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Abstract

The baryon acoustic oscillations (BAO) reconstruction plays a crucial role in cosmological analysis for
spectroscopic galaxy surveys because it can make the density field effectively more linear and more Gaussian. The
combination of the power spectra before and after the BAO reconstruction helps break degeneracies among
parameters, then improves the constraints on cosmological parameters. It is therefore important to estimate the
covariance matrix between pre- and post-reconstructed power spectra. In this work, we use perturbation theory to
estimate the covariance matrix of the related power spectra multipoles, and check the accuracy of the derived
covariance model using a large suite of dark matter halo catalogs at z =0.5. We find that the diagonal part of the
auto covariance is well described by the Gaussian prediction, while the cross covariance deviates from the
Gaussian prediction quickly when k> 0.1 hMpc~'. Additionally, we find the non-Gaussian effect in the non-
diagonal part of the cross covariance is comparable to, or even stronger than, the pre-reconstruction covariance. By
adding the non-Gaussian contribution, we obtain good agreement between analytical and numerical covariance
matrices in the non-diagonal part up to k ~ 0.15 2 Mpc ™. The agreement in the diagonal part is also improved, but
still under-predicts the correlation in the cross covariance block.
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1. Introduction

The large-scale structure of the Universe carries rich informa-
tion of the cosmic expansion, the structure growth and primordial
physics, and the information leaves imprints on patterns of the
three-dimensional (3D) distribution of galaxies such as the baryon
acoustic oscillations (BAQO; Cole et al. 2005; Eisenstein et al.
2005) and the redshift space distortions (RSD; Kaiser 1987;
Peacock et al. 2001), as measured by current and future
spectroscopic surveys including Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration et al. 2016), Euclid
(Laureijs et al. 2011), Subaru Prime Focus Spectrograph (PFS;
Takada et al. 2014), Nancy Grace Roman Space Telescope
(Roman; Wang et al. 2022), MegaMapper (Schlegel et al. 2022),
and so forth. Given the large number of galaxies, the
observational data are usually compressed and analyzed at the
2-point statistics level such as the 2-point correlation function and
the power spectrum. The 2-point statistics capture the leading
order information of the galaxy density field, and have been well
modeled in theory (e.g., Crocce & Scoccimarro 2006; Taruya
et al. 2010; Baumann et al. 2012; Carrasco et al. 2012; Vlah et al.
2015; Maus et al. 2024a), and measured and analyzed over the

(cosmology:) cosmological

last decades (e.g., Beutler et al. 2011; Alam et al. 2017; D’ Amico
et al. 2020; Ivanov et al. 2020; Alam et al. 2021; Adame et al.
2024a, 2024b).

To fully exploit the information from galaxy surveys, there
have been attempts to measure and model high-order statistics
(Gil-Marin et al. 2017; Desjacques et al. 2018; Pearson &
Samushia 2018; Eggemeier et al. 2019; Sugiyama et al. 2019;
Gualdi et al. 2021; Philcox et al. 2021, 2022; Novell-Masot
et al. 2023; Spaar & Zhang 2023; Sugiyama et al. 2023; Wang
et al. 2023; Behera et al. 2024; Chen et al. 2024a; D’ Amico
et al. 2024; Hahn et al. 2024; Leonard et al. 2024). These
analyses are, however, much more challenging compared to the
2-point statistics because of the high dimensionality of the
observable.

The reconstruction technique (Eisenstein et al. 2007) was
proposed to improve the BAO measurement by undoing the
large-scale bulk flow which blurred the BAO feature. Although
it was originally designed to improve the BAO signal,
reconstruction, which is in effect a field level operation,
utilizes the higher-order information (Schmittfull et al. 2015) to
restore the linear modes that are contaminated by the nonlinear
gravitational evolution. Therefore, cosmological information,


https://orcid.org/0000-0002-7284-7265
https://orcid.org/0000-0002-7284-7265
https://orcid.org/0000-0002-7284-7265
mailto:gbzhao@nao.cas.cn
https://doi.org/10.1088/1674-4527/ad8ba1
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad8ba1&domain=pdf&date_stamp=2024-12-05
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad8ba1&domain=pdf&date_stamp=2024-12-05

Research in Astronomy and Astrophysics, 24:125015 (19pp), 2024 December

such as RSD (Zhu et al. 2018; Hikage et al. 2020a), primordial
non-Gaussianity (Shirasaki et al. 2021; Floss & Meerburg 2024)
and the neutrino mass (Zang & Zhu 2024), can in principle be
better constrained by analyzing the post-reconstruction sample
compared to the pre-reconstruction one when stopped at the
same order of m-point statistics. Over the past few years,
theoretical studies of the reconstructed field have been mainly
focusing on modeling the signal (see White 2015; Seo et al.
2016; Hikage et al. 2017, 2020a; Chen et al. 2019; Ota et al.
2021; Chen et al. 2024b; Sugiyama 2024a, 2024b, 2024c).
Recently, Wang et al. (2024b, 2024a) show the combination of
pre- and post-reconstructed BAO or power spectra breaks
degeneracies among parameters and significantly improves the
constraints on cosmological parameters. In this case, it is also
important to understand the covariance matrix between pre-
and post-reconstructed power spectra because it is nearly
singular at small .

The standard way to estimate the covariance matrix is based
on numerical simulations. There are, however, a few disadvan-
tages. First, the finite number of simulations introduces noise
into the numerical covariance matrix. The matrix is likely to be
ill-formed when observables are highly correlated. Moreover,
the noise in the inverse covariance matrix estimation has to be
accounted for (Hartlap et al. 2007) and be propagated to model
parameters (Percival et al. 2014, 2022), weakening the final
cosmological constraints. Second, limited by the computational
resources, running a large number of full N-body simulations is
usually not available and one has to rely on fast approximated
mocks (e.g., Feng et al. 2016; Kitaura et al. 2016; Zhao et al.
2021). Although they are usually well calibrated at the 2-pt
statistics level, it is not entirely clear how much they are able to
match the higher order statistics (Philcox & Ereza 2024). On the
other hand, the perturbation theory provides a clean way to
understand all related effects in the covariance matrix calculation
(Meiksin & White 1999; Scoccimarro et al. 1999; Bertolini et al.
2016; Chan & Blot 2017; Mohammed et al. 2017; Sugiyama
et al. 2020; Wadekar & Scoccimarro 2020). It also provides the
ability to perform a quick cross-check with the numerical
covariance matrix (Wadekar et al. 2020).

This paper extends the results in Hikage et al. (2020b) to
include the galaxy bias and the discreteness effect based on
perturbation theory and compute the analytic covariance
matrix. In addition, we also model the cross covariance matrix
between pre- and post-reconstruction power spectra. We
compare the analytic covariance against numerical ones
computed from 15,000 Quijote simulations (Villaescusa-
Navarro et al. 2020).

This paper is organized as follows. Section 2 presents the
analytic covariance matrix model. In Section 3, we compare
our analytic covariance matrix model to the numerical one
computed from 15,000 Quijote simulations. The conclusions
and discussions are summarized in Section 4.

Zhao et al.

2. The Covariance Matrix Model
2.1. Density Fluctuations and Correlators

Following the counts in the cell formalism in Feldman et al.
(1994), Smith (2009) and Sugiyama (2024c), we can divide the
simulation box into infinitesimal cells with volume éV. The
number of galaxies® in the i-th cell, or the galaxy occupation
number 7, ;, is either 0 or 1, satisfying

Ngi = ng;, )]

where n > 2. The galaxy number density in the simulation box
is then expressed as

ng(x) = Z ngibp(x — X;), (2)

with 6p the Dirac delta function and x; the position of the i-th
cell. The expectation value of the occupation number is
(ng;) = M6V, with 71, the galaxy number density. Assuming
galaxies are distributed following the Poisson point process, the
occupation numbers in different cells (i =j = k=1[) are only
correlated through the underlying continuous galaxy density
field

(ng.ingj)e = Mg &,o(Xi, X,)6V2, ©)
(ng.ingjngi)e = Ny Gy (is X, X) 6V, 4)
(ng.ing jng iNg.)e = Tig Ny Xis Xjs X X1) 6V, (5

where we use notation (---),. to represent the cumulant average,
and we have defined the two-, three- and four-point galaxy
correlation functions £gg, (gge and 7)gg,,, TESpECtively.

In Fourier space, the galaxy number density becomes

ng(k) =Y ng e **, (6)
For the convenience of later calculations, we can define
01(K) = g e ™
il

8

The summation of 4, ; satisfies

3 (600 = 3 (e

i 8 i

_ Z e~ kxi gy f e kxd3y = Vé;’f, (®)
- 14

where V is the volume of the simulation box, and 6,’5 is the
Kronecker delta symbol, which is equal to 1 when k=0 and
vanishes otherwise. Here the arrow indicates that we take the
continuous limit. The 2-point correlation of 0, ; is

> {bg.i k) 6 (k2))e =D EgeXis xj)e kixigmkx §y2 - (9)

i=j i=j

®  Qur derivations in this section also apply to halos, so we will use “galaxy”

and “halo” interchangeably in the later section.
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= [ etrnd [ ¢ - x)
Vv \’%
x emh@ =) By — xy| = VOi Py k), (10)

where P,, is the power spectrum, and we use the notation
k> =k, +k,. Similarly, higher order correlations of &,; are
related to bispectrum and trispectrum, respectively,

S (8g.i (k1) 8 (k) bg j(k3))e = VOi . Bogolhki, ko, ks), (1)

i=j=k
Z <6g,i (kl)(sg,j (k2) 6g,j (k3) 6g,l(k4)>c
i=j=k=l

= Vi, Tege k1, Ko, ks, Kea). (12)

2.2. The Shot Noise Effect

Correlation of occupation numbers in the same cell is called
the discreteness effect or the shot noise effect. It can be
evaluated using Equation (1), or equivalently

6. () 8,4 Ucz) = ni o). (13)
8

We will use the superscript N to represent correlators with the
shot noise effect, i.e.,

> (641K b j (k) = VO, Poy(ky) (14)
ij
> (8, (k1) 8 (k2) gk (k3))e = VO§ . Bhy (et ko, k3)  (15)

ij.k

D7 (8g.i(k1) bg (k2) g i (K3) b1 (Ks))e

ijik.l

= Vi s Tovee (s 2, ks, k). (16)
The following expression is also useful in the later calculation
7 (8.i(k) 6, (k) By g (Key))e = V(Sflz}Bng(kla ko, k3). a7

i=j.k

Here the superscript N12 indicates that the correlation between
the first and the second density field in the same cell is
removed, i.e., the shot noise effect is partially removed in this
correlator. Their explicit expressions are given in Appendix.

2.3. The BAO Reconstruction

In the standard Zeldovich reconstruction, the density field
after reconstruction n, reads

nx(x) = nq(x) — ans(x), (18)

where « is the ratio of the total number of galaxies to randoms,
ng is the displaced data number density, and n; is the displaced
random number density. They are obtained by moving particles
in the galaxy catalog n, and an initially unclustered catalog
consists of random particles n, according to the shift field s(x).
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The shift field in Fourier space can be explicitly written as
s(k) = iR (k)64 (k). 19)

Here 0, is the galaxy overdensity field 6,(x) = n,(x)/fi, — 1,
while kernel R determines the reconstruction detail

k + faak - D7) S(k)
k? bsia + fra (k- 7)?
where fgq is the fiducial growth rate, bgq is the fiducial linear

galaxy bias, 7} is the line-of-sight and S is the smoothing
kernel, whose functional form is given by

S(k) = exp{-k>%3/2}, 1)

R(k) = — (20)

with X the smoothing scale.
The continuity equation implies

ng(x) = f g () bp(x — x' — s(x), (22)
ng(x) = fd3x’n,(x’)§D(x —x' — s(x"). (23)
In Fourier space, they become
nak) = [ & ny(xyemikix s
ny(k) = f B n, (x) e~k +s@], (24)

Expanding the exponential term, we can then relate the
reconstructed overdensity field ¢, with the galaxy and random
overdensity field (Shirasaki et al. 2021)

ng(k) — an, (k)

84(k) = . (25)
8
= f P [8,(x) — 6,(x)] e Fbrtsl, (26)
) n,fk - R(p)] - [k - R(p, )]
X [6g(p1) 6r(p] )]6g(p2) 6g(Pn+1)» (27)
~ L[ kRG] (kR )
n=0 Lo.n+1
X 8e(P)8e(P2) -+ Se(Bui), (28)

=Y [ R@m)EB) S, 29
n—= k=p, ,

where we use the notation
d3
[SEsenrsk —p ). GO

f k=p, ., f (27r>3 J@np

The overdensity of randoms is defined by 6,(x)=
an,(x)/f, — 1, and has been neglected in the final expression.
This is because the contribution from 6, is generally a ~ 1/50
times smaller compared to that from d,. For example, in the
shot noise dominated region we have P = anNg. The last line
defines the n-th order symmetrized reconstruction kernel. The
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first three terms are given by

Ri(p) =1, (€29)
1
Ry(py.py) = SPi2 [R(py) + R(p,)]. (32)

1
R3(P1»P27P3) = g{[P123 'R(Pl)][P123 . R(Pz)] + (2 cyc)}.
(33)

Analogous to the galaxy number density, the discrete form of
random number density is described by

n(x) =3 n.ifpx — xp), (34)

where n,; is the random occupation number satisfying
ny; = n,z,,-. In addition, since the generation of random catalogs
is independent of galaxies, galaxies and randoms are never in
the same cell, i.e.,

Ng iy = 0. (35)
ng, ng and n, can then be expressed in discrete forms
ng(x) = > ngibp(x — xi — 5)) na(k) = ng e *wits),
i i

(36)

ns(x) = > nibp(x —x; —8) ng(k) =) n, e k@t
i i

(37

ns(x) = Z(ng,i —an.)op(x — x; — ;)

ny(k) = (ng; — an, e k&its), (38)

with s; the shift field evaluated at the position of the i-th cell.
Using the notation

1 .
bxi = —(ngi — an, e &t 39)
g
the post-reconstruction power spectrum, bispectrum and
trispectrum are defined as follows

> (64, (k) bx j (k2))e =

i=j

V6K, Peslly), (40)

S (0x,ik) 64 j(2) 65 1 (k3))e = Vi Biessky, Ko, k3),
i=j=k

(41)

- _ X X _ sk
, J ke K3) Ox, 1234 3
> By, i) 6 j(Rep) O 1 (k3) B 1 (K 4))e = VEit,0 Teneslr, ko, ks, k).

i=jek=l

(42)
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Their shot noise effect including counterparts and cross-
correlations between pre- and post-reconstruction density field
can be very similarly defined.

2.4. The Shot Noise Effect After Reconstruction

Contrary to the pre-reconstruction case, the shot noise effect,
even if Poissonian, cannot be removed by subtracting the self-
pair contribution. Sugiyama (2024c) developed a method to
compute the shot noise effect by counting self-pairs in the
galaxy density field. We will follow this approach and derive
the impact on bispectrum and trispectrum.

We only need to expand 6, up to the 3rd order as we are
only interested in the tree-level bispectrum and trispectrum

Ry(py» P3)0g,i(py)0g,ir(P>)

=P12

6,00 =3 8,400 + 3 [

+ 5 [ R P2 P8P8 (P b ()
k=p,y;

ii’,i"

+ 0.
(43)

The calculation is then very similar to the pre-reconstruction
galaxy bispectrum and trispectrum, except that we need to
differentiate between the shot noise included and excluded
correlators when connecting internal legs in the diagram. For
example, the first line of Figure 1 shows the diagram of By,
where internal legs represent §, while external legs represent
04. Filled circles signify galaxy correlators without the shot
noise effect, while empty circles include the shot noise.
Therefore, the post-reconstruction bispectrum is given by

By sx(ky, ko, k3) = Ry(kp) R, (k) Ry (k3) By (ki ko, k3)
+ {Ro(—ky, —k3) Ry (ko) Ry (k3)
X [Pog (k2) Pyy (k) + (ky = k3)] + (2 cyc.)).
(44)

This expression recovers Equation (22) in Shirasaki et al.
(2021) if we rewrite R, in terms of the perturbation kernel Z;*¢
after reconstruction.

The cross-correlation can be similarly obtained as

Bosxx(ky, k, k3) = Ri(k2) R (k3) Bgg, (i, k2, k3)
+ {Ro(—ki, —k2) Ry (k2) [ Pyg (ky) Py (k)
+ (ki < k)] + (k2 < k3)}
(45)

Bggx(ki, k2, k3) = Ri(k3)Bggo(ky, k2, k3)
+ R (—k, —kz)Rl(k3)[E;g(k1)Pg(k2) + (k< k).
(46)
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Figure 1. Diagram of post-reconstruction bispectrum B, ., and trispectrum Ty 4 4.

The 2nd and 3rd lines of Figure 1 show the diagram of the

Similarly, the cross-correlation trispectrum with the full shot
post-reconstruction trispectrum, which gives

noise effect is given by
T****(k19 k2’ k37 k4)
= Ri(k) Ry (k2) Ry (k3) Ry (k4) Tggeq (ki ko, k3, ky) + {[2Ry (—ky, —kp3) PN.() BN, (Key, K3, —ko3)
: gg 1) Bgggle2, 163, —I23
+ Ro(—ka, ki + ko) Ry(k2) Ry (k3) Ry (k4) + 2 cye)] + (s < ka))
N :
X UPig () By s, ke, K + ) (4R (k. —kas) Ro(— . Kos) P ) Py

X (ko) Py (k3) + (ki — k»)}

Togsrcr, Ko ks, ka) = Ri(ks) Ri(ky) Tageo (ki Koo, Kes, Key)

+ Pog(k2) By, (s, Ky, Ky + k)] + (11 perm.)
+ Ro(—ky, ki + ka)Ro(—ks, ka + k3) Ry (ks) Ry (k4)

6R3(—ki, —ky, —k3) Py (ki) Ppy (ko) Py (k
X (PN () P (k) Prg ke + ) + {6Rs(—ki, —ka, —k3) Py, (k1) Py, (k2) Py, (K3)
N N + (ks < k4)}.
+ ng(k4)Rgg(k3)ng(kl + ky) (48)
+ Py (ka) Py (ks) Py (i + k) Note that the ab ' v hold atively. and
N ote that the above equations only hold perturbatively, an

+ Fyg(k4) Fog(k3) Pog (ki + k4)] + (11 perm.) one should expand P, By, and T,e, at the tree-level.
+ Rs(ka, ks, ka) R (ko) Ry (k) Ry (k)

Although in this work we only assume Poissonian shot noise,

X [2Pyg (k) Py (k3) Pgy (ka) + (2 cyc)] + (3 cye).  (47) the full stochastic term (Perko et al. 2016) can in principle to be
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plugged into the above equations or re-parameterized. We refer
the readers to Ebina & White (2024a) for a relevant discussion.
2.5. The Gaussian Covariance

The pre- and post-reconstruction power spectrum estimators
for an individual mode are given by

A 1
Putl) = o llnhOF = N (49)
Bostl) = ——{In)P — (1 + )Ny}, (50)
Vi

8

where N, is the total number of galaxies. These two estimators
are shot noise subtracted, and can be expressed in terms of ,;
and 6y ;

~ 1

ng(k) = VZ 6g,1(k) 6g,}(_k)
i=j

Bosll) = 23 64 (K) 4 (k). 51)
i=j

The cross power spectrum estimator between pre- and post-
reconstruction density field is written as

—~ 1 1
P;;(k) = an(k)n*(k) = VZ b.i(k) bx,i(—k),  (52)
8 L]

here we do not subtract the shot noise.
The pre-reconstruction covariance is then given by’

nggg(kl’ ky) = <13gg(k1)fz'g(k2)> - <pgg(kl)><ﬁgg(k2)>’ (53)
1

= _22<6g,i(k1)6g,k(k2)>cz
14 i,k J.l
X (0g.j(—k1) g 1(—k2))e + (ky — —k>2)
1
t— D (Geilk) b j(—H) S )b s (=)}, (54)
i=j k=l
= Coelht, ko) + Copo ki, ko). (55)

The last line defines the Gaussian and non-Gaussian contrib-
ution. The Gaussian contribution evaluates as

CgGggg(kl’ ky) = [PgNg(kl)]z (6llf(l+k2 + 51§sz)~ (56)

The post-reconstruction and the cross covariance between
pre- and post-reconstruction covariance are similarly given as

Céssshr, ko) = [PRU)P (8% 14 + Ol—ty)» (57)

Cornnlkr, ko) = [PR(k)P (6% 14, + 6k 1,)- (58)

7 Terms involving (6, (k)). vanish because k; = 0 and k, = 0.
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2.6. The Non-Gaussian Covariance

The non-Gaussian covariance for pre-reconstruction is given
by Wadekar & Scoccimarro (2020), Sugiyama et al. (2020).
The post-reconstruction covariance has the same structure as
the pre-reconstruction one

1
Ciynx ki, k) = VT****(kla —ki, k>, —k»)

11
+ V'_[B***(ku’ —ki, —k»)

ng
+ Byxx(ki — ko, —ki, k2) + (ki < —k;)]
11
+ ——[Belki + k2) + Resky — k2)].
\% Mg
(59)

Let us now consider the non-Gaussian covariance between
pre- and post-reconstruction power spectra

1
Copsexth, ko) = — 3~ (8,.i(ki)bg

i=j k=l
(—k) 65k (k2) 65 1 (—K2) e . (60)
Since terms like
1 , .
Yo = ngie Mo kesis  (—ky) by (—k2),

i=j=li=k i=j=l ng

(61)

cannot be expressed in terms of o, and 0., we instead expand
the summation as follows (see Equations (17), (18) and (19) in
Sugiyama et al. 2020)

P D DI DD (62)

i=jk=l  ijkl  i=jkl  k=lLij  i=j.k=I
The first term is

1
o :VTgNg**(kl’ —ki, k2, —k). (63)

i.j.k,!

Using Equation (13) and

1
Ox,i (ky) 0% i (ko) ~ ﬁ—5>(<,i(k12), (64)
N

6,1(0) = 6,.:(0)

the second term expands as

o= > D> 4+ Y+ Y (65

i=jk,l imk=l  imkk=l  i=Li=k  k=lLi=k  i=j—k
11 2 1 1
= ——1Bexx(0, k2, —k2) + —Rex(ky) + —Fx(0) + —
V g g g i,

(66)
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The third term expands as

11 2
Z = ___{ng*(k17 7k13 0) + __ng(kz)
k=1ij Vi, ng
1 1
+ =Pu(0) + =51, (67)
g i,
and the last term is given by
11 1
S :___Z{Pg*(ﬂ) + _—} (68)
i=j k=1 Vg e

Therefore, we obtain
1
Copsex i, ko) = Vqu**(kls —ky, k2, —k>)

11
— ——{Bggxlki, —ki, 0) + Byxx(0, ko, —k3)
V i,

2 2 1 1
+ —Fe(k) + —Bex(ko) + —Fpx(0) + _—2}
il i, . il

g 8 Mg s
(69)
Using the fact that at the tree level
Fog(k) = Bex(k)  Fyx(0) = Fy(0), (70)

and substituting Equations (45), (46) and (48) into the above
formula, the final expression is written as

Copsexki, ko) = Cpopy (ki Ke2)
1
+ 4 (2R (oo Fa — ko) Py (i) By,
X (—ki, ko, bt — ko) + (ki < —k)] + (kp < —k2)}
1
+ V{4R2(_k1’ ki — k)P (k)P

X (ki + ko) + (b < —ky)}

1
+ —{6R3(—ki, ki, —k2) Pgy (k)*Ppy (ko) + (ky < —k2)}

\%4
1
+ o (2R (ke 0) Py (ko) By, (ki, —ki, 0) + (ky < —k2)}
12
— o (RO k)E, (0)Pgy (k2) + Ry (0, ko) Py (0) Py (k) }.
8

(71
The last two lines vanish in the case when there are no modes
larger than the periodic simulation box we are considering.
2.7. Numerical Implementation

In previous sections, we derived the covariance matrix of
power spectrum estimators for a single mode. In the analysis,
we will use the binned power spectrum projected in the
Legendre basis, i.e., the power spectrum multipoles, namely,

Py = QL+ DY P k) Lok - 1), (72)
k
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where k takes discrete values with the unit of fundamental
frequency k,=27/L, and L, is the {-th order Legendre
polynomial. Symbol > ; represents the average of k-modes
inside a spherical shell with the wavenumber |k| satisfying
k| € [k — Ak/2, k+ Ak/2) and Ak the width of k-bins. This
definition can be expressed in terms of a top-hat function =;

Y= 5
k k'
1
— — if |K'| € [k — Ak/2, k + Ak/2
sy =, THIEk Ay RS
0  otherwise
with N, the number of modes inside the spherical shell

N, ~ V, /k; = is an even function and has the following
properties

S gk, ko) oy = gk, —k)Z, k), (74)
k;
Ok
S gk, ko) o, = —22>" gk, —ky), (75)
ok Ny %,

where g is an arbitrary function, and the 2nd equality assumes
non-overlapping bins for k; and k,. The two-argument
Kronecker symbol 6,’6(]!,{2 is equal to 1 when k; =k, and
vanishes otherwise.

The Gaussian covariance matrix of power spectrum multi-
poles becomes

2
Ci (ks ko) = 8, ~= @l + D26 + 1)
ky

x S P2k Lok - ) Lotk - ), (76)
k

where P takes P;;, PN, and PgN* for the pre-, post- and cross-

correlation covariance matrix, respectively. The non-Gaussian
part is given by
Ciy, (i, k2) = 26 + 126 + 1)
x 3 Cha, ko) Loty - i) Loher - 7). (T7)
ki
Although the above two equations accurately capture the
binning effect in the power spectrum measurement, we will

adopt the continuous limit and the thin shell approximation to
reduce the computational cost, i.e.,

.
zquj;_:fézf%. (78)

Therefore the Gaussian covariance matrix is given by

2
C5, (ki ko) = 8¢ 1, N_(zf.q + D@L+ 1)
ki

< [ PP Lot - i Lot - 7). (79)
ki
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In the calculation, we use the non-perturbative P(k;) con-
structed by averaging over By, P, and P, measured from
simulations. We note that we do not remove the binning effect
for simplicity.

According to the rotational symmetry, the non-Gaussian part
reduces to a 3D integration

26 + 1)(26, + 1 1 1
Cop, (k1. k2)=( l ;; = )jil dlhj:l dyi,

2T
x fo dé CT (i, Koy gy 20 B Le(1) Ley(11):
(80)

3. Comparison with Simulations

To test the analytic covariance derived in the last section, we
measure the numerical covariance matrix of power spectra
multipoles from 15,000 Quijote halo catalogs® at redshift
z=0.5. Each simulation evolves 512° particles inside a
periodic box of 1/~ ' Gpc length with the initial condition set
by 2LPT at z = 127 and the fiducial cosmology {€2,,,, <2, h, ng,
og, M,} =1{0.3175, 0.049, 0.6711, 0.9624, 0.834, 0}. Dark
matter halos are identified using the FoF algorithm (Davis et al.
1985). In this work, we only consider halos with a mass range
of 10"3171*9 = 1p1. leading to the mean halo number density
of 7i;, ~ 2.918 x 10~* [h~! Mpc]~3. The linear bias is found to
be by ~ 1.85, obtained by running fits to the power spectrum
multipoles with the Velocileptors EPT code (Chen et al.
2021; Maus et al. 2024b).

We use the public code pyrecon’ and pypower'® to
perform the density field reconstruction and power spectrum
measurement (Hand et al. 2017), respectively. The reconstruc-
tion algorithm is summarized as the following steps

1. Interpolate halo particles on a 1000* mesh with a box size
of 1000 /! Mpc using the Cloud-In-Cell (CIC) scheme,
then compute the overdensity and transform to Fourier
space.

2. Smooth the overdensity field using the kernel defined in
Equation (21) with ¥, = 10, 15 and 20 2~ ' Mpc.

3. Assuming a fiducial value for the linear bias bgq = b and
the growth rate fuq = fire = 0.7628 or'! fzq = 0, estimate
the shift field on the grid by solving Equation (19).

4. Displace halo particles with the estimated shift field
interpolated at the particle position with the CIC scheme
to obtain the displaced data catalog.

8 hups: //quijote-simulations.readthedocs.io /en/latest/halos.html

° https://github.com/cosmodesi/pyrecon
10 https: //github.com/cosmodesi/pypower

' The choice of fa = 0 is usually adopted in perturbation theory calculations
(e.g., Hikage et al. 2020a; Sugiyama 2024a) as it is not straightforward to
obtain the analytic expression of the full 3D power spectrum expanded in
Legendre polynomials when k - 7) appears in the denominator.
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2000 -
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0.00 0.05 0.10 0.15 0.20 0.25
k[hMpc™]

Figure 2. Solid lines, dashed lines and dotted lines show the measured pre- and
post-recon power spectrum, and the cross power spectrum of our baseline,
respectively. In this plot, the shot noise is removed from both the pre- and post-
reconstruction power spectra, but is retained in the cross power spectrum.

5. Generate a random catalog with the number of randoms
50 times the number of halos. Random particles are then
displaced in the same manner as halos to obtain the
displaced random catalog.

The baseline reconstruction setting we use iS bgq= by,
Ys=15h""Mpc and fhq=0.7628. The density field is then
obtained by assigning particles on a 1000° mesh using the
Triangular Shaped Cloud (TSC) scheme with the window function
correction applied (Jing 2005). When painting particles on the
mesh, we additionally use two interlaced grids (Sefusatti et al.
2016) shifted by 1/3 and 2/3 mesh cell size, respectively, to
reduce the aliasing effect. Then, the pre-, post- and cross-power
spectrum multipoles are estimated following Equations (49), (50),
(52) and (72). In our analysis, we consider power spectrum
measured between k,;, = 0.01 2 Mpc~! and k,x = 0.35 7 Mpc~!,
with the k-bin size set by Ak =0.01 2 Mpc . The measurements
are shown in Figure 2.

The derivations presented in the last section have assumed 71,
is a fixed number in the denominator. This is, however, not true
because the number of halos varies between different
realizations. So, we have two choices in the power spectrum
estimation. One choice is to normalize the estimator using the
number density measured in each realization, or the “local
number density.” Another choice is to use the ensemble
averaged number density, or the “global number density.” We
found these two choices lead to almost the same mean power
spectra but different numerical covariances especially at the
small scale, with the “local number density” case showing
smaller correlations in both the diagonal elements and the non-
diagonal parts. This effect is very similar to the local average
effect as pointed out by de Putter et al. (2012), but their


https://quijote-simulations.readthedocs.io/en/latest/halos.html
https://github.com/cosmodesi/pyrecon
https://github.com/cosmodesi/pypower
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Figure 3. The relative difference in the square root of diagonal covariance elements compared with the Gaussian prediction. Red lines signify the result predicted by
the analytic covariance matrix with the non-Gaussian contribution. Shaded bands show the numerical covariance matrix computed from 15,000 simulations.

physical origins are different. The latter is caused by the matter
fluctuations at the survey scale, while in our case, the difference
in the halo number density is caused by different initial
conditions. On the other hand, comparing the analytic
covariance with the “global number density” case is also not
very consistent on the theory side, because it means the
overdensity we defined can have fluctuations at the box scale.
In any case, we will present both the “local number density”
and the “global number density” measurements when compar-
ing the theory prediction to simulations. The variation of
number densities additionally leads to the variation of shot
noise, but this effect has already been included in the derivation
(see discussions in Smith 2009; Chan & Blot 2017; Wadekar &
Scoccimarro 2020; Sugiyama et al. 2020).

The full covariance is represented by C; ;,4¢,(ki, k»), where i
and i, label either the pre- or post-reconstruction power

spectrum. We will use symbol C;;, (¢, k) to denote the diagonal
pat*[, i.e., [1 :[zzf and k1 :kzzk

Ciii, (¢, k) = Cijipee(k, k). 1)

Figure 3 compares the diagonal part of covariance matrices
between numerical covariances and analytic covariances using
the baseline reconstruction setting. The lo error band is
estimated by bootstrapping. As shown in the plot, the departure
from the Gaussian prediction is around 5%'> up to
k=0.35hMpc™" for the auto-correlation covariance. The
post-reconstruction covariance agrees with the Gaussian
prediction better compared to the pre-reconstruction.'® This is
expected, because reconstruction undoes the nonlinear

12 This argument depends on the size of k-bins Ak.

13 We remind the readers the Gaussian contribution is computed in the non-
perturbative way, so any deviations show the pure trispectrum effect.
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gravitational evolution, so that the induced correlations

between measured power spectra are suppressed (Hikage
et al. 2020b). However, the cross-correlation between pre-
and post-reconstruction power spectra is much stronger
compared to the Gaussian prediction, and the deviation exceeds
15% when k goes beyond 0.25hMpc '. Adding the non-
Gaussian contribution to the analytic covariance improves the
agreement between the theoretical prediction and the numerical
covariance especially in the auto-correlation covariance, while
the theory still under-predicts the cross-correlation covariance.

To compare non-diagonal elements, we use symbol
riﬁzgl ¢, (ki, k2) to represent the covariance matrix normalized
by the Gaussian prediction

Ciinut (ki, k2)
JCS 4 (. k) CS i, (ks o)

e Gk, ko) = (82)

Figures 4, 5, 6, 7 and 8 show ’"iﬁzé’lé’z (ky, ko) at k, = 0.045, 0.095,
0.145, 0.195, 0.245hMpcfl, respectively. In each plot, we
also display the non-Gaussian analytic covariance with the shot
noise contribution set to zero. Overall, the agreement between
the theory prediction and the numerical covariance is reason-
ably good. Even when k > 0.15 h Mpc ', the theory prediction
still captures the shape of correlations between different k-bins.
The non-Gaussian effect in the cross covariance is comparable
to, or even stronger than, the pre-reconstruction covariance.
According to the theoretical calculation, we conclude that this
enhancement is due to the shot noise effect.

We also notice there are a few features appearing in the
analytic covariance but not present in the numerical
covariance. For example, the PP x PP** block in Figure 8
shows peculiar enhancements in small k. It is likely caused by
the second line in Equation (44), which diverges in the
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Figure 10. Similar to Figure 4, but comparing different reconstruction settings.
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squeezed limit when k5 goes to 0 because Pgl\; (k3) — const
while Ry(k,, k3) — oo . In addition, at small scales, the theory
strongly over-predicts the correlation when k; approaches k,
in the cross-correlation covariance. This may be attributed to
the IR-effect as pointed by Sugiyama (2024a), i.e., the cross-
power spectra and its shot noise should damp exponentially
due to the lack of IR-cancellation. However, deriving the full
IR-resummation equation for the cross-correlation trispectrum
is beyond the scope of this paper, and we leave it to
future work.

We then study the change of numeric and analytic covariances
by varying the smoothing scale and the fiducial growth rate.
Results are shown in Figures 9 and 10. Changing fzq mainly
changes the quadruple contribution, and increasing the smooth-
ing scale increases the correlations in the post-reconstruction
power spectra while decreasing the correlations in the pre- and
post-reconstruction cross covariance. This is because the post-
reconstruction power spectrum recovers the pre-reconstruction
power spectrum when X; — 00, 50 that Cggy.y reduces t0 Cggqp.
The theory prediction is still in good agreement with the numeric
covariance, and the theory matches the numerical covariance
better when using a larger smoothing scale or a zero fgq.

4. Conclusion and Discussions

The reconstruction technique provides a useful tool to
improve the measurement of the BAO signal and makes the
standard ruler more robust by undoing the nonlinear gravita-
tional evolution. This field level operation brings back
information beyond the 2-point statistics but also complicates
the analysis especially when combining with the pre-recon-
struction statistics. This is because both the signal and the
covariance are affected by higher-order statistics.

In this work, we build a theory model of the covariance
matrix for the power spectra before and after the BAO
reconstruction based on the recent theoretical progress in the
reconstruction modeling (Sugiyama 2024a, 2024b, 2024c).
We check the accuracy of our model against 15,000 halo
mocks at redshift z=0.5. We show that the diagonal part of
the covariance matrix is well described by the Gaussian
prediction, with the maximum deviation of 5% for the pre-
and post-reconstruction auto covariance. However, the cross
covariance between pre- and post-reconstruction power
spectra deviates from the Gaussian prediction quickly when
k>0.1hMpc™' and achieves 15% at k=0.25hMpc . In
addition, the non-Gaussian effect in the cross covariance is
comparable to, or even stronger than, the pre-reconstruction
covariance. We find that adding the non-Gaussian covariance
predicted by the perturbation theory leads to a better
agreement with the numeric covariance up to k=~
0.15AMpc™', and the shot noise effect has a very large
contribution at small scales. When k> 0.15hMpc ', the
theory prediction still captures the shape of correlations

Zhao et al.

between different k-bins, but over-predicts the correlation
near the diagonal elements in the cross covariance. We also
test the model with different smoothing scales and different
fiducial growth rates when doing the reconstruction, and we
find similar agreements with the numeric covariance.

In future work, we plan to extend the model to account for
the IR-resummation effect. It will also be interesting to extend
the calculation to multiple galaxy populations (Ebina & White
2024b; Mergulhao et al. 2024; Zhao et al. 2024) and correlation
functions (Philcox et al. 2020; Rashkovetskyi et al. 2023), and
compare the covariance matrix performance at the parameter
level (Alves et al. 2024; Forero-Sanchez et al. 2024;
Rashkovetskyi et al. 2024). The impact of the survey window
function (Wadekar & Scoccimarro 2020), the local average
effect (de Putter et al. 2012), the super survey effect (Takada &
Hu 2013) and the fiber collision affects (Pinon et al. 2024) on
covariance matrices are also interesting topics. This work
provides a useful reference for future extensions.
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Appendix
Perturbation Theory Before Reconstruction

The galaxy density field in redshift space can be expanded
perturbatively

5;.")(k>:fk Zoy )Ly - SL(py). (Al
=Pi..n

where we have adopted the EdS-approximation, with ¢; the
linear matter density field evaluated at the observation redshift
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and Z, the n-th order perturbation kernel. In this work, we use
the “descendants” bias basis defined in Perko et al. (2016) and
assume G5 = by, Gsp = 1, 53 = 1, with all other bias para-
meters set to 0. The tree-level bispectrum and trispectrum are
given by Goroff et al. (1986)

Bggg(kt, k2, k3) = 2721 (k)) Z1(k2) Z> (ki, ko) P (ky) Pr(k2)

+ (2 cyc.)
(A2)
Toeoolr, ko, k3, ks) = 4Z, (k) Z1(k2) Z2 (= kK, ki) Zs
X (—ka, k23) Pp (k1) Pp(k2) Pp(kis) + (11 perm.)
+ 6Z(k) Z1(k2) Z(k3) Z3 (K, Ko, K3) Pr
X (ki) Pp(k2) PL(k3) + (3 cyc.). (A3)

The full power spectrum, bispectrum and trispectrum with the
shot noise effect are given by Sugiyama et al. (2020) and
Sugiyama (2024b). We copied these expressions in the
following

1
Py (k) = Pyy(k) + —, (A4)
ng
Bl (ki, ka, k3) = Byge(ky, k2, k3)
1 1
F—[Pgll) + Pg(ko) + Poglle)] + —5. (A5)
n
8

8

1
B2 (ki, k2, k3) = Byge(ki, ko, k) + —[Pog (ki) + Pog(ka)],

888 i
8
(A6)
Toeeekr, ko, ks, ky) = Tygeo(hky, ko, k3, k)

1
+ —[Bgee(—ki2, ki, k)
ng

+ Bggo(—ki3, ki, k3) + Bggo(—kis, ki, ks)
+ ngg(_k23’ k2, k3) + ngg(_k24, k2, k4)
+ By (—k34, k3, ks)]

1
+ F[B;g(kl) + Ppo(ky) + Ppo(ks) + Poo(ks) + Pyo(kin)
s

1
+ Fpg(k13) + Fpe(kia)] + —-
il

g
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