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Abstract

High-precision ephemerides not only support space missions, but can also be used to study the origin and future of
celestial bodies. In this paper, a coupled orbit-rotation dynamics model that fully takes into account the rotation of
the Martian moons is developed. Phobos and Deimos’ rotations are first described by Eulerian rotational equations,
and integrated simultaneously with the orbital motion equations. Orbital and orientational parameters of Mars
satellites were simultaneously obtained by numerical integration for the first time. In order to compare the
differences between our newly developed model and the one now used in the ephemerides, we first reproduced and
simulated the current model using our own parameters, and then fit it to the Institut de Mécanique Céleste et de
Calcul des Éphémérides ephemerides using least-square procedures. The adjustment test simulations show Phobos
and Deimos’ orbital differences between the refined model and the current model are no more than 300 m and
125 m, respectively. The orientation parameters are confirmed and the results are in good agreement with the
International Astronomical Union results. Moreover, we simulated two perturbations (main asteroids and mutual
torques) which were not included in our refined model, and find that their effects on the orbits are completely
negligible. As for the effect on rotation, we propose to take care of the role of mutual attraction in future models.

Key words: planets and satellites: dynamical evolution and stability – methods: numerical – celestial mechanics –
astrometry

1. Introduction

Mars is most similar to the Earth in the solar system and is
the only terrestrial planet other than Earth to have natural
satellites. Phobos and Deimos are the two moons of Mars.
Since their discovery in 1877, the orbital motion of the Martian
moons has been studied extensively. In order to fit the
observation data to the study of the dynamical properties of
the Martian moons: first Earth-based observations and then to
spacecraft observations, a variety of dynamical models have
been developed. During the Mariner and Viking era, Sinclair
(1971, 1978) and Shor (1975) employed analytical expressions
to fit various sets of Earth-based observations to generate the
ephemerides and confirmed the secular tidal acceleration which
was first studied by Sharpless (1945). Jacobson et al. (1989)
and Sinclair (1989) used all available positional observations of
satellites of Mars, including Earth-based and from the Mariner
9 and Viking spacecraft, to re-determine the orbits of the
Martian moons, and these ephemerides are available in the
SPICE (Arora & Russell 2010) library until now.

The first completely numerical dynamical model of Martian
moons was studied by Lainey et al. (2007) during the Mars
Express (MEX) mission; the model presented in this work
used: (1) the aspherical Martian gravity field, (2) the

perturbations of the Sun, Jupiter, Saturn, the Earth, and the
Moon using planetary ephemerides, (3) the IAU2000 Martian
precession/rotation, (4) the mass of each Martian moon, and
the tidal effect was modeled by the tidal bulge raised by each
moon on Mars using physical formulation instead of fitting
secular accelerations in the satellite longitudes. After fitting to
the MEX, Mars Global Surveyor (MGS), Phobos 2, Viking
1–2, Mariner 9, and ground based observations, new
ephemerides of the Martian moons have been developed on
the basis of the first numerical dynamical model. It is worth
mentioning that, although the authors realize that the perturba-
tions due to the librations of the Martian moons have a
significant influence that cannot be ignored, this effect was not
modeled due to the lack of an accurate C20 and estimated
libration angles (Lainey et al. 2007).
Jacobson (2010) upgraded the dynamical model of the

Martian satellites, introducing the effect of Phobos’ libration in
the form of an analytical formula for the first time. Assuming
Phobos is rotating synchronously, its pole is perpendicular to
the orbital plane, and its axis of minimum principal moment of
inertia points toward Mars. The angle between Phobos’ axis of
minimum principal moment of inertia and the direction from
Phobos to Mars, also called libration angle, is small and can be
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described by

( ) ( )e M2 sin , 1q = + 

where  is the libration amplitude and can be calculated from
the moment of inertia (Chao & Rubincam 1989), and e and M
are Phobos’ orbital eccentricity and mean anomaly in its orbit,
respectively. The revised orbits of Martian moons were
obtained by fitting the numerical dynamical model to all
available Earth-based observations, imaging observations and
radio tracking data from spacecraft.

The above dynamical model has been used until now, and
although observational data have been accumulating over time,
the dynamical model has introduced only minor additions.
Examples include (1) mutual attraction between satellites, (2)
general relativity, and (3) the second gravitational field of
satellites (Jacobson & Lainey 2014; Lainey et al. 2020). This is
mainly due to the difficulty of determining the gravitational
coefficients of Phobos and Deimos with current observations.

The Martian Moons eXploration (MMX) mission is under
development by the Japan Aerospace Exploration Agency
(JAXA), and is scheduled to be launched in 2026. This mission
is dedicated to survey the two Martian moons and return
samples from Phobos (Kawakatsu et al. 2023). In order to
achieve the objective of collecting samples from Phobos, a
probe will land on the surface of Phobos. At that time, there
will be tracking data between the lander and the Earth, and
these new data will offer new opportunities to study the orbital
and rotational motions of the Martian moons.

Inspired by the MMX mission, this paper presents a refined
numerical dynamical model for libration of the Martian moons.
The libration is described using the Euler-Liouville equations,
i.e., with a state of complete free rotation that does not take into
account any assumptions. This dynamical model will allow us
to study the motions of the Martian moons in the future with
more realistic scenarios based on new observational data, such
as the ones from MMX. In Section 2 we briefly introduce the
dynamical model now in use. In Section 3 we detail our
optimized libration model of the Martian moons. Section 4
provides a detailed comparison of these two models, followed
by Section 5 where we summarize and conclude the paper.

2. Review of Numerical Dynamical Model

In this work, we will apply the numerical model now in use
as a reference to study its differences with our revised model.
Hence, we first introduce the modeling process of an ephemeris
model.

The equations of translational motion are described in a
planetocentric (Mars) reference system with fixed axes that
align with the International Celestial Reference System (ICRS).
The position vectors of the eight planets and the Sun relative to
Mars in this reference system can be easily retrieved from the
numerical ephemerides. Here we use the latest version of the

planetary ephemeris INPOP21a provided by Institut de
Mécanique Céleste et de Calcul des Éphémérides (IMCCE)
to obtain the position and velocity vectors of the Sun and
planets relative to Mars in the Barycentric Celestial Reference
System (BCRS; Fienga et al. 2021). This ephemeris updates the
Mars orbit relative to INPOP19a (Fienga et al. 2020), adding an
additional 2 yr of data from MEX.
The orbital motion of the satellites around Mars can be

described in terms of position r≡ (rx, ry, rz) and velocity
v≡ (vx, vy, vz) in rectangular coordinates. The classical
differential equations of relative motion in the planetocentric
system can be read as,

( )r F Fd

dt m m
, 2s

s

2

2
0

0
= -

where Fs and F0 indicate all the external forces exerted on the
satellites and Mars, ms is the mass of the satellite, m0 is the
mass of Mars, and t is the time expressed in the Barycentric
Dynamical Time (TDB) timescale.
The forces that induce the relative motion can be split up into

a two-body part, a part for third-body perturbation, a part for
mutual attraction, a part for tidal perturbation, a part for
relativistic perturbation and a part for spin librations. Hence,

the rd

dt

2

2 can be rewritten as:

( )

r
a a

a a a a

d

dt
. 3

2

2 two body third body

mutual tide rel libr

= +

+ + + +

- -

Here the atwo−body, athird−body and arel have the usual form used
in numerical ephemerides (Folkner et al. 2014; Pitjeva &
Pavlov 2017; Viswanathan et al. 2017).
If we consider Deimos as a third body, we can calculate the

effect of Deimos on Phobos’ orbit. According to the third-body
perturbation equation, the acceleration of Phobos due to mutual
attraction can be described as

( )⎛

⎝
⎜

⎞

⎠
⎟a

r r r

r r
. 4

d p d
mutual,p d

pd
3

d
3

m=
-

-

Similarly, the acceleration of Deimos due to mutual attraction
is

( )⎛

⎝
⎜

⎞

⎠
⎟a

r r r

r r
. 5

p d p
mutual,d p

dp
3

p
3

m=
-

-

Here μd, μp, rd and rp are the product of the gravitational
constant and the masses of Deimos and Phobos, and the
position vectors of Deimos and Phobos relative to Mars in the
inertial system, respectively. rp denotes the norm of rp, rd
signifies the norm of rd, and rdp= rpd= |rp− rd|.
For tidal acceleration atide, Lainey et al. (2007) and Jacobson

(2010) employed a different but similar form of model in their
numerical integration. In this paper, we simulate the differences
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between our new model and the French Numerical Orbit and
Ephemerides (NOE), hence, here we refer to Lainey et al.
(2007) for a complete description of the tidal force FT acting on
the satellite of the form

( · ) ( )

( )

⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

F r
r r v

r v
k m a

r
t

3 2

r
,

6

T
s s m2

5

8 2

m
W= - + D + ´ +

where:

k

GM

m
t

a

the Love number of Mars
the Martian angular velocity vector

of Satellite

mass of Satellite
the time delay due to viscoelastic response of Mars
the equatorial radius of Mars.

s

m

2

s

m
W

=
=
=
=

D =
=

Finally, we present the satellites’ figure acceleration and
libration model used in the current ephemerides of Martian
moons. Under the assumption that the spin pole is normal to the
orbital plane, according to Equation (1), the quadrupole force
on Mars exerted by a satellite can be computed as

[( ) ˆ

ˆ] ( )

⎜ ⎟
⎛
⎝

⎞
⎠

F r

t

a

r
C C

C

3

2
6 cos 2

4 sin 2 , 7

m s
m

2

4 20 22

22

m q

q

= - +

+

where C20 and C22 are the second zonal and sectorial harmonic
of the satellite respectively, r̂ denotes the unit vector directed
from Mars toward the satellite and t̂ signifies the unit vector in
the satellite’s orbit plane normal to r̂ and in the direction of its
orbital motion. Therefore, the reaction force acting on the
satellite is

( )⎜ ⎟
⎛
⎝

⎞
⎠

F F , 8s
m

s
m

m
m

= -

with μm denoting the GM of Mars.
Utilizing Equations (4)–(8) to calculate amutual, atide, and alibr

in turn and summing them up together with atwo−body,
athird−body and arel, we then have the orbital equations of
motion in the planetocentric coordinates.

3. Rotation Model of the Martian Moons

In this paper, the Martian moons are modeled as rigid bodies
as in our previous study of Phobos’ libration (Yang et al.
2020). The orientations of Phobos and Deimos are integrated
from the differential equations for their angular velocities. The
angular momentum vector of a satellite is the product of
angular velocity and moment of inertia. The angular momen-
tum vector varies with time due to external torques.

The process of modeling rotation is presented here using
Phobos as an example. In order to describe the variations of
Phobos’ rotation in the inertial frame, for convenience, the

frame of Phobos was aligned with its principal axis (PA). Then
the orientation of Phobos’ frame with respect to (w.r.t.) the
inertial frame is determined by three Euler angles: f, θ, and ψ,
which vary with time t. The transformation from the inertial
system to the body-fixed system (PA) is given by the matrix

( ( )) ( ( )) ( ( )) ( )R R t R t R t , 9B C z x z2 f q y=

where the rotation matrices Rz and Rx are right-handed rotations
around the z-axis and x-axis, respectively. Hereafter, for
simplicity, the argument t will be omitted where appropriate.
In a rotating system, the rate of change of angular velocity ω

is related to the torque T and determined by Euler-Liouville’s
equations of rotation,

( ) ( )I I T
d

dt
, 10w w w+ ´ =

where I represents the moment of inertia tensor. This leads to
the equations for ω, consequently,

( )⎛
⎝

⎞
⎠

I T
I

I
d

dt

d

dt
. 111w w w w= - - ´-

The effect of elastic deformation is not considered in the
current modeling because its effect on the Phobos ephemeris is
less than 100 m even if Phobos k2 is as large as 1× 10−4 (Yang
et al. 2024), corresponding to an extremely porous Phobos (Le
Maistre et al. 2013), which we consider unlikely, since the
porosity of Phobos is limited by the density of the material that
makes the matrix of the bulk material. Hence, I is diagonal and
constant. Solving Equation (11) for d

dt

w we find that the resultant
angular acceleration takes a simple form

( ) ( )I T I
d

dt
. 121w w w= - ´-

The components of the angular velocity vector in the body-
fixed system are easily expressed in terms of reference Euler
angles (f, θ, ψ) (Goldstein et al. 2002):

( )

 
 

 

cos sin sin

sin cos sin

cos , 13

1

2

3

w q y f y q

w q y f y q

w f q y

= +

=- +

= +

where (f, θ, ψ) are the precession angle, nutation angle, and
rotation angle, respectively.
If we differentiate Equations (13) w.r.t. time t and rearrange

them, we get a linear system of equations containing f̈, ̈q and ÿ,

̈ ( )
̈
̈ ̈ ( )

     

   

  

csc sin cos cot

cos sin sin

cos sin . 14

1 2

1 2

3

f q w y w y qf yq q

q w y w y fy q
y w f q yq q

= + + -

= - -

= - +

The above equations model the Euler angle equations of
motion, and the key is to calculate the angular acceleration d

dt

w ,
which can be evaluated by Equations (10)–(12). Having

3

Research in Astronomy and Astrophysics, 24:115017 (11pp), 2024 November Yang et al.



established the mathematical equation for the Euler angle and
external torques through angular acceleration, we now derive
the calculation of external torques.

The calculation of the torque T applied to a satellite is
usually divided into two parts: a torque from point mass (body)
A to the satellite’s figure and a torque from the oblateness (J2)
of Mars to the satelliteʼs figure,

( )T T T . 15pm fig= +

A detailed description of T and I can be found in Williams
et al. (2001), Rambaux et al. (2012), Folkner et al. (2014),
Pavlov et al. (2016) and Yang et al. (2020).

The instantaneous state of rotation of a rigid body can be
defined completely by the six quantities, i.e., the above-defined
Euler angles and their rates of change. In this paper, we use the
above approach to model the libration of Phobos and Deimos,
unlike the models used in the present ephemerides (pole normal
to its orbit plane), the Martian moons are completely free to
rotate without any assumptions.

4. Comparison

The studies of the rotation and orbital motion of the Martian
moons described in the previous sections are motivated by the
high-precision observational data that may be available from
future missions, such as a probe’s orbital data and satellite
image data when the probe is at a very close distance. In
addition, in particular, lander tracking measurements were
carried out on Phobos (Kawakatsu et al. 2017; Usui et al.
2018). In this section, we simulate our new dynamical model
incorporating the free rotation of the Martian moons, and then
compare and analyze our model w.r.t. the current ephemeris
models.

4.1. Methodology

In our numerical model, there are a number of parameters
whose values affect the orbit significantly, such as the Martian
gravitational field, and the satellite’s initial position and
velocity. In order to clarify the differences between the fully
coupled approach and the simple libration model (i.e.,
Equations (7)–(8)) used so far, we borrowed from previous
approaches (Yang et al. 2024) and first simulated the current
simple model (Lainey et al. 2007, 2020; Jacobson 2010;
Jacobson & Lainey 2014), but with our own selected physical
parameters listed in Table 1. We then fitted the twelve initial
parameters (positions and velocities of Phobos and Deimos) as
our solve-for parameters to fit the current ephemeris. This fit
resolves the issue of differing parameters and provides the best
reference to investigate the differences between the new full
model and the ephemeris model used so far. To fit the
parameters of the model, we introduce this common relational
formula,

( )

⎜

⎟

⎜ ⎟
⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥







r F
r

r F
r

r

F F F

P

d

dt m P P
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1
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¶
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¶
¶F
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¶

+
¶
¶F

¶F
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¶
¶

where Φ and F are the Euler angles and their rates,
respectively. In particular, Φ and F are not modeled in the
ephemeris model and should be omitted. Pj denotes the
unspecified parameter of the model that shall be fit (such as
initial positions, velocities, Euler angles, etc.), then the
variational equations are integrated simultaneously with the
dynamical model.

Table 1
Parameters used in the Dynamical Model

Parameters Value Notes Reference

The Sun and planets L INPOP21a Fienga et al. (2021)
Gravity field of Mars L MRO120F, up to degree 12 Konopliv et al. (2020)
Martian precession/rotation L Quoted from MRO120F Konopliv et al. (2020)
k2,M 0.169 Martian Love number Konopliv et al. (2020)
QM 99.5 Martian dissipation factor Jacobson & Lainey (2014)
J̄ M3,d L Seasonal gravity change of Mars Konopliv et al. (2006, 2011, 2020)
Gravity field of Phobos L Forward model, up to degree 2 Yang et al. (2020)

P 10.993 Radius, km Willner et al. (2014)
GMP 0.7072 × 10−3 GM of Phobos Pätzold et al. (2014)
Moment of inertia of Phobos 0.35545, 0.41811, 0.49134 Normalized by MR2 Yang et al. (2020)
Gravity field of Deimos L Forward model, up to degree 2 Rubincam et al. (1995)

D 6.25 Radius, km Rubincam et al. (1995)
GMD 0.98 × 10−4 GM of Deimos Konopliv et al. (2006)
Moment of inertia of Deimos 0.338, 0.461, 0.508 Normalized by MR2 Rubincam et al. (1995)
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4.2. Fit to NOE Ephemerides

We chose the latest Martian ephemerides NOE-4-2020
(Lainey et al. 2020) as the “observational data” and fit our
simple model to them. The adjustment was performed by least-
squares in Cartesian planetocentric coordinates J2000, using a
sample set of 3650 points with a step size of one day (ten
years), with no weights assigned. We started with the initial
epoch at JD 2451545.0 (J2000.0, TDB timescale) and we
integrated the model over a decade. The residuals after fit are
shown in Figure 1. The resulting differences in the positions are
probably explained by the different physical parameters (such

as the physical libration, the C20 and C22 of the satellites, the
Martian dissipation factor Q, etc.) in these two models.

4.3. Fit to the Ephemeris Model

In order to explore the differences between our refined new
dynamical model and the previous ephemeris model (Jacob-
son 2010; Jacobson & Lainey 2014; Lainey et al. 2020), we
adjusted our new refined model to the simulated ephemeris
integrated in Section 4.2, with the parameters of these two
physical models being identical, so the differences are mainly
due to the fact that the details of the models are not identical.

Figure 1. Differences in position after fitting the numerical model to the NOE ephemerides for Phobos (upper panel) and Deimos (lower panel). The satellites’ initial
positions and velocities have been determined.

Figure 2. Difference in distances after 10 yr fitting between our refined model to the simulated simple model, Phobos (upper panel) and Deimos (lower panel). The
satellites’ initial positions, velocities, Euler angles and their rates have been determined here.

5
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We select the twenty-four initial conditions (each satellite’s
position, velocity, Euler angles and their rates) as our solve-for
parameters to fit the simulated result in the previous section.
The initial Euler angles and rates are referred from the
International Astronomical Union (IAU) rotational elements
(Archinal et al. 2018). Then the least-square procedures are
applied to the model. Figure 2 shows the differences in distance
after adjustment. The positional deviation may be due to the
newly introduced Phobos latitudinal libration and the different
longitudinal librations in the refined model.

One of the advantages of our refined model is that the Euler
angles of the Martian moons and their rates can be obtained by
numerical integration. Here the evolutions of the Euler angles
defined w.r.t. the inertial reference frame for 10 yr from 2000 to

2010 January 1 (TDB timescale) are plotted in Figures 3–6.
Phobos and Deimos’ precession angle f and nutation angle θ

are plotted along with IAU’s modeling results in Figures 3 and
5, respectively. The rotation angles ψ obtained by integration
and their difference from the IAU’s result are shown in
Figures 4 and 6, respectively. Although the reference frame
used by IAU is slightly different from the one we used
(Archinal et al. 2018), the results are still in pretty good
agreement. To characterize the high-frequency spectrum of the
difference between our numerical integration results and the
IAU polynomials, we decomposed the difference in frequency
domain by employing the method used in Yang et al.
(2017, 2019). The period and frequency of the largest
amplitude term is shown in Table 2. These high-frequency

Figure 3. Temporal evolution of Phobos’ precession angle f and nutation angle θ over ten years. Here the numerical integration results are shown in blue and the IAU
results are shown in red.

Figure 4. Temporal evolution of Phobos’ rotation angle ψ (upper panel) and its difference compared to IAU’s model (lower panel) over 10 yr.

6
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oscillations are due to the rotational motion of the satellites and
their orbital motion around Mars.

To demonstrate the difference between the libration of the
two models, Figure 7 presents the longitude of the direction
from Martian moons to Mars and the moons’ axis of minimum
principal moment of inertia w.r.t. the two models. By
comparison, we can see that the differences between the two
dynamical models are very small, indicating that the deviation
in the longitude direction can be described by the simple model
well (Equation (1)). The moons’ obliquities are shown in
Figure 8. Based on the assumption that the pole is normal to the
orbital plane, these parameters were not considered in the

Figure 5. Temporal evolution of Deimos’ precession angle f and nutation angle θ over ten years. The numerical integration results are shown in blue and the IAU
models are shown in red.

Figure 6. Temporal evolution of Deimos’ rotation angle ψ (upper panel) and its difference compared to IAU’s result (lower panel) over 10 yr.

Table 2
Frequency Analysis of the Difference Between Numerical Integration Results

and the IAU Polynomials

Satellite Arg Per Fre Amp
(days) (rad day−1) (rad)

Δf 0.2333 26.9325 0.0082
Phobos Δθ 0.2333 26.9325 0.0049

Δψ 0.3190 19.6944 0.0311

Δf 0.9596 6.5480 0.0061
Deimos Δθ 0.9596 6.5480 0.0040

Δψ 1.2625 4.9768 0.0281

7
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simple model, and these values are an order of magnitude
smaller than the longitudinal librations.

4.4. Consideration of Two Minor Perturbations

With the fitted initial conditions, we test here the two
perturbations that were not introduced in the newly established
dynamical model. An easy way to quantify them is to perform
the difference between a first simulation involving the
perturbation and a second simulation without them. The
differences between one simulation with and one simulation
without each perturbation tested are integrated over 10 yr and
presented in Figures 9–11. The first perturbation tested here is
the influence of the three largest asteroids, 1 Ceres, 2 Pallas,
and 4 Vesta. Their orbit informations are taken from the JPL

SPICE kernel files (https://naif.jpl.nasa.gov/pub/naif/). The
simulations indicate that this perturbation introduces only
several centimeters of influence on the satellites’ orbit, and the
effect on rotation is also very small, less than 0.2
milliarcsecond.
The second perturbation that has been tested is the presence

of the mutual mass torques between the two Martian moons.
For example, the point torque from Deimos to Phobos’ figure
can be calculated by

( ) ( )T f r r , 17p dfigP pmD figP pmD= ´ -- -

where ffigP−pmD is the force acting on Deimos as a point mass
in Phobos’ gravitational field, and in turn one can calculate
the torque of the point mass Phobos on Deimos. The main
related effect is that the torque on Deimos from Phobos’ point

Figure 7. Longitude of Mars in the Martian moons’ principal axis coordinate system, upper panel for Phobos, lower panel for Deimos.

Figure 8. Latitude of Mars in the Martian moons’ principal axis coordinate system, upper panel for Phobos, lower panel for Deimos.
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mass can lead to the difference in rotation angle reaching up
to 1″ over 10 yr. The results show that none of the two
perturbations considered in this section appear to have an
effect on the orbit at an observable level. For the rotation, the

effect of the point mass torque by Phobos on Deimos’
rotation can reach up to 1 arcsecond, so this factor is
recommended to be taken into account in the modeling
process.

Figure 9. Orbital differences with and without asteroid perturbations and mutual perturbations. The perturbations tested here are the three largest asteroids acting on
Phobos (upper left panel) and Deimos (lower left panel), and the mutual point mass torques on Phobos (upper right panel) and Deimos (lower right panel).

Figure 10. Euler angle differences between two cases involving asteroids’ perturbations or not, left panels are for Phobos and right ones are for Deimos.
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5. Conclusion

High-precision numerical ephemerides typically provide infor-
mation on the position, velocity and orientation parameters of
celestial bodies over time, in addition to allowing detailed studies
of the evolution and internal structure of those bodies. This work
developed a new numerical dynamical model of the motions of
the Martian satellites, taking full account of their rotation, and
constructed a dynamical model of the coupled orbits and rotations
using a method often applied in the study of the motion of the
Moon (Folkner et al. 2014; Pavlov et al. 2016). In order to study
the differences between the newly developed model and the
dynamical model now in use, we first reproduced the ephemerides
model, which was fitted to the ephemerides NOE-4-2020
published by Paris Observatory (Lainey et al. 2020) with the
least-squares method, and then used it as the reference for which
the newly developed model was fitted. The differences between
the post-fit orbits of Phobos and Deimos for the two models are
no more than 300m and 125m, respectively.

For the first time, we have computed simultaneously the Euler
angles and their rates for Phobos and Deimos by numerical
integration (Rambaux et al. 2012), and confirmed that the results
are in good agreement with IAU values. Moreover, we simulated
two possible perturbations which were not adopted in our refined
model, and find that their effects on the orbits are completely
negligible. As for the effect on rotation, we propose to consider
the role of mutual attraction on rotation.

This revised numerical model of the motion of the Martian
satellites provides potential opportunities for further study of

the Martian satellites using high-precision observations from
future missions such as MMX. In the future, not only the
positions but also orientation parameters of the satellites can be
derived from the refined dynamical model (Yang et al. 2024).
Finally, our improved model of the dynamics of the Martian
satellites employs a generalized approach that can be extended
to systems beyond the Martian system, such as Saturn and
Jupiter, by appropriately treating the rotational model.
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