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Abstract

Using a uniform partitioning of cubic cells, we cover the total volume of a ACDM cosmological simulation based
on particles. We define a visualization cell as a spatial extension of the cubic cell, so that we collect all simulation
particles contained in this visualization cell to create a series of Cartesian plots in which the overdensity of matter is
clearly visible. We then use these plots as input to a convolutional neural network (CNN) based on the Keras
library and TensorFlow for image classification. To assign a class to each plot, we approximate the Hessian of the
gravitational potential in the center of the cubic cells. Each selected cubic cell is then assigned a label of 1, 2 or 3,
depending on the number of positive eigenvalues obtained for the Householder reduction of the Hessian matrix.
We apply the CNN to several models, including two models with different visualization volumes, one with a cell
size of type L (large) and the other with a cell type S (small). A third model combines the plots of the previous L
and S cell types. So far, we have mainly considered a slice parallel to the XY plane to make the plots. The last
model is considered based on visualizations of cells that also include slices parallel to the ZX and ZY planes. We
find that the accuracy in classification plots is acceptable, and the ability of the models to predict the class works
well. These results allow us to demonstrate the aim of this paper, namely that the usual Cartesian plots contain
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enough information to identify the observed structures of the cosmic web.
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1. Introduction

With the advent of artificial intelligence and machine
learning, a convolutional neural network (CNN) can recognize
complex patterns in plots. For example, the simple MNIST-
CNN described by Chollet (2018) recognizes a handwritten
number from a data set of thousands of images. Among the
many CNNs available, see Szegedy & Liu (2015), Krizhevsky
et al. (2017) and He et al. (2015), we consider in particular the
CNNs described by Bagnato (2023): one CNN is trained to
recognize nine classes of sports from a data set of thousands of
sport images and the other CNN is trained to classify images of
dogs and cats from a data set of thousands of dog and cat
images.

In this work, we train the image classification CNNs
described by Bagnato (2023) with a data set of rendered two-
dimensional (2D) plots commonly presented in particle-based
numerical simulations to show the simulation results. These
plots are mainly 2D Cartesian colored isodensity plots for a
slice of particles from the simulation volume. Particularly in the
early simulations, the comparison of the results of particle-
based simulations with observations was usually done using
plots of a Cartesian slice through the distribution of simulation
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particles, usually in two dimensions (plots in three dimensions
were also produced, but less frequently as they became
increasingly difficult to produce). It should be noted that an
essentially subjective visual inspection of these 2D plots was
used to perform morphology comparisons of matter structure
between different simulation models; see for example, Weinberg
& Cole (1992).

In supervised machine learning, the data set of plots must be
supplemented by a data set of classes, i.e., each plot must have
a class, which is simply a label. One could choose an attribute
of interest to determine the class of a plot. In the case of the
CNN described by Bagnato (2023), there are nine classes for
the first CNN and only two classes for the second CNN,
namely dog or cat, so each image must be labeled as dog or cat.
After the training process, these CNNs can successfully
distinguish the type of sport or whether the given image
corresponds to a cat or a dog.

To give a physical content to the data set of the plots of this
paper, we consider Hahn et al. (2007), who performed N-body
particle-based cosmological simulations and considered only
dark matter (DM) halos with at least 300 simulation particles in
the snapshot at a redshift z = Hahn et al. (2007) count the
number of positive eigenvalues of the Hessian matrix, which is
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The number of positive eigenvalues can be 0, 1, 2 or 3 and
corresponds to a void, a sheet, a filament and a cluster
respectively, which represent the most common distribution of
matter in the cosmological simulation.

To follow the method described by Hahn et al. (2007), we
define a uniform partition of cubic cells covering the total
volume of a particle-based ACDM cosmological simulation,
and determine the eigenvalues of the Hessian of the gravita-
tional potential. We then count the number of positive
eigenvalues in each cubic cell and use this number as the
label for the plots constructed for that cell.

If one can successfully train the CNN with this kind of data
set, what would be the prediction that the CNN could make? In
this case, it would be possible to recognize and distinguish
between filaments, walls and clusters. The aim of this paper is
to show that the usual Cartesian plots contain enough
information to identify the observed structures of the cosmic
web. To be sure that this is the case, we need to make
calculations. Let us first put the work of Hahn et al. (2007) in
context to illustrate the importance of this problem.

The investigation of the spatial distribution of matter in the
universe on scales of a few Mpc dates back to the 1930s; see
Shapley & Ames (1932). Later, using galaxy catalogs, it was
discovered that on these scales there were filaments, voids and
sheets in which the galaxies were housed; see Geller & Huchra
(1991). With the advent of numerical simulations, it became
clear that the large-scale structure of the universe consists of a
network of DM that is interconnected in complex ways and was
aptly named the cosmic web; see Bond et al. (1996).

The quantitative analysis of the large-scale distribution of
matter has a long and interesting history. For example,
Shandarin & Zeldovich (1983) tried to find patterns in the
distribution of galaxies, and defined a function B(r) to represent
the average number of galaxies within a sphere of radius 7.
They obtained a percolation radius that depended on the
distribution of galaxies in the sample cube. From this result,
they were able to deduce that in the universe the galaxies are
distributed according to a network structure. Shortly after-
wards, Barrow et al. (1895) proposed a graphical algorithm, the
so-called minimal spanning tree (MST) to determine intrinsic
patterns in point data sets. This algorithm was applied to two
and three-dimensional (3D) data sets to compare the distribu-
tions of real galaxy catalogs with random distributions.

Gott et al. (1986) constructed density maps to investigate the
relationships between the high and low-density regions of a
smoothed distribution of galaxies from a galaxy -catalog.
Finally, they presented a model that assumes a sponge-like
structure of the universe. At that time, the distribution of
galaxies was also modeled as a homogeneous fractal, and
several attempts were made to calculate its Hausdorff
dimension, see Martinez et al. (1990). Babul & Starkman
(1992) introduced the so-called structure functions to measure
certain geometric properties, such as sphericity, prolateness and
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oblateness. With the help of these structure functions, they
began to quantify the morphology of the matter distribution
through simulations.

We should also mention some recent papers devoted to the
study of the cosmic web. Libeskind et al. (2018) presents a very
comprehensive overview of the various methods that have been
developed to classify and identify the different matter elements
of the cosmic web, such as: (i) graph and percolation techniques
(see Shandarin & Zeldovich 1983 and Alpaslan et al. 2014)
using a method known as the adapted MST; (ii) stochastic
methods (see Tempel et al. 2014; Leclercq et al. 2015 and
Tempel et al. 2016) based on the Bisous method; (iii) geometric,
Hessian-based methods (see Aragon-Calvo et al. 2007 and
Aragon-Calvo et al. 2007; Hahn et al. 2007 presented a multi-
scale morphology filter to recognize three different structural
configurations of the cosmic web, namely blobs, walls and
filaments); (iv) scale-space multi-scale Hessian-based methods
(see Cautun et al. 2013 with the NEXUS+ method); (v)
topological methods (see Colombi et al. 2000 and Aragon-Calvo
et al. 2010 with the Spineweb method and Sousbi et al. 2011
with the DisPerSE method); and (vi) phase-space methods (see
Shandarin 2011 and Ramachandra & Shandarin 2015 with the
multi-stream web analysis method, and Falck et al. 2012 and
Falck et al. 2014 with the ORIGAMI method).

The [(-skeleton method has been used successfully in various
areas of pattern recognition. In particular, this method can be used
to reconstruct images from partial data or from data considering
only the contours. It is based on an algorithm that makes it possible
to associate a graphical structure with a set of points in a discrete
data set. The data can be in three or two spatial dimensions. This
graphical structure determines the connectivity of the points in the
data set and depends on the value of a parameter called 5. Fang
et al. (2019) applied this method to the large-scale structure of the
universe and succeeded in recognizing the filaments of the cosmic
web; see also Garcia-Alvarado et al. (2020).

Hoffman et al. (2012) and Forero-Romero et al. (2009)
introduced a threshold eigenvalue, so that the counting of
positive eigenvalues proposed by Hahn et al. (2007) is
extended to counting the number of eigenvalues above a
certain threshold eigenvalue to determine the class of the given
halo. Aragon-Calvo (2019) presented a cosmic web classifica-
tion using CNNs with a U-net architecture, previously used in
the classification of 2D medical images and 3D data cubes of
medical interest. The density function is smoothed from the
discrete distribution of the simulation particles to obtain a
continuous density field based on the second-order local
variations of the density field encoded in the Hessian matrix. A
very important step is the determination of the threshold
eigenvalue. Aragon-Calvo (2019) proposed an automated
algorithm, but the best results are obtained by visual inspection
of the algorithm results.

Recently, Inoue et al. (2022) utilized a CNN fed with plots of
the distribution of galaxies and particles from the IllustrisTNG
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simulations. They used the velocity gradient tensor to obtain
the eigenvalues above a threshold to yield the classification
scheme. They also considered a set of four labels: voids, sheets
(also called walls), filaments and knots (also called clusters).
Their models can classify simulated galaxies with an accuracy
(macro-averaged fl-score) of 64%. To obtain the cosmic
structure classification, they used a coverage of 256° cells and
considered only DM particles.

Considering the papers of Aragon-Calvo (2019) and Inoue
et al. (2022), the calculations proposed in this paper are not
new. And after mentioning some of the many existing methods
for classifying the elements of the cosmic web, we emphasize
that our method does not provide any element that improves
these methods. The novelty of this work is that we show that
the plots commonly used to see the results of a cosmological
simulation can also be used to classify the elements of the
cosmic web network using a CNN.

The structure of this paper is as follows. In Section 2.1 we
describe the cosmological model. In Section 2.2 we provide
some details about the simulation. In Section 2.3 we describe
the coverage of the cubic cells and the method used to
approximate the Hessian in each selected cubic cell. In
Appendix A we complement Section 2.3. In Section 2.3.1 we
present a consistency test of the calculation described above. In
Section 2.3.2 we present a characterization of the matter
content of the cells. In Section 2.4 we describe the development
of the sets of training and validation plots for two models with
different visualization volumes. In Section 2.5 we describe the
CNN and in Appendix B we present an alternative CNN. In
Section 3 we show the results, which include some reports on
the training and validation analysis (in Section 3.1) and a report
on the prediction ability using a confusion matrix analysis (in
Section 3.2) for each CNN model. Finally, in Sections 4 and 5,
we discuss the relevance of our results with respect to the
results of previous papers and make some concluding remarks.

2. The Physical System and Computational
Considerations

2.1. The Simulation

We consider a cubic box with a side length given by L = 75
Mpc. The initial content of matter is characterized by
Q,, = 0.2726 and the content of dark energy is {2, = 0.7274,
so that ©,, + Q, = 1.0, corresponding to a flat model of the
universe, expanding with a Hubble parameter Hy = 100 2 km s~
Mpc'. h is given by h = 0.704. The baryon mass is
characterized by §2;, = 0.0456. These values have been chosen
from Planck Collaboration (2013, 2016).

The density perturbations of this cosmological model have been
generated with the publicly available code N-GenIC', so that an
initial power spectrum P(k) can be constructed by moving the
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simulation particles according to the linear spectrum defined by
Eisenstein Hu (1999). The power spectrum normalization was
fixed at a value of og = 0.9.

It should be noted that for each DM particle there is a gas
particle. Thus, the number of DM particles Npyy and the
number of gas (G) particles Ng are both equal to 11,239,424.
Therefore, the particles have masses given by mpy = 2.3 X
109M@ and mg = 4.7 X IOSMS, respectively. The average
mass density is given by po = 5.12 x 107°° g cm> and the
initial and final redshifts are fixed at z = 127 and z = O,
respectively.

2.2. The Evolution Code

The simulations used in this paper are evolved with the
particle-based code Gadget2; see Springel (2005). Gadget2
implements the Monaghan—Balsara form of the artificial
viscosity (Balsara 1995), so that the strength of the viscosity
is regulated by setting the parameter o, = 0.75 and the
parameter (3, = % X «,. The Courant factor has been fixed
at 0.1.

The time evolution of the simulation up to z = 0 required a
little more than 80 hr; it ran on 60 processors in an Intel Xeon
E5-2680 v3 cluster at 2.5 GHz at Laboratorio Nacional de
Supercomputo (LNS) of the Benemerita Universidad Auton-
oma de Puebla (BUAP). The computational method, described
in Section 2.3, the results of which are described in Section 3,
was applied only to the last output, that is, the snapshot at
redshift z = 0.

2.3. The Cubic Cells and the Hessian

With the aim of investigating the grouping properties of
protogalaxy clusters, Arreaga-Garcia (2021) used partitions
with two sizes, with 64> and 128> cubic elements, to search for
matter structures that had already gravitationally collapsed. We
chose the first partition, so that the total number of identical
cubic cells into which the entire simulation volume is divided is
therefore 64° = 262,144. It should be noted that the side
length of each cubic cell is 2*Ay = 1.17 Mpc where
Ay = 0.585 Mpc.

A very small cell size would allow us to detect only the core
of a protogalaxy, and almost all cores would be isolated, while
a very large cell size would allow us to detect many structures
within the cell, almost all of which would be connected, but it
would be difficult to label the cell. Remember that we are
trying to label each cubic cell according to the type of matter it
contains. With this objective in mind, the size chosen for the
cubic cell can be physically justified as follows.

In the percolation technique, this idea of the connectivity of
protogalaxies can be quantified by the percolation radius
(Zeldovich et al. 1982). In general, the connectivity of galaxies
decreases with increasing percolation radius, a similar behavior
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to the two-point correlation function, where the test radius ry is
about 5 Mpc.

Let us consider the distribution of galaxies around the Virgo
cluster. In the percolation technique, a suitable radius for
modeling the Virgo cluster using a cylinder would be 2.2 Mpc,
for that for Perseus 2.9 Mpc, and that for Coma 2.5 Mpc.
Therefore, a radius of 2 Mpc can be assumed to cover this type
of distribution of galaxies with a cylinder model. This model
allows us to consider a chain of galaxies that are part of a single
matter structure. In this case, we can in principle assign a label
to a grid cell containing this type of connected matter structure.

To this physical justification for the size of the cubic cell we
can also add a technical justification. The resolution of the
simulation described in Section 2.1 is sufficient to see the
matter structures considered above, i.e., protogalaxy clusters.
Furthermore, the plots generated for each selected cubic cell
must have enough features to be useful as input for the neural
network. For this reason, the cell size must not be too small for
matter structures to be recognized, but at the same time, the cell
size must not be too large to obtain a label. Therefore, a test cell
size in the range 1-7 Mpc can be used, and plots are then
created to assess whether they are useful. Due to this
indeterminacy of the cell size, we use two cell sizes in this
study.

We continue with the description of the following steps. We
determine the number of simulation particles (including DM
and gas particles) that are in each cubic cell. If the actual cell
has more particles than a certain threshold number N,, then we
approximate the Hessian for that cell as follows. We need to

calculate 7;; = %, where @ is the gravitational potential. We
use the particle approximation ®(r) = XoFr) W —r),
where W is a window function. The second derivatives are
approximated by f”(xp) = L0 P +f(;§ —R =Y 4 hz{;(o
for ( € (xo — h, xo + h), where h is a small increment, here
assumed to be 1 = Ag/100.

We then use our own code to calculate all components of the
symmetric tensor Tj; in this particle approximation. The
subroutine tred2.c is used to reduce the matrix Tj; to a diagonal
form, and the subroutine tglic is applied to find the
eigenvectors and eigenvalues of the matrix 7j;. Both sub-
routines were taken from Flannery et al. (1998).

In this approach, the particles located in the neighboring
cells are not taken into account when calculating the Hessian
for a given cell. Therefore, we do not quantify the effects of
including neighboring cells in the Hessian diagonalization.
This calculation was performed in this way to simplify the
process. However, we have performed a comparison of the
results obtained when calculating the Hessian with two
differently sized cells as can be seen in Appendix A.

This code runs on all cubic cells, so we get the center of the
selected cells, the number of particles contained in each
selected cell and the number of positive eigenvalues of the
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Hessian. We mentioned in Section 1 that we only considered
the cells whose number of simulation particles is above a
certain threshold number. We need to note the importance of
the threshold number of particles as a free parameter. For
example, using N; = 15 the total number of cells was 77,367,
with the following distribution: there were 59,544 cells with
three positive eigenvalues; there were 7462 cells with two
positive eigenvalues and there were 10,361 cells with only one
positive eigenvalue.

If you increase this parameter to N, = 150 particles, these
numbers change to 14,515, 145 and 133 cells, for three, two
and one positive eigenvalue, respectively. In both cases, the
number of class 3 cells is much larger than the number of class
1 and 2 cells. In this paper, we have set the threshold for the
number of particles to 150.

By setting a minimum number of particles per cell, we can
ensure that the plot of each cell has sufficient visual content for
the analysis to be meaningful. This minimum limit for the
number of particles is equivalent to setting a minimum limit for
the density of the cells. For example, when a plot of a
simulation box is created, only the particles whose density is
greater than a certain limit are selected to facilitate the
visualization of the dense matter of a simulation.

Finally, we order these data sets in terms of the number of
simulation particles contained in the cell, from the highest to
the lowest value to generate training plots with the best possible
resolution, that is, with more simulation particles, as we will
explain in Section 2.4. The cells with only a few particles
generated plots with low resolution and were therefore
discarded.

2.3.1. Consistency Tests

As a consistency test for this code, the halo finder Rockstar
described by Behroozi et al. (2013) was used to locate the halos
of matter determined by constructing maximum isodensity
curves. We placed cells in the halo centers located by Rockstar
and then executed the code described in Section 2.3. We found
that in this test, the output of the code indicates that all cells are
of class 3, i.e., they have three positive eigenvalues. So, if you
use the overdensity centers obtained by the halo finder code
Rockstar, our code will not find any class 1 or 2 cells, as
expected. In Section 4, we will compare our results with those
obtained with the code described by Forero-Romero et al.

(2009).

In addition, in Figure 1 we show the distribution of some
simulation particles extracted from a section of the simulation
box as well as the cells with matter structures classified as
filaments, walls or clusters. It should be emphasized that this
figure only shows simulation particles. All particles that are
located in a grid cell and have been assigned a class label are
collected in a file, and colored according to their class, as
shown at the top right of each plot in Figure 1.
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Figure 1. This figure shows a comparison between the spatial distribution of
the three classes of matter structure and the simulation particles located in a
slice. The plot is a 2D projection of a 3D slice of the simulation box, with a
width of 9 Mpc in the coordinate perpendicular to the plane indicated on the
axes of each panel. The height of the middle plane is located at 37.5 Mpc in the
perpendicular coordinate.

These particles are superimposed on the simulation particles
so that we can search for matches. It can be seen that there is a
good match for clusters (class 3). As expected, the identifica-
tion of filaments and walls by the human eye is not easy.
Therefore, we are investigating whether a CNN can perform
this classification task across the entire simulation volume.

2.3.2. The Distribution of Cells in Terms of the Mass

To conclude Section 2.3, we present the distribution of cubic
cells in terms of the mass they contain. As we mentioned
above, we have considered the gas and DM components when
calculating the Hessian. Now we consider these components
separately to investigate their distribution in the structure
classes. First, in the left panel of Figure 2 we calculate the
fraction of cells with a mass greater than or equal to the given
mass indicated on the horizontal axis of the panel, regardless of
the class of the cell. There are three curves in this panel: one is
labeled “c,” which means that all the matter contained in the
cubic cell has been taken into account. For the curve labeled
“cg,” only the gas contained in the cell has been considered and
analogously, for the curve labeled “cdm,” only the DM
contained in the cell has been taken into account. As expected,
we see that the DM dominates the matter content of the cells.

In the right panel of Figure 2 we show the distribution of the
cells and the classes of the cells. The curves are labeled gl
(dm1), which refer to gas (DM) in the cells of class 1 (with only
one positive eigenvalue), and g2 (dm2) and g3 (dm3), which
analogously refer to gas and DM in cells with two and three

Arreaga-Garcia

positive eigenvalues, respectively. In this panel we see that
there are two groups of curves, one group for the gas
component and the other group for the DM component.

It should be noted that there is a threshold for the number of
particles that must be reached for a cell to be selected; see
Section 2.3. For this reason, most curves in each group
coincide at small masses and are separated at large masses. It
can be seen that the structures in class 3 (the clusters) have the
largest masses in both groups, i.e., for gas and DM
components, as reported by Ganeshaiah Veena et al. (2018).
However, in the upper-left corner of each group of curves, it
can also be seen that the smallest masses are also detected for
class 3 cells. The curves for class 2 and class 3 cells agree in
each group for small masses, but are slightly separated for large
masses.

2.4. Training Plots and the CNN Models

In this section we consider the visualization cells as follows.
We take the coordinates of each cell center x., y.z. and
determine all simulation particles whose coordinates are within
the interval x € [x. — Ay, x. + A;] where A; is a width, that
we will define below and analogous relations for the y and z
coordinates are not shown. All these simulation particles are
considered and plots are created for this visualization volume,
which has a side length of 2 * A;, = 3.0, where A;, = 1.5
Mpc. This visualization cell is called an L cell.

In Section 2.3 we mentioned that to approximate the
Hessian, we considered all particles in the cubic cell H with
a side length of 2 * Ay = 1.17 Mpc, so that the visualization
volume is larger than the volume of the Hessian. This must be
so because we expect to capture extended objects such as
filaments and walls, which can be better sampled by a
wider grid.

We also consider a smaller visualization volume where the
side length is 2 * A; =15 and A;; = 0.75 Mpc. This
visualization cell is called an S cell. To distinguish these
models, we use the labels “L” and “S” respectively, as shown
in Table 1. In Section 3 we present the results of these runs
with different sizes for the visualization volume.

To create a plot, we change the origin of the coordinates to
the center of the cell so that the plots are normalized with
respect to the side length A;. In Figure 3 we show examples of
class 1 (in the left panel) and class 2 (in the right panel) matter
structures and compare the size of the three cell types. To
summarize, we use a cubic cell of type H to compute the
number of positive eigenvalues of the Hessian, which is shown
as the smallest case in Figure 3. Visualizations of cells of type
S and type L are also shown.

As already mentioned in Section 1, due to the 3D nature of
the cosmic web, it is almost impossible to distinguish the
different matter structures using only a 2D Cartesian projection.
For example, it would not be possible to distinguish between a
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Figure 2. Distribution of cubic cells vs. the mass that they contain. We show on the vertical axis the fraction of cells with a mass greater than (or equal) to the given
mass on the horizontal axis. We take into account both components, the gas and DM, irrespective of the number of eigenvalues of each cell (left panel). We also
consider separately the gas and DM in the cells according to the number of eigenvalues of each cell (right panel). The classes here are referred to as 1, 2 and 3. The
curves in the right panel are labeled as gl (dml), which refers to gas (DM) in the cells of class 1 (with only one positive eigenvalue); and g2 (dm2) and g3 (dm3),
which analogously refer to gas and DM in cells with two and three positive eigenvalues, respectively.

Table 1

The Number of Images and Some Results of the CNN Models
Row Model L Model S Model LS Model LT
1 Class 1 240 360 610 600
2 Class 2 240 360 662 600
3 Class 3 217 347 544 300
4 training plots 557 853 1452 1200
5 validation plots 140 214 364 300
6 prediction plots 90 90 180 180
7 total plots 697 1067 1816 1500
8 total parameters 55948771 69973475 69973475 69973475
9 memory 214 MB 266 MB 266 MB 266
10 correct labels 100 175 256 201
11 incorrect labels 40 39 108 99
12 test accuracy 0.71 0.81 0.70 0.67
13 test loss 0.49 0.48 0.58 0.63
14 true positives 0.23, 0.16, 0.3 0.26, 0.1, 0.33 0.11, 0.11, 0.16 0.28, 0.1, 0.18
15 Ay 1.5 Mpc 0.85 Mpc 1.5 Mpc and 0.85 Mpc 1.5 Mpc

filament and the projection of a sheet. For this reason, we have
created an additional model in which the set of plots fed to the
neural network consist of three projections onto the Cartesian
axes; i.e., for each cubic cell we create plots of the XY, ZX and
ZY projections. For this model we use the label “LT,” as can be
seen in Table 1.

In Figure 4 we show examples of the training plots. In the
left column of Figure 4 we show the XY (top row), ZX (second
row) and ZY (bottom row) projections of a matter structure that
could be identified as a filament (with only one positive
eigenvalue). In the middle column, we show (from top to

bottom) the XY, ZX and ZY projections of an object that could
be identified as a wall (with two positive eigenvalues). In the
right column, we show the projections of an object that could
be identified as a cluster (with three positive eigenvalues). We
emphasize that the columns in Figure 4 are not connected, but
represent different matter structures.

The plots were created with the same Python code, based on
the plot library Matplotlib. The basic features are the same for
all plots, for example, they have a resolution of 100 x 100 dots
per inch (dpi). The plots for model L have a width of 578 px
and a height of 434 px, while the plots for model S have a
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Figure 3. We show two examples of matter structures, in the left panel of class 1 (filament) and the right panel of class 2 (wall). We do not show an example of class 3.
The different numbers of simulation particles that are captured by the two different visualization cells (types L and S) can be compared with the size of the calculation

cell (type H).

width of 640 px and a height of 480 px. For both model L and
model S, the original number of plots was the same, as we
mentioned in Section 2.3.

However, for each plot, we created several additional plots
by rotating the original plot, with the rotation angle randomly
determined with respect to the coordinate center of each cubic
cell. In this way, we increased the number of plots available for
the training and validation sets. It should be noted that the
number of rotated plots per original plot is different for each
model. For this reason, the number of plots is different, as can
be seen in Table 1.

As we mentioned in Section 2.3, the cell catalog consists of
14,515 cells in class 3, 145 cells in class 2 and finally 133 cells
in class 1. We can create a plot and rotations of this plot from
each cell catalog. It must be emphasized that we will not use all
the cells in class 3, in order to avoid an imbalance in the
number of samples with respect to the classes. For this reason,
we have only considered a subset of class 3 so that the number
of plot samples is similar for all classes; see Table 1 and
Section 3. In Figure 5 we show a schematic diagram of the
generation process of the data set.

To take advantage of Table 1, we have included some
numbers that we will clarify in Section 2.5 and in Section 3,
where we will present the CNN used to classify the plots and
the results.”

2.5. The CNN

The CNN design of this paper was motivated by many
successful models, including, among others, the simple MNIST

2 Rows 10-13 show the results generated during the code execution that used

the validation data. Line 14 shows the results generated with the prediction data

convnet (Chollet 2018); in particular, the CNN for classifying
sports described by Bagnato (2023) and the CNN described by
Bagnato (2023) for classifying dogs and cats. In Table 2 we
describe the CNN model considered in this paper.

In Figure 6 we show a schematic representation of the CNN
with the main layers and their effects on the size of the plot (in
pixels). In general, a CNN has two main stages: one for feature
extraction and the other for classification. In the extraction
stage, the input plot is passed to a convolutional layer to create
a feature map of the plot, the size of which is then reduced by a
pooling process. This step can be applied several times to the
same input plot.

In the classification phase, the feature matrix is converted
into a vector and the values of the parameters available in the
CNN are determined so that the results match the class of the
plot. To compare the performance and quality of the results of
the CNN described in Section 2.5, we consider an alternative
CNN in Appendix B. However, other models can also be tested
to explore different CNN options.

It should be noted that in both CNNs, the densest layers are
those that offer the largest number of adjustable parameters. In
the alternative CNN shown in Appendix B, only the dense
layer generates parameters. The other layers have other goals,
such as creating a character map, or reducing the number of
pixels, but the dense layers must establish the connection
between all the neurons of the previous layer and the next layer,
which is why they must have a parameter for each connection.

3. Results

We apply the CNN described in Section 2.5 to several sets of
plots. The CNN is trained during different epochs for all models
to determine the best values of the free parameters to assign each
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Figure 4. Examples of isodensity plots that were generated for cells with different numbers of positive eigenvalues. The vertical and horizontal axes of these plots
indicate the length in Mpc. For model L, with a width of 578 px and a height of 434 px, the axes vary from —1.5 to 1.5, and we show the projections on the XY axes
(top line), the ZX axes (second line from top to bottom), and the ZY axes (third line from top to bottom). For model S, with a width of 640 px and a height of 480 px,
the XY axes vary from —0.85 to 0.85 (not shown in this figure). Plots are shown with only one positive eigenvalue (left column), two positive eigenvalues (middle

column) and three positive eigenvalues (right column).

plot to the target class. The accuracy and loss metrics are two of
the best known metrics for determining the performance of a
CNN. Accuracy is expressed as a percentage, i.e., it indicates the
proportion of plots whose classes were correctly predicted by the
CNN. The loss metric, also known as the cost or error function,
measures the failure in predicting the correct class for a plot with
respect to the target class and is expressed as a real number.

3.1. Report on Training and Validation

In Figure 7 we show the accuracy and loss metrics in relation to
the epochs. To determine the accuracy and loss metrics, the code
uses the validation plots. The curves of all models show the
expected behavior: the accuracy and validation curves for the
training plots increase over the epochs. The same observation can

be made for the loss curves, i.e., the loss curves for the training
and validation plots decrease as the number of epochs increases.

To better examine the performance of the CNN, we need to go
beyond accuracy and loss metrics. The fl-score is another metric
that can be used in addition to the two simpler performance
metrics mentioned above, namely the accuracy and loss. To
explain the fl-score metric, we first introduce the concepts of
precision and recall. Precision is defined as the ratio between the
number of correct positive predictions and the sum of the correct
positive predictions and the number of false positive predictions,
ie., precision measures how many of the CNN’s positive
predictions were correct. Recall is defined as the ratio between
the number of true positives and the sum of the number of true
positives and the number of false negatives, i.e., recall measures
how many positive predictions the CNN found out of all positives.
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Figure 5. Schematic diagram of the generation process of the data set.
INPUT filament
"j.max_poo\ing: ) - wall OUTPUT
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. 288x216 I
576x432 cluster
Convolution —_—
Convolution
34x25
applied four times
Figure 6. Schematic diagram of the CNN.
Table 2
Layers of the CNN, Model Sequential-5
Layer (Type) Output Shape Number of Parameters
conv2d;4 (Conv2D) (None, 576, 432, 32) 1184
max-pooling2d;, (MaxPooling2D) (None, 288, 216, 32) 0
conv2d,s (Conv2D) (None, 286, 214, 64) 18496
max-pooling2d;5s (MaxPooling2D) (None, 143, 107, 64) 0
conv2dg (Conv2D) (None, 141, 105, 128) 73856
max-pooling2d;s (MaxPooling2D) (None, 70, 52, 128) 0
conv2d;; (Conv2D) (None, 68, 50, 128) 147584
max-pooling2d;; (MaxPooling2D) (None, 34, 25, 128) 0
flattens (Flatten) (None, 108800) 0
dense;y (Dense) (None, 512) 55706112
dense;; (Dense) (None, 3) 1539

The f1-score combines the metric precision and recall into a
single metric. The fl-score is defined as the ratio between 2
times the precision times the recall and the sum of precision
and recall, i.e., the fl-score is an average of precision and
recall; see Tables 3—6. The macro-average values for precision

and recall are calculated as the average of the individual
precision and recall values of the individual classes.

For model L, we can see that for classes 1 and 2, which
identify filaments and walls, the CNN recognizes these classes
with an fl-scores of only 0.53 and 0.54, respectively; see
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Figure 7. Accuracy and loss history in terms of the epochs, for model L (top line); model S (second line from top), model LS (third line from top) and model LT

(bottom line).
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Table 3 Table 5§
Report for Model L Report for Model LS
Precision Recall f1-score Support Precision Recall f1-score Support
Class 1 0.56 0.50 0.53 44 Class 1 0.61 0.33 0.42 120
Class 2 0.52 0.56 0.54 41 Class 2 0.55 0.78 0.65 123
Class 3 0.96 1.0 0.98 55 Class 3 0.95 1.0 0.98 121
accuracy - = 0.71 140 accuracy - - 0.70 364
macro avg 0.68 0.69 0.68 140 macro avg 0.71 0.70 0.68 364
Table 4
Report for Model S Table 6
Precision Recall fl-score Support Report for Model LT
Class 1 0.73 0.52 0.61 38 Precision Recall f1-score Support
Class 2 0.71 0.86 0.78 79 Class 1 0.61 0.71 0.65 130
Class 3 1.0 1.0 1.0 77 Class 2 0.59 0.46 0.52 114
accuracy 0.82 214 Class 3 0.97 1.0 0.98 56
macro avg 0.81 0.79 0.79 214 accuracy 0.67 300
macro avg 0.72 0.72 0.72 300

Table 3. For the S model, these values are 0.61 and 0.78
respectively; see Table 4. For the LS model, these values are
0.42 and 0.65 respectively; see Table 5. For the LT model,
these values are 0.65 and 0.52 respectively, see Table 6. Based
on the fl- metric, model S and model LT deliver the best
results. The worst results are achieved by the LS model.

If we look at the results of all models, we can summarize
them as follows: the class 3 objects that identify clusters are
recognized very well. This is the expected behavior: recogniz-
ing filaments and walls is much more difficult than recognizing
clusters. It seems that the smallest cell size provides a better
performance in the detection of filaments and walls.

3.2. Report on Prediction

Next, we use plots (which are not included in the training or
validation sets) to see if the CNN can correctly predict the
classes of these unseen plots. The results are shown in Figure 8
in the form of a confusion matrix and in Tables 7-10. Let us
now present the results.

For model L, the CNN returned 63 correct labels and 27
incorrect labels, which mean that the proportion of true positives
for classes 1, 2 and 3 is 0.23, 0.16 and 0.3, respectively. From
these results, it can be concluded that the CNN has a global
accuracy of 69% (the sum of all these proportions). For model S,
the CNN provided 63 correct labels and 27 incorrect labels. The
proportions of true positives are 0.26, 0.1 and 0.33, for classes 1,
2 and 3 respectively. The sum of all these proportions is 69%.
These values are also shown in Table 1.

Model LS was an attempt to combine model L and model S,
i.e., all the plots of individual models were combined in model
LS. However, the size of the array was unmanageable due to
the high memory requirements. For this reason, we only use the

first half of the plots of each model; see Table 1. As we
mentioned in the caption of Figure 4, the sizes of the plots in
model L and model S are different. In order to obtain plots of
uniform size for model LS, i.e., plots with the same width and
height, we applied a procedure to scale the plots of model L so
that they have the same size as the plots of model S.
Nevertheless, the length scale of the coordinate axes is still
different. We believe that this difference does not change the
results of the neural network.

Using the LS model, we tried to test whether the CNN is
sensitive to the different length scales of the plots. However, it
seems that the results of this model LS change significantly
compared to model L and model S; see Table 5. The confusion
matrix of model LS has more unseen plots than that of model L
or model S, as can be seen in the bottom panel of Figure 8. For
model LS, the total number of unseen plots was also 90, of
which 35 were correctly labeled and 55 were incorrectly
labeled. The proportions of true positives are 0.1 for class 1, 0.1
for class 2 and 0.16 for class 3. The sum of all these values is
0.36. This value is much smaller than the values obtained for
model L (0.69) and model S (0.69).

For the LT model, the proportions of true positives are 0.28,
0.1 and 0.18, respectively. The sum of these proportions is
0.56. Based on the CNN’s ability to make predictions, the L
and S models therefore deliver the best results. The LS model
delivers the worst results.

From the fl-scores for the prediction, we can see that the LS
model gives the worst results of 0.4, 0.25 and 0.5 for class 1, 2
and 3 matter structures respectively. The L and S models
provide better results of 0.63. The LT model provides results at
an intermediate level compared to the other models. The L and
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Table 7 Table 8
Report on Prediction for Model L Report on Prediction for Model S
Precision Recall fl-score Support Precision Recall fl-score Support
class 1 0.7 0.57 0.63 37 class 1 0.8 0.53 0.64 45
class 2 0.5 0.58 0.54 26 class 2 0.3 0.6 0.4 15
class 3 0.9 1.0 0.94 27 class 3 1.0 1.0 1.0 30
accuracy 0.7 0.7 0.7 0.7 accuracy 0.7 0.7 0.7 0.7
macro avg 0.7 0.71 0.70 90 macro avg 0.7 0.71 0.68 90

S models also provide high identification performance for class
3 matter structures, as we have seen so far for all models. It
should be emphasized that the LS and LT models have lower
predictability for class 3 matter structures based on this metric.

4. Discussion: Some Concerns

The aim of this paper was to use a typical CNN to classify a set
of Cartesian slice plots, each of which was constructed using the
simulation particles located in (and around) a set of cubic cells (of
type L and S) that are part of a uniform partition of the simulation
volume (cell of type H). The first problem is that the assigned

12

labels may not be entirely correct, but they are assumed to be the
true target in CNN, which means that we examined the results
under this assumption. However, other codes might assign
different labels to the same set of cells, as we explain below.
After we completed this work, we found the code TVWEB of
Forero-Romero et al. (2009). This code determines labels for all
grid elements of a uniform partition, regardless of the number of
simulation particles contained in each grid element. Then,
through a smoothing process with a Gaussian kernel, this
method obtains the density field, which is then transformed into
Fourier space to yield the diagonalization of the Hessian matrix.
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Figure 9. A comparison between the spatial distributions of the cells in class 3 according to our code and the TVWEB code.

Table 9 Table 10
Report on Prediction for Model LS Report on Prediction for Model LT
Precision Recall fl-score Support Precision Recall fl-score Support
class 1 0.33 0.5 0.4 20 class 1 0.86 0.44 0.58 118
class 2 0.33 0.25 0.29 40 class 2 0.28 0.58 0.38 29
class 3 0.5 0.5 0.5 30 class 3 0.55 1.0 0.70 33
accuracy 0.38 0.38 0.38 0.38 accuracy 0.56 0.56 0.56 0.56
macro avg 0.38 0.41 0.39 90 macro avg 0.56 0.67 0.55 180

The output of the TVWEB code provides different numbers
than the ones we obtained, namely 113,209 cells in class 1,
121,109 cells in class 2 and 1416 cells in class 3. TVWEB
recognizes many cells in class 1 and class 2, while the number of
cells in class 3 is much smaller. As we have shown in
Section 2.3, the number of cells labeled as class 3 with our code
was 14,515 (with three positive eigenvalues), which is much
larger than the number of cells labeled as class 2 and class 1 (145
and 133, respectively) and the number of cells of class 3 found
with TVWEB. At this point, it must be mentioned that the
number of cells with non-positive eigenvalues (including all
cells discarded from the calculation because the number of
simulation particles was below the threshold) found by our code
was 247,351. TVWEB found 26,410 cells with non-positive
eigenvalues. The total number of cells counted for both codes is
262,144, which takes into account all the cells in the partition.

To compare the assigned labels between the TVWEB code
and our code, we look at a set of 15 plots (including samples of
each class) and found nine matches and six discrepancies. To
further compare these methods, we created a 3D plot of all cells

13

in class 3 that were recognized by both codes, as shown in
Figure 9. We emphasize that we only plot the centers of the
cells, not the simulation particles. Despite the difference in the
numbers shown above, it can be seen that the spatial
distributions of class 3 cells from the two codes are very
similar. We have observed similar results with other classes of
matter structures.

In addition, differences in class assignment have also been
noted in other works; see for example Forero-Romero et al.
(2009), who made visual corrections to the class assignments.
Another way to make adjustments to the class assignment was
to implement a threshold eigenvalue; see Hoffman et al. (2012)
and Forero-Romero et al. (2009). In this work, we did not use a
threshold eigenvalue in order not to reduce the number of
available plots, as we explain below.

According to the results shown in Section 3.1, the CNN was
successfully trained and tested, as the test accuracy (in row 12
of Table 1) of the CNN is 0.72 (for model L 0.7, for model S
0.81, for model LS 0.70 and for model LT 0.67). The ability of
the CNN to make correct predictions for the class of an unseen
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set of plots was found to be 69% for models L and S; 38% for
model LS and 56% for model LT. We calculate the sum of the
true positives, as can be seen in row 14 of Table 1. Thus,
combining the plots with the two cell sizes in a single set of
training plots results in the CNN making more errors in
identifying matter structures. Based on the macro-averaged f1-
score, we obtained 0.68, 0.69 and 0.68 for model L for classes
1, 2 and 3, respectively. For model S, the scores were 0.81,
0.79 and 0.79 respectively. For model LS, the scores were 0.71,
0.70 and 0.68 respectively. For model LT the scores were 0.72,
0.72 and 0.72 respectively.

It must be emphasized that this level of performance is
similar to that of Inoue et al. (2022) achieved a performance of
64% (macro-averaged fl-score) with a CNN for the classifica-
tion of cosmic structures based on galaxies from simulations.
Aragon-Calvo (2019) reported an accuracy of just over 0.9 for
both filaments and walls. The precision values for filaments and
walls were 0.7 and 0.78, respectively. Similarly, the recall
values for filaments and walls were 0.78 and 0.77, respectively.
In this paper, precision values of just over 0.56 (model L), 0.73
(model S), 0.61 (model LS) and 0.61 (model LT) were obtained
for filaments. For walls, the accuracies were 0.52 (model L),
0.71 (model S), 0.55 (model LS) and 0.59 (model LT). For
class 3 structures (clusters) we achieved precision and recall
values of over 0.95 for all models.

A second problem is the small number of plots considered in
this study. It was found that the power of CNNSs increases on a
logarithmic scale with the size of the data set; see Sun et al.
(2017). Typically, the data sets for CNN models contain tens of
thousands of training plots. To partially mitigate this situation,
we increase the number of plots by rotating the original plots
around the origin of the coordinates of each cubic cell.

For the LT model, we create plots of the three projections in
the XY, ZX and ZY planes. Let us consider the usefulness of
these plots for the CNN calculations. As far as we know, there
is no way to tell the CNN that the three projections refer to the
same 3D matter structure, and we believe that the CNN
interprets these projections as different examples of labeled
structures. For the CNN, plots obtained by rotating an original
plot multiple times and those obtained by projection are
equivalent. For the human eye, there is an obvious benefit, as
the projections of a 3D structure in the three coordinate planes
allow us to get a better idea of the overall image, while this is
not the case for the CNN.

Therefore, in this paper we managed to run the models with
only a few hundred plots. However, when we combined model
L and model S, the number of plots was unmanageable for the
system: “ArrayMemoryError: Unable to allocate 11.2 GiB for
an array with shape (3006, 578, 434, 4).” For this reason, we
have reduced the number of plots from the LS model that are
used as input for the CNN.

There are also limitations on the number of epochs required to
train the CNN, as the training process makes intensive use of the

Arreaga-Garcia

RAM, which is quickly exhausted. For example, the LT model
could be trained for up to 25 epochs (with 1500 plots). In the
literature, it is common for models to be trained for 60 or more
epochs. Although the number of plots varies considerably between
models, the results are at the same level and indeed similar.

A third problem is that some matter structures with excessive
density may lie partially outside the cubic cells and the
visualization volume. For this reason, some plots have cuts in
the overdensity structure. This could be avoided if the
overdensity structure is located first and then a cubic cell is
placed at the corresponding location. In this case, the cover
mesh would no longer be uniform and other techniques would
have to be used.

A fourth point in this paper is to decide on a particular type
of CNN with a particular set of parameters. We have pointed
out in Section 2.5 that this CNN model comes from Bagnato
(2023), who used it to classify 25,000 images of dogs and cats
(12,500 of each class) with different sizes. With the parameters
given in Table 2, they achieved an accuracy of 0.74 in
recognizing images of dogs and cats. We employed an
alternative CNN obtained from Bagnato (2023) who used it
to classify sports in 70,000 images showing nine different types
of sports. The images had a size of 21 x 28 and three color
channels. Bagnato (2023) achieved an accuracy of 0.84 in
recognizing sports images. Using the same parameters as in
Bagnato (2023), we achieved a similar level of performance as
the network described in Table 2; see Appendix B.

We applied these CNNs to classify images of matter
structures (with excessive density) with the same parameters
that the authors considered. The images they used are very
different from our images. Our images also have three color
channels and they have a width of 578 px and a height of 434
px for model L (640 px by 480 px for model S). We did not
investigate any changes to these parameters. With the current
parameter values, an accuracy of about 0.7 was achieved.

It must be mentioned that the original plots have a bar with a
color scale associated with the density values. The blue color
stands for low-density regions. The green color represents
medium-density regions. The red color stands for high-density
regions. The bar has been was removed.

5. Concluding Remarks

The formation of matter halos occurs through the process of
gravitational collapse, see Arreaga-Garcia (2007, 2016, 2017).
Therefore, the plots of halos must contain information about
how this formation process took place. A very homogeneous
collapse leads to compact, spherical halos, while a very
inhomogeneous collapse leads to elongated halos. Between
these collapse extremes there is a whole range of possible halo
configurations. Until a few years ago, such plots could only be
analyzed by visual inspection.
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In this paper, we have looked at the types of plots that are
commonly used in particle-based numerical simulations to
visualize the results. These are mainly 2D Cartesian plots, in
particular colored isodensity plots for a slice of particles from the
simulation volume. Then, we proposed the goal of this paper,
which is to create hundreds of plots for a subset of cells of the
simulation volume to characterize the type of matter structure
that each cell contains. Due to the 3D nature of the cosmic web,
it is almost impossible for the human eye to distinguish the other
classes of matter using only a 2D Cartesian projection.

Motivated by the success of neural networks in discriminat-
ing between images of dogs and cats, the plots mentioned
above were used in this paper as input for a typical CNN. In
Section 2.5 we defined several CNN models with layers that
have been successfully used in other domains to classify
images. In Appendix B, we look at an alternative CNN. For the
snapshot considered here at a zero redshift, the axes of the plots
vary from —1.5 to 1.5 Mpc for model L (that is, for the
visualization of cell type L) and —0.85 to 0.85 Mpc for model
S (visualization of cell type S). For the LS model, we combine
the plots of the two previous models. All these models use plots
with the projection of the XY plane. The LT model relies on
Cartesian plots of the ZX and ZY planes in addition to the
projection of the XY plane.

In Section 3.1 we trained the CNN system for as many
epochs as possible, using as many plots as possible. Test
accuracy values of 60%—70% were achieved for all models, as
can be seen in Table 1. This is a performance level comparable
to other models in the literature. The predictive ability of this
CNN was tested using a confusion matrix, and we found a
performance of about 0.69. In general, we found that the
recognition of class 1 and class 2 structures (filaments and
walls) was more problematic and that class 3 structures
(clusters, also called knots) were more easily recognized. This
is to be expected, since the first two types of structure are
spatially extended, while the latter are spatially compacted.
More specific conclusions can be drawn as follows:

1. It appears that the smallest cell size (type S) provides a
better performance in terms of filament and wall
identification.

2. The LS model, which combines plots of different sizes (S
and L type cells), gives the worst results.

3. Although the number of plots varies considerably
between the models, the results are at the same level
and even similar.

4. All models were able to classify class 3 matter structures,
which we refer to as clusters. However, when using the
f1-score metric, the LS and LT models showed a lower
level of predictability for class 3 matter structures, as can
be seen in Section 3.2.

5. The two CNNs considered in this paper provide generally
similar results. However, the CNN in Appendix B
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provides better results in terms of its ability to predict
the class of unseen plots, as shown in row 14 of Table B1.
Due to the smaller number of layers in the alternative
CNN, the execution time could be reduced to about half
of the execution time of the CNN described in
Section 2.5.

We would like to emphasize that we have neither presented
this work as an improvement of the methods for detecting
cosmic web structures, summarized in Section 1, nor to present
a new result of physical interest. Our aim was to show that the
plots commonly used to illustrate the results of a cosmological
simulation contain valuable information about the cosmic
structure that can be processed using CNN technology.

He et al. (2019) proposed a model to use the enormous
potential of neural networks to distinguish between different
cosmological models. This model is based on linking the
Zeldovich initial conditions with an approximation to represent
the structure evolution in the universe, which is less costly than
using N-body simulations. The input data of the neural network
consist of 10,000 cubes with the Zeldovich function applied to the
particles of the simulation. The output data are the matter structure
generated by the FastPM tool. The error function, to be minimized
by the free parameters of the neural network, is the difference
between the Zeldovich displacement functions for the particles of
the simulation. Here it is worth investigating the possibility of
using a slicing technique and generating plots of the simulation
cubes, as we have done in this article, and seeing if a label can be
assigned to each plot to distinguish between different cosmolo-
gical models. See also the paper of Hong et al. (2020).
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Appendix A
Comparison of the Distribution of Classes by
Calculating the Hessian Value Using Two Cells of
Different Sizes

In Figure 3 we compare the sizes of the cells considered in
this study, i.e., the H-cell, which is used to calculate the Hessian,
and the L-cell, which is used to visualize the matter structure. In
this section, we investigate whether there is a significant
difference in the set of class labels when we use the L-cell
instead of the H-cell to diagonalize the Hessian. The mesh for
the simulation box has the same center for both cell types,
although for the L-cell mesh, many more particles need to be
taken into account to compute the Hessian for each cell center.
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Table A1
Comparison Between Cells to Calculate the Hessian

0 Matter Structure Cell H (150) Cell L (150) Cell L (300)
1 nClass 1 133 817 636

2 nClass 2 145 998 805

3 nClass 3 14515 93482 75571
4 ncells 14793 95297 77012
5 fClass 1 0.008991 0.008573 0.008258
6 fClass 2 0.009802 0.010473 0.010453
7 fClass 3 0.981207 0.980954 0.981289
8 aveCl 338 1436 1781

9 aveC2 373 2107 2559
10 aveC3 903 2525 3071
11 execution time 20 Hr 60 40

The use of more particles in the Hessian calculation has two
consequences: first, the effects of matter outside the H-cell are
taken into account, which mean that the limitation mentioned in
Section 2.3 when calculating the Hessian with the H-cell is
reduced; and second, the computation time needed to traverse
the simulation box increases significantly.

In Table Al, we present the results of this comparison. In
column 1, in rows 1 to 3, nClass i denotes the number of cells
labeled as class i. In the fourth row, ncells stands for the total
number of selected cells in the partition. In lines 5 to 7, fclass i
is the proportion of cells of class i to the total number of
selected cells in the simulation box. In lines 8 to 10, aveC i is
the average number of particles per cell of class i. In line 11, the
execution time is the time required for a serial code to run
through all cells of the mesh. In columns 3 and 4 of Table Al,
the value in brackets (next to the cell name) indicates the
threshold number of particles, i.e., the minimum number of
particles that a cell must have in order to be selected.

The most important result of this comparison is that the
proportions of cells for each class are very similar, as can be

Arreaga-Garcia

seen in rows 5, 6 and 7 of columns 3, 4 and 5 of Table Al.
Consequently, we expect that the distribution of labels will be
practically the same whether the H-cell or the L-cell is used to
diagonalize the Hessian. It is therefore expected that the results
of the CNN will be very similar to those already described in
Section 3 of this study.

However, in the case of the L-cell, the number of cells per
class increases, which means that more plots could be
generated for each class, as shown in rows 1, 2 and 3 of
columns 4 and 5 of Table Al. It is generally known that the
larger the sample of training plots, the better the results of the
CNN. Exploring this possibility will be of interest in
future work.

Appendix B
Alternative CNN

We have mentioned in Section 4 that we employed an
alternative CNN originating from Bagnato (2023), who used it
to classify sports in 70,000 images with nine different sports.
The input plots of this alternative CNN were the same that we
used in this paper as input for the CNN defined in Section 2.5,
but the number of plots is slightly different due to technical
details, which do not change the results significantly. In
Figure Bl we illustrate a schematic representation of the
architecture of the alternative CNN, which is similar to the one
shown in Figure 6.

In fact, the results of these two CNNs are very similar, as can
be seen in Table B2. It should be noted that rows 10-13 of
Table B2 display the results generated during the code
execution where the validation data were used. Line 14 shows
the results generated with the prediction data.

In Figure B1, we display a schematic representation of the
architecture of the alternative CNN, for comparison with that
shown in Figure 6.



Research in Astronomy and Astrophysics, 24:115020 (18pp), 2024 November

578x434 263217

Convolution 2D

32

applied three times

Arreaga-Garcia

‘ filament

elu | .@ sl } OUTPUT
rn_ax_poollng__ V4 3 classes

‘ ‘ cluster

Figure B1. Schematic diagram of an alternative CNN. The most important difference between the CNNs is that, in the original CNN shown in Figure 6, the
convolution is applied three times and the output process only once; in the alternative CNN of this section, the convolution is applied only once and the output process

three times.
Table B1
Alternative CNN

Layer (Type) Output Shape Number of Parameters

conv2d 1 (None, 578, 434, 32) 1184

leaky relu 2 (None, 578, 434, 32) 0

max pooling 2d 1 (None, 289, 217, 32) 0

dropout 2 (None, 289, 217, 32) 0

flatten 1 (None, 2006816) 0

dense 2 (None, 32) 64218144

leaky relu 3 (None, 32) 0

dropout 3 (None, 32) 0

dense 3 (None, 3) 99

Table B2
The Number of Images Used and Some Results

Row Model L Model S Model LS Model LT
1 Class 1 462 762 610 600
2 Class 2 466 834 662 600
3 Class 3 433 801 624 300
4 training plots 1088 1917 1516 1200
5 validation plots 273 480 304 300
6 prediction plots 90 90 180 180
7 total plots 1451 2397 1896 1500
8 Total parameters 64219427 78644515 64219427 78644515
9 Memory 244.98 MB 300 MB 244.98 MB 300 MB
10 correct labels 186 323 267 193
11 incorrect labels 87 157 113 107
12 test accuracy 0.68 0.67 0.70 0.64
13 test loss 0.76 0.67 0.59 0.58
14 true positives 0.22, 0.18, 0.31 0.26, 0.13, 0.33 0.21, 0.13, 0.30 0.11, 0.21, 0.13
15 Ay 1.5 Mpc 0.85 Mpc 1.5 and 0.85 Mpc 1.5 Mpc
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