset

After building and training the MLP-GaP, to further assess
its performance, it will be applied to estimate the stellar masses

Figure 2. The flowchart for generating mock data set for 120,000 galaxies.
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and SFRs of the galaxies in the testing data set. First, the
predictive values of the MLP-GaP are compared with their
reference values. Subsequently, the predictive values of the
MLP-GaP are compared with the estimated values of CIGALE.

4.1. The Evaluator Metrics

To assess the performance of the MLP-GaP in terms of
accuracy and precision, we use three different statistical
estimators:

1. The coefficient of determination R2:

( )

( ¯ )
( )= -

å -

å -
=

=

R
y y

y y
1 . 2

i
N i i

i
N i

2 1 pred true
2

1 pred true
2

2. The Mean Absolute Error (MAE):

∣ ∣ ( )å= -
=N

y yMAE
1

. 3
i

N
i i

1
pred true

3. The Mean Squared Error (MSE):

( ) ( )å= -
=N

y yMSE
1

. 4
i

N
i i

1
pred true

2

Here N is total number of the data points, yi
pred is the predictive

or estimated values, yi
true is the reference values, and ȳtrue is the

mean value of the reference values.
R2 is used to measure the goodness of fit of a regression

model. It ranges from 0 to 1 and is a proportion of the variance
in the dependent variable that is predictable from the
independent variables. In practical applications, R2 values
close to 1 are desirable, indicating that the model fits the data
well. However, a high R2 value does not necessarily mean that
the model is accurate or precise, as it only measures the fitting
goodness of the model and not the accuracy of its predictions.
MAE and MSE measure the average absolute and squared
differences between the predicted and actual values. Both MAE
and MSE are non-negative values, and lower values for both
metrics indicate better performance of the ML model. There-
fore, the comprehensive evaluation using R2, MAE, and MSE
can serve as a better measure of the MLP-GaP's performance.
In our analysis, we assess the performance of the MLP-GaP by
comparing its predictions to reference values. The closer the R2

value is to 1, and the lower the MAE and MSE values are, the
better the performance of the MLP-GaP is considered to be.

4.2. Comparing the MLP-GaP Predictions with
Reference Values

We initially assess the performance of the MLP-GaP using
the mock testing data set. In the top-left panel of Figure 3, we
illustrate the predictions of stellar masses plotted against their
reference values. The comparison reveals a strong correlation,
with data points closely clustered around the 1:1 line,
indicating high accuracy in the predictions. The R2, MAE
and MSE are 0.994, 0.041 and 0.0036, respectively, suggesting
that the MLP-GaP could accurately predict stellar masses of
mock galaxies. To check whether the predictions are affected
by the redshifts, in the top-right panel of Figure 3, we present
the variation of the predicted stellar masses, in the form of

( )/- M Mlog ,MLP GaP , against the redshifts. We find that
the variation is relatively minor, with an overall standard
deviation of s =


0.060M dex, which translates to a factor of

=s
10 1.15M relative to the established values. We also notice

that the scatter tends to increase at high redshift, but only with a
maximum standard deviation of 0.1 dex, suggesting that the
MLP-GaP experiences a decrease in accuracy when predicting
stellar masses as redshift increases. Overall, the MLP-GaP
performs well in the Må prediction in the redshift range
of 0 < z < 3.
Let us move on to SFR prediction. In our mock sample, some

passive galaxies show statistically negligible and very low SFRs,
which we can exclude from our analysis. We use a standard
threshold based on the specific star formation rate (sSFR=
SFR/Må) to filter out these passive galaxies. The threshold we
have adopted is > -log sSFR 12 (e.g., Katsianis et al. 2021),
which is regarded as the minimum value above which the star
formation activity in galaxies cannot be ignored. The following
all analyses regarding SFR have filtered out these passive
galaxies. The predicted values of SFRs versus their reference
values are plotted in the bottom-left panel of Figure 3. Similarly
to the Må, most of the points are distributed around the 1:1 line,
although with a larger scatter. The evaluation indices for the
SFRs indicate a very good accuracy, with a R2= 0.984,
MAE= 0.065, and MSE= 0.0134. Although these indices are
not as good as those for Må, they still suggest a high predictive
accuracy for SFRs. In the bottom-left corner of this panel, where

<log SFR 0, a certain discrepancy in the predicted values is
observed, indicating that MLP-GaP's accuracy has declined in
the region. In the bottom-right panel of Figure 3, we plot the
variation, ( )/-log SFR SFRMLP GaP of the prediction, against the
redshifts. From a general perspective, we can see a relatively
minor variation, with a standard deviation of σSFR = 0.116 dex,
which is equivalent to a factor of =s10 1.306SFR , relative to
established values.
In summary, our research has established that the MLP-GaP

is a robust and accurate tool for predicting the stellar masses
and SFRs of galaxies in the testing data set. It can exhibit
consistent performance across a wide range of redshifts.
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4.3. Comparing the MLP-GaP Predictions with CIGALE
Estimations

To thoroughly evaluate the performance of MLP-GaP, we use
CIGALE to estimate the stellar masses and SFRs of the mock
testing data set. This analysis involves fitting multi-band
photometric data, and the relevant modules and parameters used
in the configuration file of CIGALE are detailed in Table 3. The
results obtained are then compared with those predicted from
MLP-GaP to assess the accuracy and precision of the predictions.

In Figure 4, we present the CIGALE fitting results versus
their reference values for both the Må (top-left panel) and SFR
(bottom-left panel), and their variations as a function of
redshifts are also appended in the right panels. In terms of
estimating stellar masses, CIGALE is comparable performance
to MLP-GaP. This conclusion is supported by the evaluator
indices of R2, MAE and MSE, with the deviation being

similarly close to that of MLP-GaP. In the top-right panel of
Figure 4, we find that the stellar masses derived using CIGALE
exhibit a slight advantage at high redshifts (z > 1.5). This is
evidenced by the relatively smaller error bars within this
redshift range, and a greater concentration of data points
around the line where ( )/ = M Mlog 0,CIGALE . Moving on to
SFR estimation, the evaluator indices suggest that MLP-GaP
outperforms CIGALE in estimating SFRs. The standard
deviation of the differences between the SFRs derived by
CIGALE and the reference values is σ = 0.320 dex, a value
that is notably higher compared to the standard deviation of the
differences between the SFRs predicted by MLP-GaP and the
reference values. The primary discrepancy arises at low
redshifts (z < 1.5), where CIGALE not only exhibits greater
variability in its deviations but also deviates from the
line representing ( )/ =log SFR SFR 0CIGALE . These findings
suggest that MLP-GaP can provide more accurate predictions

Figure 3. The comparison between the MLP-GaP's predictions and reference values in the testing data set (20,000 galaxies). Top-Left panel: The stellar masses of the
MLP-GaP are compared with the reference values. Top-Right panel: Errors of the MLP-GaP results obtained for the testing data set as a function of redshift for Må.
Bottom-Left panel: The SFRs of the MLP-GaP are compared with the reference values. Bottom-Right panel: Errors of the MLP-GaP results obtained for the testing
data set as a function of redshift for SFR.
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Figure 4. The comparison between the CIGALE predictions and reference values on the testing data set. Top-Left panel: The stellar masses of the CIGALE are
compared with the reference values. Top-Right panel: Errors of the CIGALE results obtained for the testing data set as a function of redshift for Må. Bottom-Left
panel: The SFRs of the CIGALE are compared with the reference values. Bottom-Right panel: Errors of the CIGALE results obtained for the testing data set as a
function of redshift for SFR.

Table 3
The Module Assumptions for SED Fitting

Module Parameters Value

SFH(delayed) Tau_main (Myr) 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000,
5500, 6000, 7000, 8000

Age (Myr) 250, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000,
5500, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000

f_burst 0

BC03 IMF 1(Chabrier)
Metallicity 0.0001, 0.0004, 0.004, 0.008, 0.02, 0.05

dustatt_modified_starburst E_BV_lines (mag) 0.0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5

dale2014 Alpha 1.0, 2.0, 3.0, 4.0
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of SFRs for mock galaxies in the testing data set compared to
CIGALE.

Subsequently, a direct comparison will be made between the
predicted values from MLP-GaP and those derived using
CIGALE. Such a comparison is pivotal because, in actual
astronomical observations, the “ground truth” values of the
stellar population parameters are unattainable. All values are
dependent on various assumptions, models, and inherent
uncertainties, which means that error is an inevitable aspect of
the process. Therefore, the performance of a novel tool like
MLP-GaP must be evaluated by comparing its results with those
obtained from standard tools or methodologies. In the left panels
of Figure 5, the vertical axis represents the results from
MLP-GaP, while the horizontal axis displays the corresponding
results from CIGALE. The majority of sources are concentrated
near the diagonal line, indicating a good consistency between the

predictions made by the two tools. Additionally, the results from
their evaluators also demonstrate this point. The right panels of
Figure 5 illustrate the deviation of their results as a function of
redshifts. The top-right panel indicates that the Må estimates
derived from both MLP-GaP and CIGALE are in close
alignment, exhibiting a standard deviation of σ = 0.075 dex.
The bottom-right panel also suggests that the SFRs estimated
fromMLP-GaP and CIGALE agree, with a standard deviation of
σ = 0.323 dex. These mean that MLP-GaP is capable of
delivering predictions that align with those of standard tools,
demonstrating its reliability and potential as a viable alternative
for estimating stellar masses and star formation rates in galaxies.
Finally, an evaluation is conducted on the computational

efficiency of MLP-GaP compared to the traditional standard
tools. The two primary indicators for assessing computational
efficiency are the time consumption and the utilization of

Figure 5. The comparison between the MLP-GaP predictions and CIGALE predictions on the testing data set. Top-Left panel: The stellar masses of the MLP-GaP are
compared with those of CIGALE. Top-Right panel: Errors between MLP-GaP and CIGALE results obtained for the testing data set as a function of redshift for Må.
Bottom-Left panel: The SFRs of the MLP-GaP are compared with those of CIGALE. Bottom-Right panel: Errors between MLP-GaP and CIGALE results obtained for
the testing data set as a function of redshift for SFR.
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computational resources. To ensure a fair and unbiased
comparison, both CIGALE and MLP-GaP are run on identical
hardware platforms. Specifically, the tests are run on a
computing system equipped with an Intel Core i7-11700F
processor, featuring 12 cores operating at a base frequency of
2.5 GHz. For MLP-GaP, the estimation of stellar masses and
SFRs for 20,000 galaxies is conducted using a single core, with
the entire process being completed in 11.018 seconds. In
contrast, despite utilizing 10 cores, the SED fitting method still
requires a longer computational time, approximately 200minutes.
When not considering the number of cores used, the time
expended by the SED fitting method is already 985 times greater
than that of MLP-GaP. Should MLP-GaP also use 10 cores, it
would undoubtedly achieve an even more rapid execution speed.
Therefore, MLP-GaP demonstrates outstanding performance in
terms of running speed, showcasing its potential as a highly
efficient tool for astronomical data analysis.

In conclusion, MLP-GaP demonstrates a superior ability to
predict the stellar masses and SFRs of galaxies with higher
precision in comparison to CIGALE. Furthermore, its compu-
tational performance is exceptionally impressive, providing a
remarkable running speed that substantially surpasses that of
traditional tools.

5. Discussion

5.1. Performance on Actual Dataset

Although the mock data set closely approximates actual
observational data, inherent differences may still exist, particu-
larly in the distribution of parameters and the interrelationships
among them. Therefore, relying solely on the mock data set
to test MLP-GaP may not fully confirm its reliability. To
demonstrate the science-readiness of the MLP-GaP, we will
advance to assess its performance using actual observational
data. The catalog provided by Xie et al. (2023) is highly suitable
for serving as a test data set for MLP-GaP. This catalog includes
the observational data for 288,809 galaxies and the stellar
population parameters for their galaxies as outputted by LePhare
and CIGALE. Here, we will apply MLP-GaP and CIGALE to
the catalog to estimate the stellar masses and SFRs of the
galaxies, and then compare these estimations. The redshifts
used in this comparison are “morphoto-Z” obtained by GaZNet
(Li et al. 2022b).

Figure 6 presents a detailed comparison of the performance
of MLP-GaP and CIGALE on actual observational data of
galaxies. The top-left panel demonstrates a good consistency in
the stellar masses estimation between MLP-GaP and CIGALE,
as evidenced by R2 = 0.952, MAE= 0.107, MSE=0.0195.
The top-right panel indicates that the deviations in their stellar
masses exhibit some variation with redshift, but these
fluctuations are minor than their standard deviation
σ = 0.132 dex. Compared to the results from the testing data
set, the consistency between MLP-GaP and CIGALE in

estimating the stellar masses of actual galaxies has slightly
deteriorated. The bottom-left panel illustrates the agreement
between the SFR estimates by MLP-GaP and CIGALE, albeit
with a certain degree of dispersion. The bottom-right panel
demonstrates that variations in SFR estimation exhibit some
redshift dependency, yet these fluctuations are relatively minor
compared to the standard deviation. In estimating the SFRs of
actual galaxies, there is also some degradation in consistency.
This may arise from inherent limitations within MLP-GaP
itself. Given that the training data is mocked, there are certain
discrepancies in the distribution of parameters compared to
actual galaxies. For instance, the fraction of massive galaxies in
both the training and testing data sets may be significantly
higher than that found in actual galaxies. This could lead MLP-
GaP to learn patterns that do not align with those of actual
galaxies, particularly in the case of massive mock galaxies.
Regardless, MLP-GaP still demonstrates good consistency with
CIGALE in estimating stellar masses and SFRs of actual
galaxies. Therefore, MLP-GaP can serve as an alternative to
traditional SED fitting tools for predicting stellar masses
and SFRs. In particular, MLP-GaP is significantly faster than
conventional methods in terms of computation speed, so it is
more suitable for estimating the stellar masses and SFRs of
billions of galaxies in large-scale surveys.

5.2. Application and Improvement in Future

Shortly, astronomy will enter a new era of development,
where an unprecedented wealth of observational data can be
obtained from various large-scale and deep-area surveys. This
new age will be marked by the availability of data from major
projects. These surveys cover vast sky areas, providing multi-
band (UV, optical, and NIR) photometric data and images for
billions of galaxies, thus presenting unique opportunities for
scientific inquiry. Our MLP-GaP, leveraging the power of ML,
offers significant advantages over traditional SED fitting
techniques. It is uniquely positioned to swiftly and accurately
estimate the stellar masses and SFRs of the galaxies observed
in these large-scale surveys. As the volume of observational
data continues to expand, the implementation of efficient and
accurate ML algorithms is poised to become increasingly
invaluable. The capability of MLP-GaP to rapidly and
accurately predict the physical parameters for billions of
galaxies expands our comprehension of the cosmos, unveiling
new perspectives on the evolution of galaxies throughout the
universe, thereby significantly advancing our knowledge of the
astrophysical processes that shape the cosmos.
While MLP-GaP has demonstrated its potential in predicting

stellar masses and SFRs for huge volumes of galaxies, it
requires further and profound enhancements to fully realize its
capabilities. Our roadmap for future improvements includes the
following aspects:
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1. Enhancing Training Data Diversity. Our current MLP-
GaP is trained on mock data sets generated by CIGALE.
Moving forward, we want to achieve that the parameter
distributions of mock galaxies closely mirror those of
actual galaxies. Moreover, we intend to enrich the
training data sets with more intricate galaxy formation
histories, a wider array of dust attenuation models, and
different stellar population models. Additionally, we will
integrate various astrophysical processes and observa-
tional noise to better simulate real-like data, thereby
enhancing the generalizability and accuracy of the
MLP-GaP.

2. Optimizing Model Architecture. Although the MLP model
utilized in this study has shown its power, there is ample
scope for optimization. Our future endeavours will not
only seek to augment the model's computational speed but
also refine its predictive accuracy. We will investigate

alternative network architectures, including Self-Attention
and Transformer Models, which have demonstrated
remarkable performance in various domains.

3. Expanding Parameter Prediction. We aim to extend
MLP-GaP to predict more parameters of galaxies. This
will encompass characteristics such as age, metallicity,
IMF, and so on, providing a more comprehensive
understanding of the properties of galaxies.

4. Uncertainty Quantification. In the realm of scientific
inquiry, the accurate estimation of parameter uncertain-
ties is critical for robust error analysis. Recognizing this,
we will adopt Bayesian methods to determine the
uncertainties of different parameters. By integrating
Bayesian networks within our ML algorithm, we can
better quantify the uncertainties associated with our
predictions. It will provide not only point estimates of the
parameters but also their probabilistic distributions. Such

Figure 6. The comparison between the MLP-GaP predictions and CIGALE predictions on the actual data set. Top-Left panel: The stellar masses of the MLP-GaP are
compared with those of CIGALE. Top-Right panel: Errors between MLP-GaP and CIGALE results obtained for the testing data set as a function of redshift for Må.
Bottom-Left panel: The SFRs of the MLP-GaP are compared with those of CIGALE. Bottom-Right panel: Errors between MLP-GaP and CIGALE results obtained for
the testing data set as a function of redshift for SFR.
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an approach is essential for credible scientific discourse
and for making informed decisions in the light of inherent
uncertainties in observational data.

6. Summary

In the era of large scale surveys, there is a massive amount of
observational data available. However, the challenge remains of
how to rapidly and accurately derive various stellar population
parameters for billions of galaxies. Among the numerous
parameters that characterize galaxies, the Må and SFR are
considered the most critical. In response to the aforementioned
challenge, we have developed an ML algorithm called MLP-
GaP, which can rapidly and accurately predict the stellar masses
and SFRs for a massive amount of galaxies.

First, we used CIGALE to generate a mock data set, which is
a catalog consisting of 120,000 mock galaxies. This catalog
provided redshift, Må, SFR, and photometric data of nine bands
for each mock galaxy. The mock data set was meticulously
partitioned into three distinct subsets, with a training data set
comprising 90,000 galaxies, a validation data set of 10,000
galaxies, and a testing data set of 20,000 galaxies. Subsequently,
we used an MLP model with 10 layers to build MLP-GaP.
Through rigorous training and validation processes, MLP-GaP
was optimized to yield predictions that were consistent with the
reference values on the testing data set. Furthermore, MLP-GaP
demonstrated a significant faster in processing speed compared
to CIGALE. To demonstrate the science-readiness of the MLP-
GaP, we applied to actual galaxy samples. The predicted values
from MLP-GaP exhibited a commendable level of consistency
with the estimated values derived using SED fitting. This
consistency suggested MLP-GaP could serve as an alternative to
traditional SED fitting tools for predicting stellar masses and
SFRs. Given the outstanding processing speed of MLP-GaP, it
can be considered an essential tool for estimating the parameters
of billions of galaxies in the era of large scale surveys.
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