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Abstract

Open clusters (OCs) serve as invaluable tracers for investigating the properties and evolution of stars and galaxies.
Despite recent advancements in machine learning clustering algorithms, accurately discerning such clusters
remains challenging. We re-visited the 3013 samples generated with a hybrid clustering algorithm of FoF and
pyUPMASK. A multi-view clustering (MvC) ensemble method was applied, which analyzes each member star of
the OC from three perspectives—proper motion, spatial position, and composite views—before integrating the
clustering outcomes to deduce more reliable cluster memberships. Based on the MvC results, we further excluded
cluster candidates with fewer than ten member stars and obtained 1256 OC candidates. After isochrone fitting and
visual inspection, we identified 506 candidate OCs in the Milky Way. In addition to the 493 previously reported
candidates, we finally discovered 13 high-confidence new candidate clusters.

Key words: galaxies: star clusters: general – (Galaxy:) open clusters and associations: general – methods: data
analysis

1. Introduction

Open clusters (OCs), or Galactic disk star clusters, are
groups of stars formed from the same giant molecular cloud
simultaneously. The Gaia (Gaia Collaboration et al. 2018,
2022; Riello et al. 2021) mission has identified many OCs. The
discovery process is ongoing and not yet finished. The release
of Gaia substantially boosted OC identification and research
efforts. The number of OCs reported in the scientific literature
is over 7000. A total of 4000 OCs have been released (Castro-
Ginard et al. 2018, 2019, 2020; Liu & Pang 2019; Li et al.
2022) based on Gaia Data Release 2 (DR2; Gaia Collaboration
et al. 2018) and Early Data Release 3 (EDR3; Lindegren et al.
2021). Chi et al. (2023c) reported 46 OCs in Gaia EDR3 and 83
OCs (Chi et al. 2023a) and 1179 OCs (Chi et al. 2023b) in Gaia
Data Release 3 (DR3). During the preparation of this work,
Hunt & Reffert (2024) derived completeness-corrected photo-
metric masses for 6956 clusters from their work (Hunt &
Reffert 2023) and found that only 5647 (79%) of the clusters
from their previous catalog are compatible with bound OCs by
calculating cluster masses and Jacobi radii.

Although numerous studies have been conducted to identify
OCs, applying machine learning algorithms to obtain the most
appropriate parameters for the models remains challenging. We
applied the Friends-of-Friends (FoF) algorithm to find the
corresponding OC identification in the previous works. As a
complicated clustering method, FoF cannot handle noisy data.
If FoF parameters (e.g., linking length) are not properly set,

cluster members mixed with field star pollution can be easily
obtained during cluster identification. After the initial identi-
fication of OC candidates, especially using the FoF method,
unsupervised photometric membership assignment algorithm
(UPMASK, Krone-Martins & Moitinho 2014), Random Forest
(Mužić et al. 2022; Chi et al. 2023c), and deep set neural
network (van Groeningen et al. 2023) are generally used for
further screening of member stars, but these methods still have
certain limitations. Some OCs cannot reasonably be described
by the classic King model (King 1962) embedded in UPMASK
or pyUPMASK (Zhong et al. 2022). Arunima et al. (2023)
showed that the much-used method of distance and velocity
cutoffs for membership determination often leads to false
negatives and positives, and membership determination is still
challenging for young star clusters. It is also still difficult to
distinguish member stars of star clusters and associations
between the foreground and background populations (Gagné
et al. 2018).
In our previous work, we utilized the FoF method and

pyUPMASK to identify OC candidates (Chi et al. 2023b).
However, how to further improve member star identification
accuracy has also been a key issue troubling us. In this study,
we introduce a multi-view clustering (MvC) ensemble method
to further enhance OC membership determination accuracy.
The rest of the paper is structured as follows. In Section 2, we
describe the methodology developed for determining OC
membership. We then introduce the production of OC samples

Research in Astronomy and Astrophysics, 24:115021 (16pp), 2024 November https://doi.org/10.1088/1674-4527/ad8055
© 2024 National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. Printed in China.

1

https://orcid.org/0000-0001-7343-7332
https://orcid.org/0000-0001-7343-7332
https://orcid.org/0000-0001-7343-7332
mailto:fengwang@gzhu.edu.cn
https://doi.org/10.1088/1674-4527/ad8055
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad8055&domain=pdf&date_stamp=2024-11-26
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad8055&domain=pdf&date_stamp=2024-11-26


in Section 3. Section 4 presents our results and the newly found
OCs. The MvC algorithm is discussed in Section 5. The
conclusion is provided in Section 6.

2. Multi-view Clustering Ensemble Method

Distance metrics in high-dimensional spaces would lose
efficacy (Beyer et al. 1999; Hinrichs et al. 2014), resulting in
poor density-based clustering. According to Chang et al.
(2014), high-dimensional data have the characteristics of being
sparse, a dimensional disaster, and noise, which reduce the
possibility of class recognition in all dimensions, making the
traditional clustering algorithm unsuitable for high-dimensional
data clustering. With the subview approach (Zhao et al. 2017),
since each viewpoint characterizes the same subject differently
when all viewpoint features are concatenated together, they can
be considered as a description of the same subject from a new
viewpoint. The learned consistency graph can describe the
structure of all perspective features.

Inspired by multi-view learning (Zhao et al. 2017), we
introduced the MvC method and applied it to determine OC
memberships. The flowchart of applying MvC is illustrated in
Figure 1. Note that MvC is only used to process OC candidate
data initially identified by FoF and pyUPMASK. This is done
by clustering the data from multiple views separately and then
using the voting mechanism to obtain a more plausible member
star result.

2.1. Definitions of Subviews

In general, two principles should be considered while using
MvC. (1) The consistency principle: we must ensure
consistency among multiple views. For example, many views
should share the same category structure. (2) The

complementarity principle: each view of multi-view data may
contain information or knowledge that others do not.
Considering that, in a real physical system, an OC should

have a stellar overdensity in the proper motion space and a
stellar overdensity in the sky position space (Piatti et al. 2022),
we divided the traditional high-dimensional single view (SYN)
(l, b, μα, μδ, ϖ) into two low-dimensional subviews, i.e.,
proper motion subview (PMS) and sky position subview (SPS),
for each star.
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According to the requirements of MvC, subviews are related
and not independent of each other. Members of an OC should
have similar distances within the Gaia DR3 parallax uncertain-
ties. Both view spaces are affected by parallax. Therefore, we
use parallax as the association between all views.

2.2. Member Star Identification Based on Subviews

We use the clustering algorithm to perform secondary
clustering on all members in the PMS and SPS views,
separately. For example, for the SPS view, we use the
HDBSCAN algorithm to cluster {l, b, ϖ}, with cluster label
of 1 for member stars and cluster label of −1 for field stars.
Since the data in the PMS and SPS views are the consequence
of FoF clustering, we simply used the HDBSCAN algorithm
with the hyperparameter ξ having a value of twice the
feature space dimension, which is the same as Ghosh &
Sulistiyowati (2022).
The clustering on PMS could ensure that the OC has a stellar

overdensity in the proper motion space. This is one of the
typical physical characteristics of OC because OC originates

Figure 1. Diagram of MvC method. The sps, pms and syn are three views defined according to Section 2.1, respectively.
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from the same dense molecular cloud undergoing the same
starburst. The clustering on SPS ensures that the identified
clusters have physical characteristics of overdensity distribu-
tion in the sky position space.

Integration strategy has been successfully applied in astron-
omy (Chi et al. 2022). Inspired by this, we further combined the
clustering results of the three views. We use a voting integration
strategy to integrate the clustering results of the three views. For
each cluster member, we use clustering results of three views to
conduct voting statistics, and we reserve the final member star
which wins more than or equal to 2 votes. For example, one star
with more than two views of SPS, PMS, and SYN as a member
will eventually be considered a current member. In contrast, a
star with less than one view as a member will be regarded as a
field star. It should be noted that we filtered the intersection of
the noise points of the three views prior to integration. These
points are recognized as background noise data on all three
views and should be removed. After eliminating the noise the
HDBSCAN clustering algorithm identified, we further elimi-
nated the clustering results of subviews with a small number of
member stars. When we used HDBSCAN to cluster in subviews,
we discarded star groups with less than 10 member stars after
subview clustering according to Hunt & Reffert (2021) who
suggested that the minimum possible size of a star cluster is set
to 10 for HDBSCAN.

3. Data Preparation

Based on Gaia DR3, Chi et al. (2023b) filtered out faint stars
(G> 18 mag), limited parallax (ϖ) from 0.14 to 5 kpc, and
obtained more than 20 million target sources. Based on these
stellar data sources, rough grid clustering was performed using
the FoF algorithm. A member probability census was carried
out using pyUPMASK. Then, according to the quality of the fit
with the isochrone from high to low, the data sets for the OC
candidates are divided into three categories (Class A (1194),
Class B (5252), and Class C (5925)). The samples in Class C
have a loose color–magnitude diagram (CMD) distribution and
poor-fitting results ( 0.04d2s > or d̄ 0.022 > ). Therefore, by
focusing on the data analysis of Class A and B, Chi et al.
(2023b) identified a total of 3763 high-confidence OC
candidates, including 2584 clusters that have already been
published, and 1179 OCs that are new discoveries.

We did not apply FoF or pyUPMASK to search for OC
candidates again in the study. We just re-visited the rest of the
data (3013 OC candidates in total) in Class A and B which
were not identified and reported by Chi et al. (2023b). These
3013 samples were meticulously analyzed for membership
using the MvC method.

4. OC Identification and Results

Based on the OC candidates prepared in Section 3, we applied
the MvC method to identify member stars of each possible OC.

According to Section 2, we first created three views (SPS, PMS,
SYN) for each OC candidate. Subsequently, in each of these
three views, we performed HDBSCAN to cluster all the
members of each OC again to further determine the member
stars and field stars of each OC more precisely. To integrate the
clustering results of the three views, we used a voting integration
strategy. After the processing of MvC, we selected 1256 more
plausible candidate OCs from 3013 candidate OCs.

4.1. Isochrone Fitting

Based on these 1256 OC candidates, we performed
isochrone-fitting for each new result, following the methods
described in Chi et al. (2023c). Due to the small number of
stars with G magnitudes less than 17 mag in the ID3041,
ID12455, and ID1446 candidate clusters, there would be large
uncertainties in the fit results. We discard these candidate
clusters and 1069 OC candidates are thus fitted.

4.2. Visual Inspection

We adopted the methods described in Chi et al. (2023a) to
perform manual validation. After manual validation, we
obtained 506 OC candidates with high confidence. An example
is shown in Figure 2. For comparison, we also present the
membership probabilities obtained with the same pyUPMASK
as in Chi et al. (2023b) in the color bar of each subplot.
Figure 2 shows that a few member stars deviate from the

main sequence, which could be caused by blue or yellow
stragglers, variable stars, or dust extinction. These are usually
special members of some OCs but these members are also
identified by our method.

4.3. Cross-matched and New Open Clusters

Considering only the galactic longitude (l) and latitude (b)
provided by the star catalog, our approach to cross-matching is
to deem an observed star cluster as coincident with a cataloged
cluster if the centers of both clusters fall within a 0°.5 radius in
both the galactic longitude and latitude coordinates. If the cluster
catalog from literature also includes information on individual
cluster members, we then proceed to a more detailed analysis of
the members of both clusters, as illustrated in Figure 3.
We cross-matched with 26 main star cluster catalogs, i.e.,

Cantat-Gaudin et al. (2018, 2019, 2020), Castro-Ginard et al.
(2018, 2019, 2020, 2022), Bica et al. (2019), Ferreira et al.
(2019, 2020, 2021), Liu & Pang (2019), Torrealba et al. (2019),
Cantat-Gaudin & Anders (2020), Hao et al. (2020, 2021,
2022a, 2022b), Casado (2021), Dias et al. (2021), He et al.
(2021, 2022a, 2022b, 2022c), Hunt & Reffert (2021), Jaehnig
et al. (2021), Qin et al. (2021), Vasiliev & Baumgardt (2021),
Tarricq et al. (2022), Li et al. (2022), Chi et al. (2023a,
2023b, 2023c), Hunt & Reffert (2023), Li & Mao (2023) and
Sim et al. (2019).
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Figure 2. Examples of newly found OCs. From left to right, the subplots show the spatial distribution, proper-motion distribution, parallax statistics, parallax
distribution, and CMD with the best-fitting isochrone line, respectively. The color bars represent the cluster probability of the member stars calculated by pyUPMASK.
(The complete figure set (13 images) is available in Appendix.)
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Recently, Qin et al. (2023) reported 101 star clusters within
500 pc, and we also performed a cross match. Li & Mao (2024)
reported the discovery of 83 new star clusters. Given that the star
catalog only provides galactic longitude (l) and latitude (b), our
strategy for cross-matching involves considering an observed
star cluster (OC) to be positionally coincident with a cataloged
one if the centers of both are within a circular region of 1°.5
radius in both the galactic longitude and latitude coordinates. To
exclude previously reported star clusters as much as possible, we
cross-match the most recently updated UCC catalog (Perren
et al. 2023) (containing 16,179 clusters) using the same method.
After cross-matching, 490 OC candidates were reported in the
previous literature. We are confident that the remaining 13 OC
candidates have never been reported. The parameter information
of 13OCs is given in Table 1, and the member information of
star clusters is given in Table 2.

5. Discussions

No matter how machine learning algorithms might identify
OCs, each OC will have to be manually verified. However,
machine learning algorithms can significantly decrease the
number of potential candidates, reducing manual identification.
The hybrid approach of FoF+pyUPMASK+MvC shows
excellent application results in this study. First, MvC reduces
the number of OC candidates that need to be manually
confirmed from 3013 to 1256. Furthermore, the FoF+pyUP-
MASK+MvC hybrid algorithm addresses the problem that FoF
needs to be more accurate in identifying field stars.

5.1. Multi-view Voting Mechanism for Member Star
Determination

Chang et al. (2014) pointed out that high-dimensional data
have the characteristics of sparsity, dimensional catastrophe,
and noise variables, reducing the possibility of identifying

classification in all dimensions, making the traditional cluster-
ing algorithms less effective when facing high-dimensional
data clustering. Thus, we have learned from Xie et al. (2019)’s
approach, i.e., constructing multiple views (global view +
multiple subviews) for clustering, which can significantly
improve the clustering effect. We introduce this approach to the
task of identifying star clusters in astronomy by clustering the
global view (l, b, μα, μδ, ϖ) and two subviews (l, b, ϖ) and
(μα, μδ, ϖ) for MvC. The clustering of the two subviews
reduces the dimensionality of the clustered features, which
overcomes the “curse of dimensionality” (Hinrichs et al. 2014)
in favor of improving the effectiveness of downstream density-
based clustering algorithms. Second, we refer to Jiang et al.
(2018) for clustering integration to get more robust clustering
results. Specifically, the integration is performed on the
clustering results of three views: (l, b, ϖ), (μα, μδ, ϖ) and (l, b,
μα, μδ, ϖ). First, we eliminate the members identified as noise
points in all three views achieving the elimination of highly
reliable field stars. Then, we discard potential field stars by
voting to retain members with two or more views and consider
member stars as the final cluster members. This mitigates the
sensitivity of the downstream clustering algorithm to the
parameters to obtain reliable cluster member stars.
Based on the clustering results in the three subviews, voting

is performed to give the final results. The application is very
effective from a practical point of view. To a certain extent, it
compensates for the difficulties of parameter optimization in
traditional clustering algorithms and enhances the robustness of
the algorithm. The HDBSCAN method used in the subview can
also be replaced by other clustering algorithms, such as
Gaussian Mixture Models (GMMs) or DBSCAN. HDBSCAN
is chosen in this study because it has been successfully applied
to cluster mining and identified many OCs (Chi et al. 2023a;
Hunt & Reffert 2023).

Figure 3. Two examples of member analysis for star clusters matched within a 0°. 5 range. Although there are only six common members in the diagram, by combining
the distributions of space, proper motion, and parallax, we still believe that Casado 12 and field 10463-0 constitute a star cluster.
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Table 1
Parameters of Final 13 OCs

ID R.A. ra_std Decl. dec_std plx plx_std pmra pmra_std pmdec pmdec_std l b Nmem Age Z

(deg) (deg) (deg) (deg) (mas) (mas) (km s−1) (km s−1) (km s−1) (km s−1) (deg) (deg) ( )( )log age

yr ( )( )log Z

Z

10428-2 359.528 0.059 63.409 0.001 0.306 0.006 −3.194 0.175 −0.881 0.101 117.006 1.152 21 8.70 0.40
10507-1 31.811 0.094 62.879 0.003 0.265 0.018 −1.068 0.040 −0.039 0.042 131.448 1.268 32 8.82 −0.10
10706-0 78.111 0.017 41.646 0.038 0.272 0.009 0.524 0.036 −1.605 0.060 165.685 1.410 25 9.09 0.02
c0410-1 140.403 0.016 −54.272 0.016 0.224 0.019 −3.822 0.122 3.416 0.040 275.308 −3.066 72 8.52 0.12
c0514-0 161.415 0.047 −61.664 0.010 0.240 0.019 −5.623 0.251 2.428 0.086 288.583 −2.348 190 8.82 −0.28
c0518-2 160.425 0.005 −61.373 0.004 0.247 0.015 −5.786 0.075 2.665 0.089 288.030 −2.313 46 8.52 0.20
c0656-1 120.320 0.026 −33.349 0.025 0.248 0.022 −2.342 0.141 3.124 0.292 250.073 −1.582 378 8.88 0.07
c0775-4 153.907 0.010 −58.124 0.011 0.264 0.021 −5.591 0.083 3.158 0.128 283.537 −1.244 91 8.70 0.30
c1409-1 163.218 0.016 −60.510 0.001 0.236 0.009 −5.880 0.085 2.236 0.054 288.839 −0.924 33 8.85 0.44
c2915-0 28.744 0.206 63.062 0.003 0.307 0.018 −1.126 0.177 −0.130 0.040 130.056 1.073 44 8.28 0.16
c3059-1 27.416 1.145 65.054 0.008 0.242 0.019 −1.043 0.123 0.140 0.082 129.024 2.877 190 8.88 −0.40
c5076-0 157.134 0.036 −59.851 0.001 0.236 0.015 −5.812 0.168 2.976 0.096 285.870 −1.801 86 8.70 0.23
c6080-1 0.772 0.044 61.215 0.001 0.281 0.022 −2.784 0.117 −1.245 0.066 117.143 −1.112 20 8.82 −0.88

Note. Nmem is the number of cluster members.

(This table is available in its entirety in machine-readable form in the online article.)
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Table 2
Clustered Sources

source_id R.A. Decl. pmra pmdec parallax mag_g mag_bp mag_rp rv ra_err dec_err pmra_err pmdec_err parallax_err rv_err probs_final Cluster_ID

(deg) (deg)
(mas
yr−1)

(mas
yr−1) (mas) (mag) (mag) (mag) (km s−1)

(km
s−1) (deg)

(mas
yr−1) (mas yr−1) (mas)

(km
s−1)

0 2013108453632539520 359.8399 63.3928 −4.021 −1.077 0.3 15.92 16.271 15.286 0.03 0.03 0.039 0.039 0.036 0.72 10428-2
1 2013108659790975360 359.9929 63.4063 −3.745 −0.941 0.296 15.963 16.294 15.456 0.025 0.024 0.034 0.03 0.03 0.51 10428-2
2 2016107371592207744 359.3409 63.3839 −2.894 −0.275 0.308 17.741 18.524 16.907 0.067 0.07 0.088 0.094 0.085 0.99 10428-2
3 2016107921348269440 359.1857 63.3899 −2.432 −1.222 0.305 15.128 15.464 14.598 0.016 0.019 0.023 0.027 0.022 1 10428-2
4 2016108093146707840 359.3094 63.3829 −3.299 −0.548 0.314 17.644 18.32 16.84 0.065 0.069 0.086 0.091 0.085 0.98 10428-2
5 2016108196225893760 359.3602 63.4094 −2.843 −0.653 0.305 15.397 16.391 14.413 −60.11 0.02 0.021 0.026 0.029 0.026 5.762 0.99 10428-2
6 2016108436744022016 359.334 63.4291 −3.051 −0.963 0.309 16.443 16.946 15.76 0.032 0.034 0.043 0.044 0.042 0.97 10428-2
7 2016110635767366272 359.6142 63.4243 −3.65 −0.479 0.318 14.622 15.542 13.676 −68.424 0.014 0.014 0.017 0.019 0.017 3.202 0.92 10428-2
8 2016111013724563328 359.761 63.4045 −3.155 −1.129 0.316 16.136 16.636 15.469 0.026 0.028 0.036 0.035 0.033 1 10428-2
9 2016111013724567808 359.737 63.3969 −3.808 −1.16 0.313 16.508 16.979 15.868 0.031 0.033 0.042 0.043 0.04 0.99 10428-2

(This table is available in its entirety in machine-readable form in the online article.)
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To further illustrate the effect of clustering in multiple views,
we selected a well-studied OC (i.e., M67 (NGC 2682)) whose
members have been meticulously studied by many researchers
(Castro-Ginard et al. 2020; Agarwal et al. 2021; Jadhav et al.
2021; Ghosh & Sulistiyowati 2022). We downloaded a conical
source with a radius of 50 pc around the OC center from Gaia
DR3. We pre-processed it according to Section 2. Then, SPS,
PMS, and SYN were clustered separately using HDBSCAN
with the hyperparameter mclSize set to 4. We obtained 432
(SPS), 982 (PMS), and 1285 (SYN) member stars, respectively
(see Figure 4). Compared with the results of Agarwal et al.
(2021), the accuracy of the member stars of SPS, PMS, and
SYN was 38.1%, 86.7%, and 83.5%, respectively. After voting,
the total accuracy of the member stars reached 91.69%.

5.2. The Improvement of the FoF+pyUPMASK+MvC

The application of the FoF and pyUPMASK algorithms has
provided a list of cluster candidates with different probabilities.
Based on probabilities, Chi et al. (2023b) successfully
identified 1760 OCs from high probability candidates. How-
ever, are there OCs among the low-probability candidates, and
if so, what causes FoF+pyUPMASK to give low probability?

In Figure 5, we analyzed this issue using the NGC (from
CG20) star cluster. In the FoF+pyUPMASK clustering
method, we kept stars with membership probabilities greater
than 0.5 (gray points) after the pyUPMASK membership
probability survey. For clusters like NGC 581, FoF+pyUP-
MASK is ineffective at eliminating mixed-field stars (see left
panel), making the clusterʼs center appear significantly biased.
The reason should be the hyperparameter bFoF (Liu &
Pang 2019; Chi et al. 2023b) used in FoF+pyUPMASK,
which is an empirical value set for simulated cosmology but is
ineffective in identifying some clusters. After further use of
MvC, we can obtain a clear and clean main sequence, which is
relatively consistent with CG20 and fits well with the
theoretical isochrones (red dots).

Based on the same approach, we further analyzed other OC
candidates. Figure 6 shows three randomly selected samples.
The gray dots are the member stars found by FoF. The blue
color is the result after further removal of field stars using MvC
based on FoF results. The final fitted results are shown in red.
Obviously, the MvC algorithm can effectively remove the field
stars, thus effectively improving the quality of the sample
fitting. The ID of “c1084-32” in Figure 6(a) corresponds to
NGC 581 of CG20, and as well as “c2594-16” corresponds to
NGC 146 in CG20. This shows that the unidentified OCs in
Chi et al. (2023b) are correctly identified after MvC’s
processing, proving that the judgment of the field stars using
MvC is correct. To a certain extent, it solves the problem of
low fitting quality of some samples in Chi et al. (2023b).

5.3. Correctness Analysis of the MvC Method

To validate the result of the MvC method, we tested MvC
using published OC samples. Agarwal et al. (2021) presented
four types of OCs, i.e., NGC 2539, IC 4651, NGC 2141, and
Berkeley 18, which have difficulties in member star determina-
tions using the GMM method because those four clusters have
a low concentration of cluster members and/or the parameter
peaks coincide (Deb et al. 2022). In addition, we also chose
NGC 2682 (M67) and Blanco 1 as test OCs, because M67 is
well-studied with DR2 and (E)DR3, such as Cantat-Gaudin
et al. (2020), Agarwal et al. (2021), Jadhav et al. (2021), Ghosh
& Sulistiyowati (2022) and Blanco 1 is a near-OC that has been
well-studied with Gaia DR3 (Zhang et al. 2020; Alfonso &
García-Varela 2023) recently. For a fair comparison, we
reserved the cluster members we identified only for those with
G< 18 and with the same Gaia dataset (DR3) in works Tarricq
et al. (2022, hereafter T22) and Hunt & Reffert (2023,
hereafter H23).
Based on these four OCs data as the validation set, we

performed the HDBSCAN/subviews method to identify
member stars to verify the usability and accuracy of the MvC

Figure 4. Clustering with SPS (orange dots), PMS (green dots) and SYN (red dots) based on the pre-processed data obtained by the cone query method in Gaia DR3
(target sources).
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method. We first conducted a cone query around the center of
each OC within 2° to obtain the source data sets. We then
applied the MvC method to the sources mentioned. The results
are shown in Figure 7. To fairly compare the scenes found by
different methods, we constrain the distribution range of the
member stars in member star matching. The radii are all
controlled within the MvC spatial range.

Figure 7 demonstrates that the MvC method can effectively
identify most of the member stars (core members) of the four
clusters, which are more concentrated in spatial distribution
and proper motion distribution. The CMD also indicates that
these core members are more tightly distributed in the main
sequence.

The third row of Figure 7 affirms that the MvC can capture
more diffuse potential members at the same parallax compared
with T22 and H23.

The MvC ensemble clustering method can identify most
member stars, which is considered an effective method for star
cluster member identification. MvC ensemble clustering is able
to identify reliable member stars, but for some clusters, it might
ignore members of substructures in the core region of the
cluster, especially those far from the cluster center.

5.4. Assessment of the Physical Reality of 13 OCs

To ascertain the physical authenticity of the 13 clusters in
question, we conducted a comprehensive evaluation based on
five critical dimensions as outlined by Piatti et al. (2022). This
multifaceted approach includes: (1) Spatial Distribution:
Analyzing the spatial arrangement of the clusters to discern
whether they exhibit characteristic distribution patterns indica-
tive of genuine OCs. (2) Radial density profile (RDP) Fitting:
Assessing the RDP of the clusters to evaluate their density
distribution, which confirms their status as authentic OCs. (3)
CMD Morphology: Examining the CMD morphology to
understand the stellar composition within the clusters, thereby
determining their legitimacy as true OCs. (4) Age–Mass
Relationship: Investigating the correlation between the age
and mass of the stellar entities within the clusters to verify their
physical reality as OCs. (5) Mass–Radius Relationship:
Exploring the relationship between the mass and radius of
the clusters to further substantiate their classification as genuine
OCs. This rigorous, multi-dimensional analysis facilitates a
more precise determination of cluster authenticity as OCs.
The RDP serves as an essential instrument in the examina-

tion of spatial distribution within star clusters. Our

Figure 5. Schematic diagram of improving FoF+PyUPMASK+MvC.

Figure 6. The diagram of fitting result with/without MvC.
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Figure 7. From left to right, the subplots show spatial distribution, proper-motion distribution, and CMD with best-fitting isochrone line and member star matching
diagram, respectively.
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methodology begins by establishing the star cluster center as a
reference point, or the origin. Subsequently, the cluster is
meticulously segmented into a series of concentric “i-rings.”
The procedure then involves calculating the stellar surface
density encompassed within the ith ring. This is achieved
through the formula

( ) ( )N r r . 2i i i i1
2 2r p= -+

Here, Ni represents the count of stars situated within the ith
ring, which is bounded by the inner radius ri and the outer
radius ri+1. This calculation allows for a detailed analysis of
how star density varies across different regions of the cluster,
providing valuable insights into its structural composition and
potential dynamics. In this study, we have utilized the King

(1962) model to accurately determine the stellar surface density
values. As shown in Figure 8, the three candidate OCs can be
well-fitted by the King function.
In previous research, Joshi et al. (2016) identified an

age–mass relationship through an in-depth analysis of nearly
1300 star clusters listed in the Milky Way Star Clusters
(MWSC) catalog, which are located within a distance of
1.8 kpc from our solar system. This relationship is mathema-
tically articulated as

( ) ( ) ( ) ( )M M Tlog 0.36 0.05 log 5.3 0.4 , 3 = -  + 

where Me signifies the mass of the Sun, T represents the
cluster’s age, and M serves as cluster mass. The left panel of
Figure 9 presents a comparative examination of our empirical
findings juxtaposed with the theoretical model proposed by

Figure 8. RDP of the cluster’s constituent stars is marked by black dots. The black line superimposed on the graph signifies the fitting outcome based on the renowned
King model (King 1962).

Figure 9. The left panel illustrates the correlation between age and mass, while the right panel depicts the relationship between mass and radius. The error bars are
derived from the standard deviation of the mass measurements of the star clusters. “s” is the slope fitting value, and “k” is the intercept by fitting. OC masses and errors
are calculated by the method of Almeida et al. (2023). The diagram includes 68 star cluster samples (consisting of 13 new clusters) randomly selected from the 506
high-confidence star clusters in this study.
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Joshi et al. (2016). It is observable that there is a striking
congruence between our results and the theoretical function’s
pattern, thereby validating the reliability of our analysis.
Furthermore, examining the mass–radius relationship is
essential for gaining insights into the temporal progression
and development of the star cluster. Joshi et al. (2016)
delineated that the mass–radius relationship in star clusters is
characterized by two distinct distribution functions. The first
function is linear and is expressed as

( ) ( ) ( ) ( )R M M2.08 0.10 log 0.64 0.27 . 4=  - 

Here, R represents the cluster’s radius, M is its mass, and Me is
the solar mass, which is used as a unit of measurement. The
second function, applicable to clusters situated within the solar
orbit, adheres to a power-law relationship, which is

described as

( )R M . 51 3µ

The right panel of Figure 9 offers a visual representation of the
mass–radius distribution for 68 candidate OCs. It is evident that
the majority of these clusters are well-fitted by the power-law
function, highlighting the prevalence of this relationship in the
observed data. Finally, a comprehensive decision table for
cluster authenticity is given in Table A1. The comprehensive
evaluation shows that the 13 clusters reported have high
confidence.

5.5. Limitations of the MvC

Accurately identifying cluster members is challenging work.
Uncertainties about membership and stellar properties are the

Figure 10. Five BOCs. The blue dots represent the members identified by H23, and the red dots represent the cluster members identified in this work.
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primary issues in identifying cluster members. As described by
Penev & Schussler (2022), modeling these uncertainties is
difficult. Although MvC has made progress in accurately
identifying cluster members, limitations are also obvious. In
general, the number of OC member stars based on the FoF
+pyUPMASK+MvC algorithm is smaller than the number
obtained by directly using DBSCAN or HDBSCAN. This is
caused by multiple views, which reduce the number of member
stars while improving member star reliability.

We also note that in some cases, MvC identifies members
more concentrated in the middle of the OC. Those high-
reliability members are usually in the OC’s high-density region
(the cluster’s core body). For this reason, we realize that MvC
results have a considerable degree of confidence. However,
low-density periphery members might be missed. Members
located in the low density of the extended structure of OC, such
as “halos,” “strings,” “coronae,” “outskirts,” and “tidal tails,”
need a specific study of a single OC combined with cluster

Figure 11. Collinder 69 cross-matched with 14567-3. The blue dots represent the members identified by H23 for Collinder 69, and the red dots represent the cluster
members identified in this work.

Figure 13. BH 90 cross-matched with c0775-4. (The blue dots represent the members identified by H23 for BH 90, and the red dots represent the cluster members
identified in this work.)

Figure 12. OC 0537 cross-matched with c0775-4. (The blue dots represent the members identified by H23 for OC 0537, and the red dots represent the cluster
members identified in this work.)

Figure 14. UBC 1424 cross-matched with c0775-4. (The blue dots represent the members identified by H23 for UBC 1424, and the red dots represent the cluster
members identified in this work.)
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morphology and dynamics. After using FoF+pyUPMASK
+MvC to identify OCs, it is worth considering further
employing other methods, such as GMM, to further search
for member stars. This will make OC data more accurate.

5.6. Results Analysis

In the cross-matching comparison check of the 13 clusters
reported in this study, we identified five binary open cluster
candidates (BOCs). Figure 10 presents five pairs of BOCs.
Because the focus of this paper is not on the study of binary
OCs, these five pairs of binary OCs are worthy of further
dynamical study using the method in Li & Zhu (2024) and N-
body simulations in the future.

The central 0°.5 matching strategy is too small to be
applicable for clusters with a large number of members, and
suggesting that it is necessary to expand it. In Figure 11, when
conducting a cross-matching of cluster members, although the
central coordinates of the cluster 14567-3 and Collinder 69
differ by more than 0°.5, the members of cluster 14567-3 are
clearly part of the known OC Collinder 69. This indicates that
the previous work’s approach of using a 0°.5 match based on
the cluster center is not applicable for matching corresponding
large-scale clusters.

From Figure 3, some previously reported cluster members
are evidently incomplete. Figure 12 indicates that the members
of the cluster c0775-4 found by our method overlap with the
members of the known cluster OC 0537. Considering other
views, it is highly likely that they belong to the same cluster. If
this is the case, our method has re-identified 62% of the new
members. In this work, we are more inclined to consider them
as a pair of binary clusters with the same physical evolution,
because the number of shared members is only six, which
constitutes a small proportion. We believe that the intersection
of the six members is likely due to the algorithmic selection
effect. Similar to this, there is also OC 0537 cross-matched

with c0775-4 (Figure 13), and BH 90 cross-matched with
c0775-4 (Figure 14).

6. Conclusions

We proposed an effective clustering method for identifying
reliable cluster member stars. The identification results show that
the MvC algorithm is capable of effectively identifying reliable
member stars. This is the first attempt at using MvC to develop
an ensemble clustering technique for hunting star clusters. As a
result of re-identification, 13 reliable OCs are reported in this
work through isochrone-fitting and visual inspection.
The newly found objects enrich our understanding of the

Galactic OC population and indicate that the present OC sample
is far from complete. It is anticipated that many new OCs can
still be detected through careful observational data analysis.
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Appendix
Additional Figures and Tables

Figure A1 shows a complete list of figures for 13 new OCs.
Blue points represent cluster members. The red dotted curves are
the best-fitting isochrones. The color bars represent the cluster
probability of the member stars calculated by pyUPMASK.
Table A1 presents the assessment results of the physical reality of
13 OCs.

Table A1
Assessment of the Physical Reality of the 13 OCs

Cluster ID Spatial Distribution RDP CMD Age–Mass Relation Mass–Radius Relation Adapted

10428-2 Y Y Y Y Y Y
10507-1 Y Y Y Y Y Y
10706-0 Y Y Y Y Y Y
c0410-1 Y Y Y Y Y Y
c0514-0 Y Y Y Y Y Y
c0518-2 Y Y Y Y Y Y
c0656-1 Y Y Y Y Y Y
c0775-4 Y Y Y Y Y Y
c1409-1 Y Y Y Y Y Y
c2915-0 Y Y Y Y Y Y
c3059-1 Y Y Y Y Y Y
c5076-0 Y Y Y Y Y Y
c6080-1 Y Y Y Y Y Y
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Figure A1. Full list of 13 OCs. Blue points represent cluster members. The red dotted curves are the best-fitting isochrones. The color bars represent the cluster
probability of the member stars calculated by pyUPMASK.

15

Research in Astronomy and Astrophysics, 24:115021 (16pp), 2024 November Chi et al.



ORCID iDs

Huanbin Chi https://orcid.org/0000-0001-7343-7332

References

Agarwal, M., Rao, K. K., Vaidya, K., & Bhattacharya, S. 2021, MNRAS,
502, 2582

Alfonso, J., & García-Varela, A. 2023, A&A, 677, 11
Almeida, A., Monteiro, H., & Dias, W. S. 2023, MNRAS, 525, 2315
Arunima, A., Pfalzner, S., & Govind, A. 2023, A&A, 670, 14
Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. 1999, in Database

Theory—ICDT’99: 7th Int. Conf. (Berlin Heidelberg: Springer), 217
Bica, E., Pavani, D. B., Bonatto, C. J., & Lima, E. F. 2019, AJ, 157, 12
Cantat-Gaudin, T., & Anders, F. 2020, A&A, 633, A99
Cantat-Gaudin, T., Anders, F., Castro-Ginard, A., et al. 2020, A&A, 640, A1
Cantat-Gaudin, T., Jordi, C., Vallenari, A., et al. 2018, A&A, 618, A93
Cantat-Gaudin, T., Krone-Martins, A., Sedaghat, N., et al. 2019, A&A,

624, A126
Casado, J. 2021, RAA, 21, 117
Castro-Ginard, A., Jordi, C., Luri, X., et al. 2018, A&A, 618, A59
Castro-Ginard, A., Jordi, C., Luri, X., Cantat-Gaudin, T., &

Balaguer-Núñez, L. 2019, A&A, 627, A35
Castro-Ginard, A., Jordi, C., Luri, X., et al. 2020, A&A, 635, A45
Castro-Ginard, A., Jordi, C., Luri, X., et al. 2022, A&A, 661, A118
Chang, X., Wang, Y., Li, R., & Xu, Z. 2014, Statistica Sinica, 28, 3
Chi, H., Li, Z., & Zhao, W. 2022, Advances in Intelligent Automation and Soft

Computing (Berlin: Springer), 495
Chi, H., Wang, F., & Li, Z. 2023a, RAA, 23, 065008
Chi, H., Wang, F., Wang, W., Deng, H., & Li, Z. 2023b, ApJS, 266, 36
Chi, H., Wei, S., Wang, F., & Li, Z. 2023c, ApJS, 265, 20
Deb, S., Baruah, A., & Kumar, S. 2022, MNRAS, 515, 4685
Dias, W. S., Monteiro, H., Moitinho, A., et al. 2021, MNRAS, 504, 356
Ferreira, F. A., Corradi, W. J. B., Maia, F. F. S., Angelo, M. S., &

Santos, J. F. C. J. 2020, MNRAS, 496, 2021
Ferreira, F. A., Corradi, W. J. B., Maia, F. F. S., Angelo, M. S., &

Santos, J. F. C. J. 2021, MNRAS, 502, L90
Ferreira, F. A., Santos, J. F. C., Corradi, W. J. B., Maia, F. F. S., &

Angelo, M. S. 2019, MNRAS, 483, 5508
Gagné, J., Mamajek, E. E., Malo, L., et al. 2018, ApJ, 856, 23
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, 22
Gaia Collaboration, Drimmel, R., Romero-Gomez, M., et al. 2023, A&A,

674, 35
Ghosh, E. M., Sulistiyowati, Tucio, P., & Fajrin, M. 2022, JPhCS, 2214,

012009

Hao, C., Xu, Y., Wu, Z., He, Z., & Bian, S. 2020, PASP, 132, 034502
Hao, C. J., Xu, Y., Hou, L. G., et al. 2021, A&A, 652, A102
Hao, C. J., Xu, Y., Wu, Z. Y., et al. 2022a, A&A, 660, A4
Hao, C. J., Xu, Y., Wu, Z. Y., et al. 2022b, A&A, 668, 13
He, Z., Li, C., Zhong, J., et al. 2022a, ApJS, 260, 8
He, Z., Liu, X., Luo, Y., Wang, K., & Jiang, Q. 2022b, ApJS, 264, 12
He, Z., Wang, K., Luo, Y., et al. 2022c, ApJS, 262, 7
He, Z.-H., Xu, Y., Hao, C.-J., Wu, Z.-Y., & Li, J.-J. 2021, RAA, 21, 093
Hinrichs, A., Novak, E., Ullrich, M., & Woźniakowski, H. 2014, JCom,

30, 117
Hunt, E. L., & Reffert, S. 2021, A&A, 646, A104
Hunt, E. L., & Reffert, S. 2023, A&A, 673, 31
Hunt, E. L., & Reffert, S. 2024, A&A, 686, A42
Jadhav, V. V., Pennock, C. M., Subramaniam, A., Sagar, R., & Nayak, P. K.

2021, MNRAS, 503, 236
Jaehnig, K., Bird, J., & Holley-Bockelmann, K. 2021, ApJ, 923, 129
Jiang, Z., Yuan, H., & Min, W. U. 2018, Computer Engineering and

Applications, 54, 150
Joshi, Y. C., Dambis, A. K., Pandey, A. K., & Joshi, S. 2016, A&A, 593, A116
King, I. 1962, AJ, 67, 471
Krone-Martins, A., & Moitinho, A. 2014, A&A, 561, A57
Li, Z., Deng, Y., Chi, H., et al. 2022, ApJS, 259, 19
Li, Z., & Mao, C. 2023, ApJS, 265, 3
Li, Z., & Mao, C. 2024, RAA, 24, 16
Li, Z., & Zhu, Z. 2024, arXiv:2405.02530
Lindegren, L., Klioner, S. A., Hernández, J., et al. 2021, A&A, 649, A2
Liu, L., & Pang, X. 2019, ApJS, 245, 32
Mužić, K., Almendros-Abad, V., Bouy, H., et al. 2022, A&A, 668, A19
Penev, K. M., & Schussler, J. A. 2022, MNRAS, 516, 6145
Perren, G. I., Pera, M. S., Navone, H. D., & Vázquez, R. A. 2023, MNRAS,

526, 4107
Piatti, A. E., Illesca, D. M. F., Massara, A. A., et al. 2022, MNRAS, 518, 6216
Qin, S., Li, J., Chen, L., & Zhong, J. 2021, RAA, 21, 045
Qin, S., Zhong, J., Tang, T., & Chen, L. 2023, ApJS, 265, 12
Riello, M., De Angeli, F., Evans, D. W., et al. 2021, A&A, 649, A3
Sim, G., Lee, S. H., Ann, H. B., & Kim, S. 2019, JKAS, 52, 145
Tarricq, Y., Soubiran, C., Casamiquela, L., et al. 2022, A&A, 659, A59
Torrealba, G., Belokurov, V., & Koposov, S. E. 2019, MNRAS, 484, 2181
van Groeningen, M. G. J., Castro-Ginard, A., Brown, A. G. A.,

Casamiquela, L., & Jordi, C. 2023, A&A, 675, 10
Vasiliev, E., & Baumgardt, H. 2021, MNRAS, 505, 5978
Xie, D., Gao, Q., Wang, Q., & Xiao, S. 2019, IEEEA, 7, 31197
Zhang, Y., Tang, S.-Y., Chen, W. P., Pang, X., & Liu, J. Z. 2020, ApJ, 889, 99
Zhao, J., Xie, X., Xu, X., & Sun, S. 2017, Information Fusion, 38, 43
Zhong, J., Chen, L., Jiang, Y., Qin, S., & Hou, J. 2022, AJ, 164, 54

16

Research in Astronomy and Astrophysics, 24:115021 (16pp), 2024 November Chi et al.

https://orcid.org/0000-0001-7343-7332
https://orcid.org/0000-0001-7343-7332
https://orcid.org/0000-0001-7343-7332
https://orcid.org/0000-0001-7343-7332
https://doi.org/10.1093/mnras/stab118
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.2582A/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.2582A/abstract
https://doi.org/10.1051/0004-6361/202346569
https://ui.adsabs.harvard.edu/abs/2023A&A...677A.163A/abstract
https://doi.org/10.1093/mnras/stad2291
https://ui.adsabs.harvard.edu/abs/2023MNRAS.525.2315A/abstract
https://doi.org/10.1051/0004-6361/202245242
https://ui.adsabs.harvard.edu/abs/2023A&A...670A.128A/abstract
https://doi.org/10.3847/1538-3881/aaef8d
https://ui.adsabs.harvard.edu/abs/2019AJ....157...12B/abstract
https://doi.org/10.1051/0004-6361/201936691
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..99C/abstract
https://doi.org/10.1051/0004-6361/202038192
https://ui.adsabs.harvard.edu/abs/2020A&A...640A...1C/abstract
https://doi.org/10.1051/0004-6361/201833476
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..93C/abstract
https://doi.org/10.1051/0004-6361/201834453
https://ui.adsabs.harvard.edu/abs/2019A&A...624A.126C/abstract
https://ui.adsabs.harvard.edu/abs/2019A&A...624A.126C/abstract
https://doi.org/10.1088/1674-4527/21/5/117
https://ui.adsabs.harvard.edu/abs/2021RAA....21..117C/abstract
https://doi.org/10.1051/0004-6361/201833390
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..59C/abstract
https://doi.org/10.1051/0004-6361/201935531
https://ui.adsabs.harvard.edu/abs/2019A&A...627A..35C/abstract
https://doi.org/10.1051/0004-6361/201937386
https://ui.adsabs.harvard.edu/abs/2020A&A...635A..45C/abstract
https://doi.org/10.1051/0004-6361/202142568
https://ui.adsabs.harvard.edu/abs/2022A&A...661A.118C/abstract
https://doi.org/10.5705/ss.202015.0261
https://doi.org/10.1088/1674-4527/accbad
https://ui.adsabs.harvard.edu/abs/2023RAA....23f5008C/abstract
https://doi.org/10.3847/1538-4365/accb50
https://ui.adsabs.harvard.edu/abs/2023ApJS..266...36C/abstract
https://doi.org/10.3847/1538-4365/acb2cc
https://ui.adsabs.harvard.edu/abs/2023ApJS..265...20C/abstract
https://doi.org/10.1093/mnras/stac2116
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.4685D/abstract
https://doi.org/10.1093/mnras/stab770
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504..356D/abstract
https://doi.org/10.1093/mnras/staa1684
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.2021F/abstract
https://doi.org/10.1093/mnrasl/slab011
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502L..90F/abstract
https://doi.org/10.1093/mnras/sty3511
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.5508F/abstract
https://doi.org/10.3847/1538-4357/aaae09
https://ui.adsabs.harvard.edu/abs/2018ApJ...856...23G/abstract
https://doi.org/10.1051/0004-6361/201833051
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...1G/abstract
https://doi.org/10.1051/0004-6361/202243797
https://ui.adsabs.harvard.edu/abs/2023A&A...674A..37G/abstract
https://ui.adsabs.harvard.edu/abs/2023A&A...674A..37G/abstract
https://doi.org/10.1088/1742-6596/2214/1/012009
https://ui.adsabs.harvard.edu/abs/2022JPhCS2214a2009G/abstract
https://ui.adsabs.harvard.edu/abs/2022JPhCS2214a2009G/abstract
https://doi.org/10.1088/1538-3873/ab694d
https://ui.adsabs.harvard.edu/abs/2020PASP..132c4502H/abstract
https://doi.org/10.1051/0004-6361/202140608
https://ui.adsabs.harvard.edu/abs/2021A&A...652A.102H/abstract
https://doi.org/10.1051/0004-6361/202243091
https://ui.adsabs.harvard.edu/abs/2022A&A...660A...4H/abstract
https://doi.org/10.1051/0004-6361/202244570
https://ui.adsabs.harvard.edu/abs/2022A&A...668A..13H/abstract
https://doi.org/10.3847/1538-4365/ac5cbb
https://ui.adsabs.harvard.edu/abs/2022ApJS..260....8H/abstract
https://doi.org/10.3847/1538-4365/ac9af8
https://ui.adsabs.harvard.edu/abs/2023ApJS..264....8H/abstract
https://doi.org/10.3847/1538-4365/ac7c17
https://ui.adsabs.harvard.edu/abs/2022ApJS..262....7H/abstract
https://doi.org/10.1088/1674-4527/21/4/93
https://ui.adsabs.harvard.edu/abs/2021RAA....21...93H/abstract
https://doi.org/10.1016/j.jco.2013.10.007
https://doi.org/10.1051/0004-6361/202039341
https://ui.adsabs.harvard.edu/abs/2021A&A...646A.104H/abstract
https://doi.org/10.1051/0004-6361/202346285
https://ui.adsabs.harvard.edu/abs/2023A&A...673A.114H/abstract
https://doi.org/10.1051/0004-6361/202348662
https://ui.adsabs.harvard.edu/abs/2024A&A...686A..42H/abstract
https://doi.org/10.1093/mnras/stab213
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503..236J/abstract
https://doi.org/10.3847/1538-4357/ac1d51
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..129J/abstract
https://doi.org/10.1051/0004-6361/201628944
https://ui.adsabs.harvard.edu/abs/2016A&A...593A.116J/abstract
https://doi.org/10.1086/108756
https://ui.adsabs.harvard.edu/abs/1962AJ.....67..471K/abstract
https://doi.org/10.1051/0004-6361/201321143
https://ui.adsabs.harvard.edu/abs/2014A&A...561A..57K/abstract
https://doi.org/10.3847/1538-4365/ac3c49
https://ui.adsabs.harvard.edu/abs/2022ApJS..259...19L/abstract
https://doi.org/10.3847/1538-4365/acaf7d
https://ui.adsabs.harvard.edu/abs/2023ApJS..265....3L/abstract
https://doi.org/10.1088/1674-4527/ad3a2b
https://ui.adsabs.harvard.edu/abs/2024RAA....24e5014L/abstract
http://arxiv.org/abs/2405.02530
https://doi.org/10.1051/0004-6361/202039709
https://doi.org/10.3847/1538-4365/ab530a
https://ui.adsabs.harvard.edu/abs/2019ApJS..245...32L/abstract
https://doi.org/10.1051/0004-6361/202243659
https://ui.adsabs.harvard.edu/abs/2022MNRAS.516.6145P/abstract
https://doi.org/10.1093/mnras/stad2826
https://ui.adsabs.harvard.edu/abs/2023MNRAS.526.4107P/abstract
https://ui.adsabs.harvard.edu/abs/2023MNRAS.526.4107P/abstract
https://doi.org/10.1093/mnras/stac3479
https://ui.adsabs.harvard.edu/abs/2023MNRAS.518.6216P/abstract
https://doi.org/10.1088/1674-4527/21/2/45
https://ui.adsabs.harvard.edu/abs/2021RAA....21...45Q/abstract
https://doi.org/10.3847/1538-4365/acadd6
https://ui.adsabs.harvard.edu/abs/2023ApJS..265...12Q/abstract
https://doi.org/10.1051/0004-6361/202039587
https://ui.adsabs.harvard.edu/abs/2019JKAS...52..145S/abstract
https://doi.org/10.1051/0004-6361/202142186
https://ui.adsabs.harvard.edu/abs/2022A&A...659A..59T/abstract
https://doi.org/10.1093/mnras/stz071
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.2181T/abstract
https://doi.org/10.1051/0004-6361/202345952
https://ui.adsabs.harvard.edu/abs/2023A&A...675A..68V/abstract
https://doi.org/10.1093/mnras/stab1475
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.5978V/abstract
https://doi.org/10.1109/ACCESS.2019.2892175
https://ui.adsabs.harvard.edu/abs/2019IEEEA...731197X/abstract
https://doi.org/10.3847/1538-4357/ab63d4
https://ui.adsabs.harvard.edu/abs/2020ApJ...889...99Z/abstract
https://doi.org/10.1016/j.inffus.2017.02.007
https://doi.org/10.3847/1538-3881/ac77fa
https://ui.adsabs.harvard.edu/abs/2022AJ....164...54Z/abstract

	1. Introduction
	2. Multi-view Clustering Ensemble Method
	2.1. Definitions of Subviews
	2.2. Member Star Identification Based on Subviews

	3. Data Preparation
	4. OC Identification and Results
	4.1. Isochrone Fitting
	4.2. Visual Inspection
	4.3. Cross-matched and New Open Clusters

	5. Discussions
	5.1. Multi-view Voting Mechanism for Member Star Determination
	5.2. The Improvement of the FoF+pyUPMASK+MvC
	5.3. Correctness Analysis of the MvC Method
	5.4. Assessment of the Physical Reality of 13 OCs
	5.5. Limitations of the MvC
	5.6. Results Analysis

	6. Conclusions
	AppendixAdditional Figures and Tables
	References



