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Abstract

Stellar classification and radius estimation are crucial for understanding the structure of the Universe and stellar
evolution. With the advent of the era of astronomical big data, multimodal data are available and theoretically
effective for stellar classification and radius estimation. A problem is how to improve the performance of this task
by jointly using the multimodal data. However, existing research primarily focuses on using single-modal data. To
this end, this paper proposes a model, Multi-Modal SCNet, and its ensemble model Multimodal Ensemble for
Stellar Classification and Regression (MESCR) for improving stellar classification and radius estimation
performance by fusing two modality data. In this problem, a typical phenomenon is that the sample numbers of
some types of stars are evidently more than others. This imbalance has negative effects on model performance.
Therefore, this work utilizes a weighted sampling strategy to deal with the imbalance issues in MESCR. Some
evaluation experiments are conducted on a test set for MESCR and the classification accuracy is 96.1%, and the
radius estimation performance Mean of Absolute Error and σ are 0.084 dex and 0.149 Re, respectively. Moreover,
we assessed the uncertainty of model predictions, confirming good consistency within a reasonable deviation
range. Finally, we applied our model to 50,871,534 SDSS stars without spectra and published a new catalog.

Key words: methods: data analysis – techniques: image processing – methods: statistical

1. Introduction

In recent years, various large-scale sky survey projects have
been continuously carried out, such as the Sloan Digital Sky
Survey (SDSS; York et al. 2000; Yanny et al. 2009), Gaia
(Gilmore et al. 2012), LAMOST (Luo et al. 2015), and the
Large Synoptic Survey Telescope (LSST; LSST Dark Energy
Science Collaboration 2012). These large sky survey projects
have provided us with an unprecedented amount of data. The
big data enriches our understanding of the distribution of stars
in the Universe, their physical properties and evolutionary
process. To conduct astronomy research based on these big
data, two essential tasks are to classify the observed star data
and estimate their parameters.

Based on the Morgan-Keenan classification method (Morgan
& Keenan 1973) and surface temperature, stars are classified into
O, B, A, F, G, K, M from hot to cold. Each category is further
classified into ten subclasses from 0 to 9 in case of surface
temperature decrease. Historically, the classification task was
often conducted by astronomers through visual inspection.
However, it is infeasible in the era of big data. Therefore, it is
necessary to develop some automated classification methods,
such as template matching (e.g., Duan et al. 2009) and machine
learning methods (e.g., Sharma et al. 2020).

The stellar radius is an important parameter for under-
standing stellar morphology. Methods for measuring the stellar
radius can be divided into direct and indirect types. Direct
methods include interferometry or eclipsing binary fitting, etc.
Interferometry allows astronomers to directly measure the
angular diameter of stars and calculate their actual radius by
combining known distances (Monnier 2003; van Belle & von
Braun 2009). The eclipsing binary fitting method obtains
physical information about the star by analyzing the light curve
of the eclipsing binary (Blay & Lovekin 2015; Kallrath 2022).
Indirect methods include deriving the radius by analyzing the
brightness, temperature, and distance of stars or using empirical
relations based on observational data for fitting (e.g., Moya
et al. 2018). However, the accuracy of these methods is limited
by the models and assumptions that they rely on, and the
accumulation of errors may increase the uncertainty of the
results. In recent years, machine learning methods have become
increasingly popular for automatically estimating stellar
parameters (e.g., Flores et al. 2023).
The machine learning methods mentioned above typically

use data from a single modality for classification or parameter
estimation. With large-scale sky survey projects continuing to
develop, we can now obtain data from different bands and
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types of instruments. This diversity of data provides more
comprehensive and richer information. However, how to
integrate data from multiple modalities, making the information
from different data types complementary to achieve higher
accuracy has become a key topic. Fortunately, some research
has focused on this area (e.g., Hong et al. 2022; Kang et al.
2023; Zhang et al. 2023). However, there are not any effects
until now for stellar classification and stellar radius estimation.
Therefore, this work focuses on establishing a machine learning
model to improve the stellar classification and stellar radius
estimation performance by multimodal fusing.

The structure of this paper is as follows: Section 2 discusses
the data acquisition process used in this study, Section 3
discusses the principles of the MESCR solution proposed in
this study, Section 4 presents the performance of our model and
related experiments, Section 5 applies MESCR to the SDSS
photometric images to generate a new catalog, and Section 6
concludes the paper.

2. Data

In this study, the neural network accepts parallax and proper
motion along with photometric images as inputs, simulta-
neously performing stellar classification and radius estimation.
The proper motion, parallax, and radius of stars can be obtained
from Gaia, while photometric images and their spectral types
can be obtained from SDSS. Therefore, the reference set was
obtained by cross-matching the SDSS Data Release (DR) 17
catalog and the Gaia DR3 catalog. Subsequent sections will
detail the process of establishing the reference data set and the
relevant data preprocessing steps.

2.1. Reference Dataset Based on Common Observations
from SDSS DR17 and Gaia DR3

The Sloan Digital Sky Survey (SDSS) is one of the largest
optical sky survey projects to date, dedicated to creating a
detailed 3D map that covers about one-third of the sky. SDSS
uses CCD filters to collect photometric images in five optical
bands: u, g, r, i, and z. The photometric images and spectra
from SDSS can be accessed online via the Casjobs server.5 Shi
et al. (2023) selected a subset of objects from SDSS DR17 by
making the sample numbers of various types of stars as equal
as possible, and established a novel catalog (the Shi catalog).
The type balance in the Shi catalog is helpful for the machine
learning model establishing. Actually, Shi et al. (2023)
established their catalog by cross-matching the SDSS DR17
SpecPhoto and SpecObj catalogs. To ensure the quality of the
data, they further filtered out targets fainter than the limiting
magnitudes, compiling a data set of 46,245 stars. They used the
catalog for the task of stellar classification, and achieved an
accuracy of 86.1%. The Shi catalog, however, does not include

parallax, proper motion or radius, all of which are necessary for
this study. Therefore, this work established a reference set of
some common observations from SDSS DR17 and Gaia DR3
by cross-matching the Shi catalog and Gaia DR3.
The Gaia sky survey provides astrometric, photometric, and

spectroscopic samples of nearly 2 billion stars in the Milky
Way, as well as important samples of extragalactic and solar
system objects. The Gaia Archive offers a rich data set that
includes calculated positions, parallaxes, proper motions, radial
velocities, and brightness measurements of stars and other
celestial bodies, accessible online via the Gaia Archive server.6

Our data set was constructed from Gaia DR3 (Gaia Collabora-
tion et al. 2023). The parallax (parallax) and proper motion
(pm) used in this paper are from the Gaia source catalog,
whereas the stellar radius (radius_flame) is from the astro-
physical parameters catalog. For the stellar radius, we choose to
use the stellar radius calculated from the Stefan–Boltzmann
law, derived from the star’s temperature and luminosity.
Luminosity of the star from Final Luminosity Age Mass
Estimator (FLAME) using G band magnitude, extinction,
distance, and a bolometric correction (Fouesneau et al. 2023).
The extinction calculation is performed by the GSP-Phot
module, which analyzes BP and RP spectral data in conjunc-
tion with the star’s apparent G magnitude and parallax. This
analysis is based on model fitting from the Aeneas best library
that achieves the highest goodness-of-fit value. The GSP-Phot
module uses the Markov Chain Monte Carlo (MCMC) method
to obtain the median value of multiple samples to calculate the
extinction value in the G band (Ulla et al. 2022).
Due to some bright sources from Gaia that may saturate

SDSS, we used the flags from SDSS DR17 to filter out the
saturated sources in the Shi catalog before performing the
cross-match. Then, we use the Shi catalog to cross-match with
the Gaia source and astrophysical parameters catalogs based on
R.A. and decl. through the Gaia Archive server, with a cross-
match radius of 3″. However, upon examining the radius
distribution after cross-match, we found that the radii of O and
B-type stars did not match the sample. Despite further cross-
matching with the SIMBAD astronomical database (Wenger
et al. 2000) to refine the data set, the errors remained
significant. To reduce data errors, we decided to exclude O
and B-type stars from the data set and limit our research to A,
F, G, K, and M-type stars.
To further obtain a more reliable catalog, we applied the

following criteria to the cross-matched catalog to balance data
quality and quantity: (1) parallax_over_error > 2 to select
more accurate parallax data. (2) pmra_error < 0.2 and
pmdec_error < 0.2 to exclude proper motion data with large
errors. (3) ruwe < 1.4 to exclude potentially problematic
observational data, such as binaries or other complex back-
ground interferences.

5 http://casjobs.sdss.org/casjobs/ 6 https://gea.esac.esa.int/archive/
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Our final data set consists of 9180 stars: 3368 K-type stars,
2918 F-type stars, 1350 G-type stars, 918 A-type stars and 626
M-type stars. Their distributions are presented in Figure 1. It is
worth noting that there are relatively more K and F-type stars
than G, A and M-type stars, resulting in an imbalanced data set.
This poses some challenges for model learning, with detailed
solutions to be provided in Section 3.2.2. Moreover, we will
further process the photometric images.

2.2. Photometric Image Preprocessing

The photometric images obtained from SDSS DR16 are
typically uncropped, high-resolution images that contain a large
amount of irrelevant information, such as background noise,
other celestial bodies, or blank areas. Therefore, we first use the
World Coordinate System (WCS) to locate the target star, and
preliminarily crop the image around the star as the center to a
size of 64× 64. This greatly reduces the presence of irrelevant
information and ensures that the target star part of the image is
not cropped, preventing information loss. The photometric
images include five bands: g, r, i, u, z. To maximize the
utilization of each band’s imagery, we repetitively use the r-band
images to divide the five bands into two groups, gri and urz (Shi
et al. 2023). Following the method described by Lupton et al.
(2004), the cropped images from the gri and urz bands are
converted into RGB images, as shown in Figure A1. They are
subsequently referred to as gri and urz images respectively.

To reduce irrelevant information in the images, we need to
perform more refined cropping on the gri and urz images. The
algorithm starts expanding the ROI from the center of the
image to check if it contains all information of the star. It
calculates the position and size of each star in the r-band
photometric image and then crops the gri and urz images
accordingly. To complete this algorithm, first define the
detection area side length l, pixel intensity threshold α, and
the invalid pixel ratio threshold β. When the pixel intensity of a
point in the image is less than or equal to α, we call this pixel
“invalid;” otherwise, it is “valid.” For each 64× 64 size r-band
image, we initially set a detection ROI of size l× l at the center

of the image, as shown in the left of Figure A2, and calculated
the ratio of invalid pixels to total pixels within this area. If this
ratio is higher than β, we expand the side length and continue
detecting. Otherwise, the current ROI area is the target area, as
shown on the right of Figure A2. Based on the results of
multiple experiments, we set the initial ROI side length l= 6,
pixel intensity threshold α= 0.05, and invalid pixel ratio
threshold β= 0.2. To improve the efficiency of image
preprocessing, the algorithm only needs to calculate the newly
added annular detection area in each iteration. After refined
cropping, most image pixels fall within the 10–20 pixel range.
To standardize the image size for neural network learning, we
resize the cropped images to 64× 64 pixels using bilinear
interpolation. We also recognize that scaling from such a small
size to 64× 64 may introduce some degree of detail loss and
artifacts. This issue will be further discussed in Section 4.3.2.

3. Method

A neural network is a hierarchical computational model
consisting of a series of computing units. This computing unit
is referred to as a neural cell and the characteristic of a neural
network is the ability of automatic feature learning (Ma et al.
2022; Kang et al. 2023). This work developed a model, Multi-
Modal SCNet (MMSCNet), and its ensemble model Multi-
modal Ensemble for Stellar Classification and Regression
(MESCR) to improve the accuracy of stellar classification and
radius prediction by fusing multimodal data.
The core of this scheme is to improve overall performance

by integrating the outputs of multiple sub-models as the final
result through weighted sampling and ensemble learning. The
following sections will detail the network architecture of
MMSCNet, the design motivation and principles of the
MESCR, and how to use the MESCR to achieve the final
prediction objectives.

3.1. MMSCNet

The structure of MMSCNet is shown in Figure 2. The
MMSCNet is composed of three main parts: image feature

Figure 1. The distributions of the used samples in (a) the parallax space, (b) the pm space, (c) the radius_flame space, and (d) the color–magnitude diagram (CMD).
The CMD indicates that the data primarily consists of main sequence stars. In (d), Gaia stars are used as a background, with the size of the points in the diagram
representing the signal-to-noise ratio, and larger points indicating a higher signal-to-noise ratio.
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extraction module, numerical feature extraction module, and
multimodal feature fusion module. Each of these modules will
be introduced in turn.

In the image feature extraction module, we selected SCNet
(Shi et al. 2023) as the backbone network due to its superior
performance in stellar classification. SCNet integrates the
CBAM attention mechanism (Woo et al. 2018) and is divided
into two feature extraction stages. The first stage simulta-
neously accepts images from the gri and urz bands as inputs,
while the second stage stacks the feature maps from both
branches for further feature extraction. The numerical data
inputs consist only of parallax and proper motion. To avoid
overfitting while extracting features from this data, we used two
dense layers for the numerical data feature extraction module.
In the multimodal feature fusion module, the model con-
catenates the processed image feature vectors with the
numerical feature vectors, forming a cross-modal feature
vector. After the concatenation, dense layers with softplus
and linear outputs provide the scores for each class, stellar
radius, and the corresponding uncertainty.

3.2. Multimodal Ensemble for Stellar Classification and
Regression

As previously mentioned, this study considers a compre-
hensive task involving both classification and regression. In the
regression tasks, to derive the uncertainty of predictions and
accurately estimate the probability density functions of physical
parameters, deep ensemble methods are often required (Xiong
et al. 2022; Li et al. 2023). In the classification tasks of this
study, there exists an imbalance in the data set. The number of
K and F-type stars significantly exceeds that of G, A and
M-type stars, presenting a challenging task in machine learning
(YANG & WU 2006). Numerous studies have been proposed
to address such imbalanced classification tasks, including
adjusting algorithm mechanisms (e.g., Li et al. 2018),
resampling techniques, cost-sensitive methods (Wan &
Yang 2020), and ensemble methods.

Resampling techniques are widely used due to their
universality and effectiveness. Ensemble methods not only
have significant effects in solving data imbalance problems
(e.g., Krawczyk et al. 2016; Li et al. 2022) but also match the
requirements of the regression tasks in this study. Therefore,
we use methods based on the resampling techniques and
ensemble methods as the basis for the MESCR. Specifically,
we first perform repeatable weighted sampling on the
imbalanced data set to construct multiple sub-data sets, then
adopt an ensemble learning method similar to bagging
(Breiman 1996). In the following two subsections, we will
introduce the process of constructing the data set and the
overall idea of MESCR, respectively.

3.2.1. Weighed Sampling and Data Augmentation

Weighted sampling is a probability sampling technique in
which each sample is assigned a weight that reflects its
probability of being selected. Typically, the inverse of the
sample frequency is used as the weight, meaning that minority
class samples will receive more attention. We first replicate the
data set six times, corresponding to the data sets of five
different classes of stars Da, Df,..,Dm, and one data set that does
not favor any class Dbase. The initial weight of a sample is set as
the inverse of its class frequency. The weights in the Dbase data
set remain unchanged, while for the data set Di, which targets a
specific class, the weight of samples within that class is squared
to further emphasize: w f1i i

2¢ = .
Subsequently, the weights of all samples are normalized to

form the final sampling probability distribution: ( )P xi =
w wi j

n
j1¢ å ¢= . wi ¢ is the adjusted weight of the sample, and

the denominator is the sum of all adjusted sample weights. This
method gives additional attention to rare classes in an
imbalanced data set, increasing the probability of these class
samples being selected. During sampling, the weight of
minority classes is further increased due to the squaring effect,
while the weight of majority classes, which are already small,

Figure 2. MMSCNet Structure Diagram. This network is used for stellar classification, star radius prediction, and outputting the uncertainty associated with the star
radius. It has three input branches: one for receiving numerical data such as parallax and pm, and two for receiving RGB images synthesized from the gri and urz
bands, respectively. Different background colors represent three distinct modules: image feature extraction module, numerical feature extraction module, and
multimodal fusion module.
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does not lead to more severe data imbalance after being
squared.

Ultimately, we obtain five data sets biased toward their
respective classes Da, Df,..,Dm and one relatively balanced data
set Dbase. However, this repeatable sampling operation will
produce duplicate samples in our data set, potentially leading to
issues such as overfitting. Therefore, we perform five types of
data augmentation on randomly selected data, including
rotation, flipping, adding Gaussian noise, cutout, and erase,
with actual effects as shown in Figure A3. During training, data
that has been sampled repeatedly will undergo data augmenta-
tion at least once, while other data will be randomly augmented
with a certain probability. This method can increase the
diversity of the data.

To validate the model’s performance under real-world
imbalanced data distribution, we performed repeatable
weighted sampling only on the training and validation sets,
without any processing on the test set. We first divided the
original data set into a training set and a test set in an 8:2 ratio,
resulting in a training set with 7344 samples and a test set with
1836 samples. Subsequently, we replicated the training set six
times. For each copy, we applied the aforementioned weighted
sampling and at least one data augmentation method for each
image. This increased the number of samples in each training
set to 9000. Finally, we divided this enhanced training set again
in an 8:2 ratio to obtain a training set with 7200 samples and a
validation set with 1800 samples, which were used for
subsequent model training. The distribution of stellar spectral
types in the resulting training, validation, and test sets is shown
in Figure A4, while the distribution of pm, parallax, and
radius_flame is shown in Figure A5.

3.2.2. MESCR Overall Framework and Training

The proposed MESCR scheme is an ensemble learning
strategy akin to bagging, consisting of six identical sub-models.
These models use different weights in the sampling methods to
construct the data sets. During training, we apply the five data
augmentation methods mentioned in Section 3.2.1 to the training
samples. The final output is divided into two parts: classification
results and regression results. The classification results are
obtained by averaging the outputs of the six models, with weights
determined by the models’ performance on the validation set.
Through experimentation, we set the weights as follows: {Model
Base:0.1, Model A:0.2, Model F:0.1, Model G:0.2, Model
K:0.15, Model M:0.25}. The ensemble stellar radius is
determined by the average prediction of the six models, and
the ensemble uncertainty ˆ ( )x2s is calculated using the formula:

ˆ ( ) ( ( ) ( )) ˆ ( ) ( )x x x x
1

6
, 1

i
a i a i

2

1

6

,
2

,
2 2ås s m m= + -

=

where ( )xa i,
2m and ( )xa i,

2s represent the predicted stellar radius
and its corresponding uncertainty for the ith MMSCNet,

respectively, and ˆ ( )x2m is the mean of the stellar radii obtained
by the six sub-models.
For the training of each sub-model, we adopted the same

strategy. We initialized each model with random weights to
increase diversity among the models. We use two different loss
functions for stellar classification and radius estimation,
respectively. For stellar classification, we use the cross-entropy
loss function. For stellar radius, to enable the model to predict
the probability density distribution, we use the negative log-
likelihood of the normal distribution (Bialek et al. 2020), as the
model’s loss function:

( ∣ ) ( ) ( ( ))
( )

( )x
x y x

x
Loss

log

2 2
, 2

2 2

2
q

s m
s

= +
-q q

q

where x and y represent the input data and the corresponding
reference labels, respectively. μθ(x) and ( )x2sq represent the
mean and variance of the Gaussian distribution predicted by the
model, θ are the parameters of the MMSCNet model to be
optimized.
Then, we adopted the following hyperparameters: batch size

set to 256; total training epochs set to 200; baseline learning
rate set at 0.001, with learning rate updated using the cosine
annealing algorithm, and performing a warm-up for the first
three epochs, with the final learning rate set to 1e-5; using the
SGD optimizer to optimize model parameters. The deep
learning framework used was PYTORCH, with an RTX
4060ti GPU. Training each sub-model took approximately
1 hr, while training the entire MESCR took about 6 hr in total.
Figure A6 shows the changes in loss values for each model of
MESCR during the training process. As can be seen from the
figure, the loss values for each model on both the training and
validation sets gradually decrease with the increase in
iterations. This indicates that the models’ fitting and general-
ization capabilities improve progressively as the training
progresses.

4. Results and Discussions

This section is to evaluate the performance of the proposed
model (Section 4.1), and investigates the stellar radius
estimation uncertainty (Section 4.2). Furthermore, we also
studied the impact of image band combinations and resolutions
(Section 4.3), and assessed the improvements by incorporating
parallax and pm (Section 4.4).

4.1. Model Evaluation

After selecting the optimal hyperparameters for the model
and completing the training, this section uses the test set to
comprehensively evaluate the predictive performance of
MESCR. To explore the model’s classification and regression
performance separately, we will use different evaluation
metrics to assess the model.
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4.1.1. Classification Result Evaluation

In this section, we evaluate the overall performance of the
model using accuracy and measure the model’s ability to
predict different categories using recall, precision, and F1
scores. Detailed definitions can be found in Zeng et al. (2020).

MESCR achieved an overall accuracy of 96.1% on the test
set. Table 1 (left) shows the F1 scores, recall, precision and
corresponding counts for MESCR’s predictions on the test set.
Figure 3(a) shows the confusion matrix of the MESCR’s
predictions on the test set. The numbers on the main diagonal
represent correct predictions by the model, while other non-
zero positions indicate incorrect predictions. From Figure 3(a),
it can be seen that most predictions on the main diagonal,
indicating the model’s good classification ability. As for the
misclassified samples, they are mainly distributed in adjacent
classes. For example, in the samples where F and G-type stars
were misclassified, all of them were classified into adjacent
categories. We used the samples from SDSS described in
Section 2.1 for a homologous match with LAMOST DR9,
obtaining a test set containing 768 stars. We found that this
phenomenon also occurs between SDSS and LAMOST, where
an A-type star in SDSS may be classified into an adjacent
category (B or F) in LAMOST. We compared the MESCR
prediction results with the LAMOST spectral classification

results, and the accuracy was 89.7%. The corresponding
confusion matrix is shown in Figure 3(b), and the F1-score,
recall, and precision are presented in Table 1 (right). Although
our training samples are from SDSS, the accuracy of each
metric remains within an acceptable range when using
LAMOST spectral classification results as the reference.
Additionally, as shown in Figure 3(b), most of the misclassified
results are categorized into adjacent classes, indicating that it is
normal for models to classify into adjacent classes.

4.1.2. Regression Result Evaluation

In this section, we use the standard deviation (σ) between
MESCR predictions and reference values and the Mean of
Absolute Error (MAE) as the main evaluation metrics. Detailed
definitions can be found in Zhong et al. (2024).
The resulting MAE is 0.084 dex, σ is 0.149 Re, and the

mean predicted 1σ uncertainty is 0.016 Re. The lower subplot
in Figure 4(a) shows a 1:1 scatter plot of the distribution of
predicted and reference values, while the upper subplot shows a
histogram of the distribution of differences between predicted
and reference values. From the upper subplot, it is evident that
most of the differences are distributed in the range of [−0.5,
0.5], indicating that the deviations between the model’s
predictions and the actual values are small. In the scatter plot

Table 1
MESCR Classification Performance Evaluation by Calculating the Consistency of its Predictions with SDSS DR17 and LAMOST DR9

SDSS DR17 Results LAMOST DR9 Results

A F G K M A F G K M

F1-score 87.1% 94.5% 95.1% 99.6% 99.6% 81.7% 89.0% 79.8% 96.7% 93.9%
Recall 80.7% 97.0% 95.6% 99.6% 99.2% 77.0% 91.3% 74.7% 99.6% 88.6%
Precision 94.7% 92.1% 94.8% 99.7% 99.2% 87.0% 87.0% 85.5% 93.9% 99.8%
Count 202 568 248 692 126 113 263 95 262 35

Figure 3. The confusion matrix obtained from MESCR predictions. Each cell displays the number of predictions made by the model, where rows correspond to true
labels and columns correspond to predicted labels.
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below, the red dashed line represents the ideal prediction result,
where the predicted values are exactly equal to the true values.
From the plot, it can be seen that most of the data points are
concentrated in the lower left corner and close to the main
diagonal, indicating that the model performs well in most cases.
Overall, the model’s predictions closely match the reference
values, and the high accuracy in reconstructing star properties
indicates our model performs well.

4.2. Uncertainty Analysis of Stellar Radius

This study employs a deep integration approach for
predicting stellar radii and is capable of providing corresp-
onding predictive uncertainties σpred. Moreover, the MESCR
consists of six sub-models, each trained with a different
training set and random initial weights, ultimately yielding six
distinct prediction results {y1, y2,...,y8}. We calculate the
standard deviation among these six prediction results as the
model’s uncertainty, σnet.

Figure 4(b) shows the variation in uncertainty within different
r-band SNR intervals. The dots in the graph represent the
average uncertainty provided by MESCR for each SNR interval,
serving as the predictive uncertainty σpred. The line segments
centered on the circles denote the average standard deviation
among the results of the six sub-models within each SNR
interval, serving as the model’s uncertainty σnet. Overall, the
uncertainty of MESCR is generally at a low level. As the S/N
increases, both σnet and σpred decrease. When S/N> 30, σpred

stabilizes around 0.015 Re. This indicates that the model
performs better with higher S/N data, and its predictive ability is
more stable for data with medium to high S/N.

4.3. The Impact of Image Bands and Resolution on Model
Performance

In this section, we tested the model’s performance using
different image resolutions and various band combinations
separately. In this section’s experiments, we tested each band
combination and resolution using a single MMSCNet, retrain-
ing with the Dbase data set from Section 3.2.1.

4.3.1. The Influence of Image Bands on Model Performance

In this work, we employ the r-band image reuse strategy,
inputting gri and urz bands into the model. However, we aim to
explore if there are more optimal combination schemes to
assess the performance of various band combinations for
specific tasks. Therefore, we have selected the following band
combinations for detailed analysis: [gri + ruz, gri + iuz, gri +
guz, gru + giz, gru + riz, gru + iuz, giu + grz, giu + riz, giu +
ruz, giz + riu, giz + ruz, guz + riu, guz + riz, riu + grz, iuz +
grz]. These combinations all involve reusing one of the bands
to form a new combination. In previous work, Wu & Boada
(2019) created three-channel images by averaging two channels
(for example, for gr-bands, the blue and red channels
correspond to g and r-bands, respectively, while the green
channel is the average of the two). Hence, we also adopted a

Figure 4. MESCR performance evaluation. (a) The dashed line represents the theoretical consistency between predictions and references, the color indicates the
density of samples; The subplot above presents a histogram of the differences between predictions and references. (b) The dots in the graph represent the mean value
of 1σ uncertainty (predictive uncertainty σpred) provided by MESCR for each signal-to-noise (S/N) ratio interval; The lines indicate the mean value of the standard
deviation of the prediction results of the eight sub-models within each signal-to-noise ratio range, and is referred to as model’s uncertainty σnet; The S/N represents the
r-band signal-to-noise ratio.
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similar approach to test the following band combinations: [gri
+ uz, gru + iz, grz + iu, giu + rz, giz + ru, guz + ri, riu + gz,
riz + gu, ruz + gi, iuz + gr].

The experimental result in Table A1 clearly shows the significant
impact of different band combinations on model performance. In
terms of stellar classification, the accuracy fluctuated from a low of
92.7% (with the giz + ru combination) to a high of 95.7% (with
the gru + iuz combination), indicating a potential performance
improvement of up to 2.4%. Similarly, the MAE in regression tasks
also showed significant variability, from the best 0.077 (with the
guz + ri combination) to the worst 0.087 (with the guz + riu
combination), a difference of nearly 11.5%. These results confirm
the decisive role of band selection for model efficacy.

4.3.2. The Influence of Image Resolution on Model
Performance

Next, we fixed the band combination to gri + urz to explore
the impact of image resolution on model performance. The
experiment investigated various resolution settings ranging from
8× 8 pixels to 224× 224 pixels. We used bilinear interpolation
to enlarge images and area interpolation to reduce the size of
images, and retrained the model at different resolutions.

Figure 5 shows the impact of different resolutions as inputs
on regression and classification results. From the figures, it can
be seen that within the 8–128 range, as the resolution increases,
the model’s accuracy improves to some extent. This suggests
that within a certain range higher resolution images can provide
more detailed information, ultimately aiding the model in better

learning and recognizing different features. However, when the
image resolution is scaled up to 224× 224 pixels, the accuracy
of both classification and regression decreases. This may be
due to the bilinear interpolation method introducing excessive
blur or artifacts while enlarging the image, leading to a
reduction in accuracy. In summary, to balance accuracy and
computational efficiency, a resolution of 64× 64 pixels is
considered the best choice for this study.

4.4. The Impact of Excluding Parallax and Proper
Motion Data

In this section, we keep the photometric images as fixed
input and compare the impact of using different inputs on the
model’s performance. For different inputs, we retrained using
MESCR, and the results are shown in Table 2.
For the classification results, photometric images provide

unique color and brightness characteristics of different stars.
Therefore, the model can achieve good classification results
even when using only photometric images as input. After
introducing parallax, the F1 scores for A, F, and G-type stars
have all improved. This is because parallax indirectly infers the
absolute brightness of stars and determines their actual
distances, thereby improving the model’s classification accur-
acy. As for proper motion, although it introduces dynamic
information about the star’s movement, the improvement in
accuracy is smaller compared to the addition of parallax. When
photometric images, parallax, and proper motion are used
together as input, the model shows optimal performance in

Figure 5. Impact of different image resolutions as input on the classification and regression performance of the model. Classification results are evaluated using
accuracy and F1-score, while regression results are assessed using MAE and σ.

Table 2
When Using Data from Different Modalities as Input, the F1 Scores for Each Star Type, as well as the Overall Classification Accuracy, MAE, and σ, with the Best

Values Highlighted in Bold

Input A F G K M Accuracy MAE σ

Photometric image 83.6% 91.9% 93.2% 99.6% 99.6% 94.5% 0.090 0.159
Photometric image + parallax 84.1% 93.7% 94.8% 99.7% 99.6% 95.6% 0.085 0.156
Photometric image + pm 83.7% 93.6% 94.0% 99.5% 99.6% 95.2% 0.088 0.152
Photometric image + parallax + pm 87.1% 94.5% 95.1% 99.6% 99.6% 96.1% 0.084 0.149

8

Research in Astronomy and Astrophysics, 24:115019 (14pp), 2024 November Deng et al.



overall classification accuracy. This indicates that integrating
data from multiple modalities can significantly enhance the
predictive accuracy of the model.

For radius estimation, our experimental results show that
different inputs have a slight impact on MAE and σ. This may
be due to the limited information provided by the additional
parallax and proper motion for predicting stellar radii, and the
model has a certain stability in predicting stellar radii.
Considering that the stellar radius can be derived from
temperature using the Stefan–Boltzmann law, we used the Teff
_gspphot provided by Gaia DR3 as an input to the model to
check whether temperature can constrain the radius. However,
the results showed that the accuracy of the radius estimation did
not improve significantly after including temperature. In future
work, we will continue to explore other factors that may affect
the accuracy of radius estimation and further optimize the
model to improve the accuracy of radius estimation.

5. Application To Spectral-Free Data

In previous work, Clarke et al. (2020) used a random forest
machine learning model to classify target sources into three
categories: stars, galaxies, and quasars, ultimately creating a
catalog containing a total of 111,395,468 objects (hereinafter
referred to as the Clarke Catalog). Of these, 58,840,082 are
stars, and none of these targets had corresponding spectra in
SDSS. Shi et al. (2023) further cross-matched the Clarke
Catalog with LAMOST, using LAMOSTʼs classification
results as reference values. They found that when the
class_prob_star (the probability of being predicted as a star)
was greater than 0.8, the accuracy was 0.99. To ensure data
reliability, we further filtered the Clarke Catalog to include only
stellar samples with class_prob_star greater than 0.8. We then
cross-matched these with Gaia DR3 using TOPCAT (Tay-
lor 2017) by R.A. and decl. within a radius of three arcseconds
to obtain corresponding parallax and proper motion. The
resulting catalog contains 50,871,534 stars without spectra but
with associated parallax and proper motion. We applied
MESCR to this catalog, resulting in a new catalog, the
columns of which are shown in Table A2. It is important to
note that none of the stars processed by MESCR exceed the
limiting magnitude. The entire catalog is available online via
the China-VO PaperData repository.

6. Conclusions

In this paper, we introduce an ensemble learning scheme
named MESCR based on the MMSCNet. MESCR integrates
multimodal data to simultaneously perform star classification
and radius estimation. To obtain the final training samples, we

first perform cross-matching to acquire the necessary data, then
crop the original images to reduce irrelevant information.
Subsequently, we weighted sampled the data set to obtain 6
different data sets and trained 6 sub-models separately, finally
integrating the predictions of all sub-models to produce the
final output. Our model achieved a classification accuracy of
96.1% on the test set, with the MAE for stellar radius at
0.084 dex, and σ at 0.149 Re. Through uncertainty analysis, it
further proves that our MESCR solution has good accuracy and
robustness.
Next, we tested the impact of different band combinations

and resolutions on model performance. We found that specific
band combinations and appropriate image resolutions can
significantly optimize model performance. Additionally, to
quantitatively assess the impact of using data from different
modalities as inputs on model accuracy, further testing was
conducted. The results indicate that integrating various
modalities of data can enhance the model’s ability to
distinguish between different types of stars. Ultimately, we
applied MESCR to 50,871,534 stars without spectra and
released a new catalog.
In our future work, we will further improve the precision of

the model and explore more survey data, while also enhancing
the accuracy of our catalog, thereby providing more reference
value for astronomers and data analysis researchers.
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Appendix
Supplementary Figures and Tables

This appendix contains supplementary images and tables that
are discussed and analyzed in the article. These materials are
intended to provide more detailed visual evidence and data
support to enhance the reader’s understanding.
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Figure A1. An example of synthesizing photometric images. The first row represents the RGB images synthesized from the gri bands, while the second row represents
the RGB images synthesized from the urz bands. The urz band images exhibit more noise compared to the gri band images.

Figure A3. Randomly selected M-type star showing the effect of data augmentation. Titles display the corresponding data augmentation methods. In this study, both
gri images and urz images undergo the same data augmentation methods. The first row shows the effects of data augmentation on gri images, while the second row
displays the effects on urz images.

Figure A2. Image cropping schematic, the size of the image before cropping is 64 × 64. The left image shows the initial Region of Interest (ROI), with a size of 6 × 6.
The right image shows the final cropped target ROI, with most ROIs sized between 10 × 10 and 20 × 20.
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Figure A4. The six subfigures represent the distribution of stellar spectral classes for six data sets after weighted sampling and division into training and
validation sets.
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Figure A5. After weighted sampling and splitting into training, validation, and test sets for six data sets, the corresponding distribution of parallax, pm, and
radius_flame. It is important to note that the six data sets use the same test set. Therefore, the distribution of the test set remains consistent.
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Table A2
Description of Our Catalog Column

Column Name Description

objid Unique SDSS object identifier
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decl. J2000 decl. (r-band)
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prob_O(B, A, F, G, K, M) Probability of prediction as an O(B, A, F, G, K,

M)-type star
radius Radius of model predictions
radius_err The uncertainty provided by the model when

predicting the radius
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