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Abstract

Our Portable Adaptive Optics (PAO) system designed for high-contrast imaging of exoplanets with current 2–4 m
class telescopes achieves a correction speed of nearly 1000 Hz, utilizing a Shack–Hartmann Wave Front Sensor
(WFS) in a 9× 9 sub-aperture configuration. As we look towards adapting the PAO system for larger telescopes,
an increase in the number of sub-apertures in the WFS and enhanced precision in wave front detection are
imperative. Originally programmed in LabVIEW, our initial PAO software is based on a traditional centroid
calculation module for nighttime wave front sensing and lacks adaptive processing of background noise. To
address these limitations and to boost the PAO systemʼs performance and accuracy in wave front detection, we
propose a compressive neural network (Th-Net) combined with a specialized hybrid parallel programming
approach for wave front detection. Our experimental results indicate that this hybrid parallel technique and Th-Net
significantly enhance the PAO systemʼs operational speed and wave front detection precision under uneven
background noise. This work paves the way so that a duplicable and low-cost PAO system can be used for direct
imaging of exoplanets with large telescopes.
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processing

1. Introduction

Nighttime adaptive optics (AO) systems have significantly
advanced over the past few decades, primarily for correcting
wave front errors caused by atmospheric turbulence. Achieving
diffraction-limited imaging performance in such systems
necessitates rapid and accurate wave front error detection
(Currie et al. 2023). Our Portable Adaptive Optics (PAO)
system (Zhu et al. 2021), an evolution from the earlier 2–4 m
class telescopes we utilized, is poised to operate as a visitor
instrument on larger 8–10 m class telescopes (Marois et al.
2010). Consequently, the PAOʼs Shack–Hartmann Wave Front
Sensor (S-H WFS) requires an increased number of sub-
apertures, potentially expanding from an 11× 11 to a 29× 29
configuration. This upgrade demands enhanced operational
speed and more precise centroid calculation than the prototype.

AO systems commonly employ two types of hardware
platforms: dedicated and universal (Rimmele 2004). The
dedicated platform (Rao et al. 2010), used in systems like the
Very Large Telescope (Ramsay et al. 2020) and the European
Southern Observatory (ESO), relies on Field Programmable
Gate Arrays and Digital Signal Processors for fast, low-latency
digital image processing. While effective, they are costly and
offer limited flexibility for different telescopes, with software

programming intricately tied to the hardware. Conversely,
universal platforms, adopted by the Thirty Meter Telescope
(Kahanamoku et al. 2020) and the European Extremely Large
Telescope (Ramsay et al. 2020), utilize a commercial computer
equipped with a graphics processing unit (GPU), offering easier
access to software resources but presenting challenges in terms
of hardware cost and future development. However, the cost of
hardware and future development makes GPU a compelling
choice for our PAO. For our PAO, balancing cost-effectiveness
and performance suggests a preference for CPU-based systems
(Schmidt et al. 2019). In previous work, we evolved our
Portable Solar Adaptive Optics setup (Ren & Wang 2020) into
a nighttime PAO system by substituting the daytime cross-
correlation module with a centroid-calculation module. The
PAO, leveraging LabVIEW programming and a commercial
multi-core computer, comprises off-the-shelf optical and
electronic components. LabVIEW, introduced by National
Instruments, facilitates real-time control and programming of
electronic hardware devices. It supports various hardware used in
AO systems, like tip-tilt mirror (TTM), deformable mirror (DM),
and wave front sensor (WFS), offering an extensive library of
drivers and example codes. LabVIEWʼs compatibility with a
custom dynamic link library (DLL) enhances programming

Research in Astronomy and Astrophysics, 24:115015 (14pp), 2024 November https://doi.org/10.1088/1674-4527/ad8628
© 2024 National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. Printed in China.

1

mailto:648008507@qq.com
https://doi.org/10.1088/1674-4527/ad8628
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad8628&domain=pdf&date_stamp=2024-11-05
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad8628&domain=pdf&date_stamp=2024-11-05


productivity and reduces development time. Our PAO system
is compact, measuring 900mm× 780mm× 300mm, enabling
rapid, cost-effective AO system deployment for smaller
telescopes. Its efficacy was demonstrated in a stellar test
observation on the 1.6 m McMath-Pierce Solar Telescope (Keller
et al. 2003) at the National Solar Observatory, capturing clear
images of white dwarf Sirius B in a binary system (Ren et al.
2009). The systemʼs compactness and replicability also allowed
successful application as a visiting instrument at the ESO 3.58 m
New Technology Telescope (NTT).

In recent years, deep learning has been extensively applied in
AO systems, particularly for S-H WFSs. Swanson et al. (2018)
employed U-Net and long short-term memory networks to
reconstruct wave fronts from a series of slope measurements.
Jia et al. (2021) introduced a compressive S-H WFS utilizing
deep neural networks, where only spot images with high signal-
to-noise ratios (SNRs) were used for wave front reconstruction.
DuBose et al. (2020) trained a deep neural network capable of
mapping slope measurements and intensity measurements to
original wave front difference maps. Guo et al. (2022) proposed
an S-H Convolutional Neural Network (SH-CNN) to recon-
struct Zernike modal coefficients from images captured by the
WFS. These end-to-end algorithms, while powerful, are
extremely computationally intensive and challenging to deploy
on visiting instruments like our PAO. Even with high-
performance and costly graphics workstations, it is difficult
to achieve the necessary AO operation speeds required for real
scientific observations.

Our PAO, optimized for 2–4 m class telescopes for high-
contrast exoplanet imaging, employs a traditional centroid-

calculation module within its LabVIEW programming environ-
ment. However, this module is susceptible to various types of
noise. We propose a new compressive neural network, named
Th-Net, for wave front sensing in nighttime AO. Th-Net can
generate adaptive thresholds for each sub-aperture in the S-H
WFS across different SNR levels, effectively minimizing the
impact of background noise. Despite its advantages, the
processing requirements of Th-Net can slow down the overall
system performance. Additionally, the original LabVIEW
program used by the PAO lacks support for multi-core parallel
processing, which limits the correction speed when adapting to
larger telescopes.
To overcome these limitations, we have implemented a

hybrid parallel programming technique. This approach inte-
grates Th-Net with multi-processing parallel techniques (MPI/
OpenMP) in C++ and Python programming, improving the
accuracy and speed of centroid shift calculations in wave front
aberration measurement. This method can be integrated as a
sub-function of LabVIEW code, allowing the PAO system to
maintain LabVIEWʼs ease in AO hardware control and
software development while enhancing wave front sensing
performance.

2. Initial PAO System and Performance

The first PAO system, established in 2013, was designed for
high-contrast imaging of exoplanets using current middle-class
telescopes with apertures of 2–4 m. Figure 1 illustrates the PAO
system’s general principle. A single-mode fiber, positioned on
the telescope’s focal plane, aids in testing and calibrating the
system. The light emitted from this fiber, functioning as an

Figure 1. General principle of our PAO system.
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ideal point light source, is collimated by lens L1, then reflected
by a TTM and a DM. A beam splitter divides the light between
the WFS path and the science imaging path. The latter includes
lens L2 and Science Camera, while a combination of optical
components L3, L4, and a microlens array works alongside the
WFS camera for wave front sensing. Reflection Mirror (RM)1,
RM2 and RM3 are used to redirect the light path. As a visiting
system, the PAO is designed for minimal optical component
usage, with only lenses L1, L2, L3, and L4 requiring
replacement to adapt to different telescopes, ensuring its
replicability across current middle-class telescopes.

Our initial PAO system employed a commercial multi-core
computer for real-time control, managing tasks from receiving
wave front image frames to executing corrective actions via
electronic mechanisms like the TTM and DM. The system’s
software, written in LabVIEW, greatly simplifies programming
and hardware control. Additionally, the LabVIEW code is
flexibly programmed to accommodate different telescopes by
allowing various S-H WFS configurations, such as 8× 8 or
10× 10 sub-apertures. This adaptability makes our PAO
system suitable for integration with larger telescopes in the
future. As all optical components, including lenses and mirrors,
are off-the-shelf, we can rapidly duplicate an AO system for a
specific telescope at a low cost. However, the quality of these
commercial components, along with optical alignment errors
incurred during the short setup time for real observations, can
impact the system’s diffraction-limited performance. To ensure
quality imaging, a dedicated focal plane point-spread function
(PSF) copy approach (Ren et al. 2021) is employed to remove
these static aberrations. For easy integration with different
telescopes, the entire PAO system is built into a compact size,

as depicted in Figure 2. Excluding the computer, all components
are housed in a small enclosure measuring approximately
900mm× 780mm× 300mm. This compact design facilitates
the transportation of the PAO as a visiting instrument for scientific
observations.
In July 2014, the ESO allocated us six nights on the NTT for

engineering observations. However, due to strong winds at the
site, only three nights were usable. Despite challenging
conditions, our PAO, equipped with a 97-actuator DM from
Alpao and a 9× 9 sub-aperture S-HWFS, successfully locked
onto an 8th magnitude star for wave front sensing. Typically,
the PAO system achieves a correction speed of nearly 1000 Hz
with an i7 8-core CPU operating at 3 GHz. These engineering
observations demonstrated that the PAO could be feasibly
connected to a middle-class telescope without performance
degradation. Post-operation with the NTT, the PAO was
upgraded with a new 97-actuator DM capable of operating at
2000 Hz. Further tests at the 3.5 m Astrophysical Research
Consortium telescope in the Apache Point Observatory proved
successful. The S-H WFS configuration remained at 9× 9 sub-
apertures, sampled by 4× 4 pixel imaging, achieving a contrast
of 1.3× 10−5 at an inner working angle of 0 36. With longer
exposure times (2 hr), a contrast of 3.3× 10−6 was attainable
(Zhu et al. 2021). To fully exploit the PAO’s capabilities, the
static aberration in PAO was effectively corrected by measur-
ing the difference between system PSF and perfect reference
PSF, and directly command the DM to copy the perfect
reference PSF into the system to remove all the static
aberrations from the AO system (Ren et al. 2021). This
technique allows the use of low-cost, commercial optical
components in building our PAO. As all static aberrations are

Figure 2. Photograph of the Compact PAO System.
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correctable through our dedicated PSF copy approach, only the
dominant wave front errors need to be considered for
evaluating the PAO’s performance. The residual variance of
our AO system with S-H WFS can thus be calculated as the
remaining error.

, 1r
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where fit
2s is the fitting error that represents the wave front

variance due to the number of DM actuators, which is limited
compared to the telescope aperture. r

2s is the WFS read noise
error, ph

2s is the photon noise error and bw
2s is the lag error

introduced by the finite bandwidth. For our PAO, the fitting error
is determined by the number of DM actuators. If a DM sample has
spacing rs and seeing r0, it should be calculated as
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and v is the wind speed (Tyson & Frazier 2022). For small residual
variance, the Strehl ratio (SR) can be calculated as
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In fact, the AO performance is relevant to the above error
source as well as the natural guide star (NGS) brightness,
seeing condition, telescope aperture size, sub-aperture number
of S-H WFS, DM/S-H WFSʼs geometric configuration and
other properties. In our engineering observation, under the
good seeing r0= 13 cm at 500 nm, an SR of 0.64 can be
reached at the H (1.6 um) band, for an NGS with star
magnitude of 5.

3. Centroid Shift Measurement

In the original configuration of our PAO system, we utilized
the traditional Center of Gravity (COG) algorithm for
measuring centroid shifts. This process involves calculating
the centroid of a spot in each sub-aperture and determining the
centroid shift relative to the ideal spot coordinates, thereby
computing the wave front slope. While the traditional COG
algorithm is advantageous due to its low computational
requirements, it is notably susceptible to noise during nighttime
observations, especially when signal strength is weak.

To mitigate this issue, thresholding emerges as a crucial
processing algorithm in wave front sensing, effectively
reducing unwanted background noise and random fluctuations.
The implementation of this algorithm involves applying a
threshold (T) to each pixel Pij¢ located at row i and column j.
The specific formula and methodology for this threshold
application are detailed in Equation (3)
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In our earlier PAO system, the strategy for threshold
selection involved conducting noise statistics at the four
corners of the target surface and selecting a uniform threshold
value for the entire target area. However, our PAO system will
be adapted for large-aperture ground-based telescopes in the
future. As the number of sub-apertures in the S-H WFS will
significantly increase, and the intensity of spots across different
sub-apertures on the target surface will change somewhat with
the variable background scenarios, a uniform threshold fails to
account for different application scenarios. This leads to some
sub-apertures having thresholds that are too high, while others
have thresholds that are too low, preventing the optimal
threshold from being achieved. To address this issue, we
proposed a compressive neural network named Th-Net for
adaptive threshold generation of each sub-aperture in an S-H
WFS in this paper. The Th-Net can intelligently process the
entire image and output individual thresholds for each sub-
aperture simultaneously, thereby minimizing the impact of
noise.

3.1. Adaptive Threshold Generation Architecture

The principle of the adaptive threshold generation architec-
ture is illustrated in Figure 3. The input images, sized
480× 480, are sampled by the S-H WFS. The first layer of
our Th-Net is a convolutional layer with a 10× 10 kernel size
and 32 channels, resulting in a feature map of 480× 480× 32.
This feature map is subsequently sub-sampled by a max-

Figure 3. Sketch map of threshold generation based on Th-Net.
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pooling layer with a 4× 4 window and a stride of 2, reducing
the spatial dimensions while retaining the most salient features.
Detailed parameters of the full Th-Net are provided in Table 1.
The feature map, now reduced to 29× 29× 64 after the
final max-pooling layer, is flattened and fully connected to a
100-dimensional dense layer. The adaptive thresholds for each
sub-aperture are determined by the final fully connected layer,
which has 762 nodes corresponding to the number of sub-
apertures in the S-H WFS used in the AO system.

For relieving the computational burden for better real-
time performance, the architecture of the Th-Net is designed
to be as compact as possible. This Th-Net, which only
retains enough layers for threshold detection, can greatly
reduce the parameters needed for training. As a result, the
performance requirements for hardware can be significantly
reduced when deploying Th-Net in AO system for future
large telescope.

3.2. Data Set Generation and Training

In real scientific observations, our PAO system, as a visiting
instrument, is subjected to a wide range of harsh environmental
conditions. A robust training data set is crucial to handle
diverse observational scenarios. Consequently, synthetic data,
generated based on Fourier optics, are employed for proof-of-
concept and experimental validation. The data set generation
procedure is depicted in Figure 4. Essential parameters such
as the wavelength, entrance pupil function, sampling func-
tion, and lens transmittance function must be specified for
the S-H WFS. The random coefficient matrix should be
initialized randomly and adhere to Kolmogorov turbulence
(Roddier 1990), given that the resulting data will be used for
training AO wave front sensing algorithms. The random phase

of the complex amplitude at the entrance pupil is defined as
shown in Equation (4)

x y C k D x y, , , 4i
k

K

i k0 0
1

0 0( ) ( ) ( ) ( )åf =
=

where Ci is the ith coefficient vector and Dk(x0, y0) is the modal
function like Zernike modes or Karhunen–Loève modes used
to decompose the phase with a maximal order K. The complex
amplitude on the entrance pupil is defined as in Equation (5)

U x y A x y e, , , 5i
i x y

0 0 0 0
,i 0 0( ) ( ) ( )( )= f

where A(x0, y0) is the amplitude that has to be fixed with a
uniform, Gaussian or any other distribution that follows the real
conditions. Following the principle of Fourier optics, the S-H

Table 1
The Detailed Parameters of Full Th-Net

Type of Layer Input Size Filter Stride Pad Kernels

Input 480 × 480 × 1 L L L L
Convolution 480 × 480 × 1 10 × 10 1 2 32
ReLU 480 × 480 × 32 L L L L
Pooling 480 × 480 × 32 4 × 4 2 L L
Convolution 240 × 240 × 32 6 × 6 1 1 32
ReLU 240 × 240 × 32 L L L L
Pooling 240 × 240 × 32 4 × 4 2 L L
Convolution 60 × 60 × 32 6 × 6 1 L 64
ReLU 120 × 120 × 64 L L L L
Pooling 120 × 120 × 64 4 × 4 2 L L
Fully connected 1 × 57600 L L L L
Fully connected 1 × 1024 L L L L

Figure 4. Data set generation procedure.
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WFS images can be calculated as the following function (6)

⎡
⎣⎢

⎤
⎦⎥

I m n S m n x y U x y

P x y T x y i
f

x x y y

dx dy

, , , , ,

, , exp
2

,

6

i f f i

f f

0 0

0 0 0 0 0 0

0 0
2

( ) ( )∣ ( )

( ) ( ) ( )

∣
( )

ò ò
p
l

=

´ -

´

-¥

+¥

-¥

+¥

where f is the focal length of the microlens, λ is the
wavelength, T(x0, y0) is the transmittance function of the lens,
and S(m, n, xf, yf) represents the sampling function we defined.
In addition, the labels corresponding to each S-H WFS image
are also indispensable in neural network training. Obviously,
the label of each S-H WFS image is the threshold of each sub-
aperture in our case. For getting enough label data, threshold
(Thij) for a sub-aperture located at row i and column j is
calculated using Equation (7)

a gb ,Th 7ij ij ij ( )= +

where aij is the noise mean in current sub-aperture, bij is the
according noise standard deviation, and g, the value range of
which is [0, 4], is the scale factor. In this paper, g is usually set
as 3. The training data set was created under seeing conditions
where r0 averages 13 cm, and the scientific target is assumed to
be at an infinite distance, approximated as a point source. The
input light amplitude over the entrance pupil was varied
between 0.4 and 1 to simulate realistic observation conditions,
enhancing the robustness and adaptability of the Th-Net. A
total of 50,000 samples of S-H WFS images, along with
corresponding thresholds for each sub-aperture, were gener-
ated. This data set includes a training set of 40,000 samples, a
validation set of 5000 samples, and a test set of 5000 samples.
An example is illustrated in Figure 5. The architecture of the
SH-CNN described in the figure and table has an input of
480× 480D (S-H WFS images) and output of 762D (threshold
of each valid sub-aperture). The training of the Th-Net was
performed on a laptop with a GPU (NVIDIA GTX 3060) using
TensorFlow (Gulli et al. 2019). The Adam optimizer with the
initial learning rate of 0.0002 was used. The time required for
50 epochs of the whole training was about 14 hr. The training
result is shown in Table 2.

Employing this Th-Net allows each sub-aperture in our PAO
system to generate its local optimal threshold based on the
actual noise and signal levels observed in each calibration
cycle. However, this preprocessing step tends to considerably
slow down the measurement speed of the spot centroids, a
challenge that becomes more pronounced as the number of sub-
apertures in the WFS increases. This issue is especially evident
when the sub-aperture configuration expands significantly,
such as from 9× 9 to 29× 29. Furthermore, the original
LabVIEW implementation of our COG algorithm does not
effectively leverage multi-core parallel computing capabilities.

A significant limitation hindering the application of our PAO
system with larger telescopes is the increased demand for rapid
data processing. Even with the deployment of deep neural
networks such as UNet for wave front reconstruction, which
eliminates the need for slope calculation, the entire process
from wave front reconstruction to control command generation
remains insufficiently fast in practice. Therefore, this paper
introduces a parallel hybrid programming control technique
designed to work in conjunction with Th-Net, addressing the
bottleneck in overall processing speed.

4. Hybrid PAO Programming

To address the challenges of correction speed attenuation
due to an increased number of sub-apertures and the
introduction of Th-Net, and to surmount the limitations of the
original LabVIEW COG codes in parallel computation, we
propose a hybrid approach. This approach integrates a
LabVIEW block-diagram based program with advanced
parallel techniques using MPI and OpenMP, enhancing our
PAO system. Figure 6 illustrates the controlling diagram of this
upgraded system.
The parallel computation is executed through C++ and

Python code, employing shared memory technology (Bershad
et al. 1991). For efficient data transmission and processing,
OpenMP/MPI parallel code is integrated into our original PAO
LabVIEW code via a LabVIEW DLL. Additionally, the shared

Figure 5. The sample S-H WFS image generated by Th-Net.

Table 2
The Training Result of Th-Net

Network Train Loss Val Loss Test Loss

Th-Net 0.00036 0.00035 0.00032
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memory in our control software facilitates high-speed data
operations by employing multi-cores, offering significant
advantages in data transfer speeds. The C++ and Python
codes are designed to read data of wave front images and relay
spot centroid shift calculations back to the LabVIEW code via
the shared memory DLL. This section will demonstrate that our
hybrid programming technique effectively utilizes CPU
resources for multi-core parallel computation at a low cost.
The commercial computer used for testing this hybrid parallel
technique is equipped with two Intel Xeon E5-2680 CPUs,
each with 12 cores operating at 3 GHz. The selection of core
numbers is crucial for the high-speed measurement of parallel
spot centroid shifts, with a few cores reserved for other
essential tasks like hardware control and operating system
operations.

Our hybrid programming employs MPI (Gropp 2000) and
OpenMP (Jin et al. 2011), two open-source Application
Program Interfaces known for their excellent performance in
parallel computation (Smith & Bull 2001). This technique
operates hierarchically, with MPI parallelism at the upper level
and OpenMP providing lightweight parallelism within each
MPI process. To ensure effective data transfers between each
MPI process, point-to-point block sending and receiving
message functions, “MPI Send- ¢¢ and “MPI Recv- ¢¢ are
utilized as a message-passing mechanism, also enforcing data
synchronization. Conversely, communication between each
OpenMP thread is realized through access to shared memory of
each process. Given that the centroid shift of the spot in each
sub-aperture must be measured and calculated individually, we
developed a dedicated MPI/OpenMP parallel technique to
fully support the parallel computation for our PAO WFS.

Figure 7 illustrates the parallel structure of MPI and
OpenMP. In this configuration, MPI, positioned outside the
OpenMP parallelism, is set in the upper layer for process
scheduling. Within each MPI process, OpenMP is tasked with
the generation and scheduling of threads. Suppose the
commercial multi-core computer has N cores and there are M
effective sub-apertures requiring processing. In that case, our
hybrid parallel program initiates by loading pre-processing

calibration data, such as the perfect spot centroid coordinates of
the WFS. The whole flowchart of our Th-Net combined with
the hybrid parallel technique is shown in Figure 8. Following
this, the workflow is executed according to the subsequent
procedure:

(1) Receive the focal images from S-H WFS;
(2) Generate adaptive threshold of each sub-aperture through

Th-Net;
(3) Set number of processes by MPI as m, with each process

containing M/m sub-apertures;
(4) Allocate according to threshold and reference centroid

coordinates to each process;
(5) Set number of threads by OpenMP as N/m to parallelize

the computation of centroid shift in each process and
calculate centroid shift of M/N sub-apertureʼs spot in
each thread;

(6) Collect computation results and calculate the wave front
slope;

(7) Compute the controlling signals by the direct slope
method to DM.

5. Centroid Computation and Performance

The centroid shifts in our system are determined by
calculating the difference between the centroid of each spot
within a sub-aperture and its corresponding reference centroid.
Consequently, the precision of these centroid shifts is
contingent upon the accuracy with which the spot centroids
in each sub-aperture are calculated. In this paper, we use the
centroid calculation results (xs, ys) obtained under conditions of
extremely high SNR as the baseline for computing the Centroid
Offset Error (CEE), as delineated in Equations (8) and (9). It is
important to note that (xs, ys) are utilized solely to assess the
accuracy of centroid calculation, and the actual centroid shifts
are derived from pre-calibrated reference centroids.

x x x 8sCEE
2( ) ( )D = -

y y y . 9sCEE
2( ) ( )D = -

In practical experiments, discerning a distinct boundary
between the signal and noise of a spot in each sub-aperture
proves challenging. Furthermore, estimates of the SNR can
differ across various regions. Therefore, our focus is on
effectively gauging the high or low state of SNR within each
sub-aperture to select the standard position (xs, ys) for our
measurements. This paper employs an SNR estimation method
grounded in the Gaussian spot model, as follows

I a

b
SNR . 10ij

max ( )=
-

Here Imax is the maximum value of current sub-aperture light
intensity before the threshold operation, a is the noise mean,
and b is the noise standard deviation. In order to evaluate the

Figure 6. Schematic diagram of the upgraded PAO control structure.
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Figure 7. Parallel structure of MPI and OpenMP.

Figure 8. The whole flowchart of our Th-Net combined with the hybrid parallel technique.
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performance of the parallel computation, a simulation software
package based on LabVIEW is developed. As shown in
Figure 9, the operation interface of simulation software consists
of two parts. The parameter setting is shown in section (a); in
left of section (b), the WFS image is displayed and the centroid
shift result will be saved as a .txt file. The selected or effective
sub-apertures are labeled with blue grids in the wave front
measurement process. For simulating the real observation, a
29× 29 WFS configuration is used in this evaluation. The
traditional COG algorithm, implemented using a LabVIEW
block-diagram based program, has been effectively utilized in
our original PAO system for centroid shift measurement. This
provides a baseline to compare with our new parallel technique
in terms of speed and accuracy. For performance testing, we
used a commercial multi-core computer (HP DESKTOP-
6QUILPR) equipped with two Intel Xeon E5-2680 CPUs,
each comprising 12 cores.

As previously discussed, the accuracy of the parallel algorithm
is evaluated by calculating the CEE using Equations (6) and (7).
In this paper, we first assessed the multi-frame SNR of each sub-
aperture at different exposure times, selecting the centroid
coordinates corresponding to the maximum SNR as the standard
coordinates. Table 3 presents the various SNR levels. Subse-
quently, we processed the WFS image using both the traditional
global threshold (T1) from the original PAO and the newly
implemented adaptive threshold (T2) generated by Th-Net to
determine the CEE. Table 4 illustrates the overall mean CEE
across all effective sub-apertures when employing T1 and T2 at
different exposure times. It is evident that the application of T2
significantly enhances the accuracy of centroid measurement,

achieving accuracies of 0.039 and 0.021 in the x- and y-
directions, respectively. Consequently, the Th-Net is incorpo-
rated into our hybrid parallel algorithm. Please note that the
seeing r0 is averaged at 13 cm in our simulation or test and Th-
Net will be first connected to the S-H WFS and run for
5–10minutes to optimize the thresholds for the current
environment before starting testing or observation.
The process of centroid calculation in each sub-aperture can

be executed using a for loop in LabVIEW. In our previous
work, we deployed LabVIEW’s original parallel model by
enabling parallel execution for loop iterations. This paper

Figure 9. GUI of the centroid shift simulation software, in which there is a 29 × 29 WFS configuration.

Table 3
SNR at Different Exposure Times

Exposure Time SNR
(ms)

10 465
5 349
1 191

Table 4
Calculation Accuracy Results of T1 and T2 at Different Exposure Times

Exposure Time 10 5 1

(ms)
ΔxCEE ΔyCEE ΔxCEE ΔyCEE ΔxCEE ΔyCEE

T1 0.187 0.169 0.123 0.116 0.098 0.076
T2 0.039 0.021 0.048 0.029 0.077 0.059
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introduces a hybrid parallel technique to accelerate for loop
execution. To optimize the performance of this technique, it is
crucial to set the number of the desktopʼs CPU cores (Num-
core), OpenMP threads (Num-thread), and MPI processes
appropriately to maximize the utilization of computational
resources. Various configuration schemes have been tested, and
a model utilizing two MPI processes with four OpenMP
threads was found to offer the best stability in long-term
stress tests. To evaluate the running speed of our hybrid
parallel technique, we implemented the technique (2 processes,
4 threads) with varying Num-core. As indicated in Table 5, the
configuration of 2 processes, 4 threads, and 10 cores achieved
the highest running speed of nearly 6000 Hz. As shown in
Figure 10, the wave front measurement computation time
fluctuates with the CPU core utilization. The minimum
computation time is achieved when 10 cores are used, with
the core utilization reaching 42%. It is important to note that
although the desktop used has 24 cores, several cores must be
reserved for the hardware system and other computing
requirements. Compared to the traditional COG algorithm
executed by a single LabVIEW block-diagram based program,
which attains a running speed of 2800 Hz, our hybrid parallel
technique has increased the calculation speed by 114% in
centroid measurement.

Finally, we integrated this hybrid parallel technique software
into our PAO system and measured the PAO operation speed at
different WFS configurations of 11× 11, 20× 20 and 29× 29.
The results are detailed in Table 6. In these experiments, the
iXon Ultra 888 camera produced by Andor, an EMCCD
camera with frame rates of 26 fps at 1024× 1024 pixels and 93
fps at 512× 512 pixels, was used as the WFS camera. In our
tests, the PAO system, augmented by the hybrid parallel
technique, achieved operation speeds of 2116 Hz, 1119 Hz, and
511 Hz for 97, 316, and 762 effective WFS sub-apertures,
respectively. It is evident that the PAO system, when supported
by the hybrid parallel technique, attains faster running speeds
than the LabVIEW block-diagram based program across
different WFS configurations. However, it is worth noting that

the overall performance of the PAO system is somewhat
constrained by the limited image capture speed of the WFS
camera.

6. Laboratory Test and Result

Since our PAO system is specifically designed for nighttime
observations, it employs a point light source to assess
performance metrics such as the SR, a critical step in
characterizing the performance of an AO system (Tyson &
Frazier 2022). To accurately gauge the performance of our
PAO system equipped with the hybrid parallel technique under
realistic nighttime observation conditions, we have established
a general platform for atmospheric turbulence perturbation in
our laboratory. This platform can simulate turbulence perturba-
tions corresponding to various wind speeds and seeing
conditions. Theoretical models of atmospheric turbulence are
crucial in evaluating the performance of nighttime AO systems.
Traditionally, an atmospheric turbulence simulation utilizes a
rotatable phase plate to create time-varying wave front
aberrations. However, this method requires the fabrication of
specialized phase plates with specific spatial frequency
components, such as those described by the Kolmogorov

Table 5
The Running Speed of Wave Front Measurement with Various Num-core

Process Num-thread Num-core Speed
(Hz)

2 4 4 3624
2 4 6 5180
2 4 8 5853
2 4 10 6010
2 4 12 4888
2 4 14 3971
2 4 16 3701
2 4 18 3656
2 4 20 3430

Figure 10. The computation time and CPU jitter of our wave front
measurement driven by the hybrid parallel technique.

Table 6
PAO Running Speed Driven by Hybrid Technique and Single Mode in

Different WFS Configurations

WFS Configuration 11 × 11 20 × 20 29 × 29

PAO speed driven by hybrid technique (Hz) 2116 1119 511
PAO speed driven by single LabVIEW (Hz) 989 634 298
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Power Spectrum, making it challenging to generate a truly
random phase (Lee et al. 2012). To achieve dynamic wave
front turbulence, liquid-crystal spatial light modulators are used
in some simulators, but these can only provide moderate light
transmission and require polarized light. Alternatively, a DM
can also be employed in atmospheric turbulence simulation
(Lee et al. 2017). In this paper, we use a DM to generate a
phase screen at speeds exceeding 1000 Hz, which is more than
sufficient for the performance evaluation of our PAO system.

As depicted in Figure 11, our atmospheric turbulence
simulator employs a 10× 10 m2 phase screen generated using
the Object-Oriented Matlab Adaptive Optics (OOMAO)
simulation tool (Conan & Correia 2014). To mimic real
observational conditions, we utilized the OOMAO tool to
create a phase screen of the same dimensions, with a Fried
parameter of 13 cm, indicative of good nighttime seeing
conditions. Figure 12 highlights a 1 m diameter telescope,
represented by a red circle, traversing across the entire phase
screen at different instants. The red path and arrow illustrate the
telescopeʼs movement, simulating actual telescope motion. In
our experimental setup, the telescope samples the phase screen
sequentially from left to right and then from top to bottom,
completing a full cycle. This cycle is repeated in an iterative
loop to simulate real observational conditions. It is important to
note that the speed at which the telescope traverses the phase
screen effectively simulates wind at a specific speed, achieved
by adjusting the telescope’s movement speed. Figure 13
presents the Graphical User Interface (GUI) of the simulator,
which was developed using LabVIEW. The complete sche-
matic of this simulator is shown in Figure 14. The setup
involves light emitted from a point source being collimated by
a lens, then reflected by a DM. In our simulator, the DM is
capable of generating phase errors following the Kolmogorov

Power Spectrum, controlled via LabVIEW code. Post-reflec-
tion from the DM, the light passes through an RM and another
lens, culminating as the simulatorʼs output. This output then
serves as the input for testing our PAO system, allowing us to
closely replicate and analyze actual observational conditions.
Our PAO system is established according to the schematic

diagram that is shown in Figure 1. The DM, manufactured by
the ALPAO Corporation, is equipped with 88 actuators in a
10× 10 configuration. The TTM is sourced from PI Corpora-
tion (PI S-300.2SH). An HeNe laser light source of
wavelength= 632.8 nm, which can be seen as a perfect point
light source, is used in our test via single-mode fiber. For high-
speed wave front sampling, the EoSens 3CXP camera
developed by Mikrotron GmbH serves as the WFS camera.
However, static aberrations inherent in our PAO system’s light
path, such as Non-Common Path Aberration and AO Optical
Residual Static Aberration, will inevitably impact the system’s
imaging performance. Consequently, it is essential to effectively

Figure 11. Turbulence phase screen. Figure 12. The simulation of telescopeʼs moving path around the phase screen.

Figure 13. GUI of the atmosphere turbulence simulator.
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eliminate all static aberrations before integrating the PAO with
the telescope for observations. In this paper, we apply a high-
performance correction technique, previously proposed, to
rectify the static aberration in our PAO (Deqing et al. 2022).
Focal plane PSF images, before and after correction, are depicted
in Figure 15(a) and (b). The initial focal plane PSF exhibits
significant static wave front errors. However, these errors are
substantially reduced following correction by our technique, as
evident in Figure 15(b).

After correcting the static aberrations, a performance
evaluation is conducted for our PAO system supported by the
hybrid parallel technique. Given the limitations of the first
resonance of the membrane, the current DM with 88 actuators
in a 10× 10 configuration used in our PAO can operate at
speeds around 1200 Hz. To fully assess the effectiveness of the
hybrid parallel technique in our PAO, we utilize a 20× 20
configuration (316 effective sub-apertures) for wave front
sampling. Due to the support of the hybrid parallel program-
ming technique, our PAO system achieves speeds of around
1100 Hz. In contrast, the PAO driven by the single LabVIEW
program can just get a speed of around 600 Hz, which means
the hybrid parallel technique is able to increase the PAOʼs
running speed by nearly 76%. In our tests, the PAO initially
operates with stable correction to obtain a perfect PSF image,
as all static aberrations have been previously corrected.
Figure 16 showcases the PSF with an SR of 0.99, stably

corrected by the PAO with no aberrations present. Subse-
quently, the phase screen is subjected to wind speeds of
5 m s−1, 15 m s−1, and 25 m s−1, to simulate atmospheric
turbulence using our simulation platform. The results, shown in
Figure 17 from left to right respectively, display the focal-plane
images with and without the PAO’s closed-loop correction. By
analyzing 100 focal-plane PSF images under different wind
speed conditions, we calculate the SR to reduce measurement
errors. Figure 18 presents the final measured SR values
achieved by our PAO’s closed-loop correction at different wind
speeds, under an averaged seeing condition of r0= 13 cm. It is
evident that higher wind speeds diminish focal-plane imaging
quality. Even with wind speeds adjusted to 25 m s−1, our PAO
system, supported by the hybrid parallel technique, continues
to provide stable closed-loop correction, albeit with a reduced

Figure 14. The complete schematic of atmospheric turbulence simulator.

Figure 15. Focal plane PSF images without (a) and with (b) AO static
aberration.

Figure 16. Focal plane PSF image: wind speed is 0 m s−1 without applying
phase screen aberration.
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SR of 0.65. Under the same experimental conditions, using a
uniform threshold driven by the single LabVIEW case, the SR
values at wind speeds of 5 m s−1, 15 m s−1, and 25 m s−1 are
0.87, 0.76, and 0.53, respectively. In contrast, our hybrid
parallel technique, which combines Th-Net, improves the SR
by 5.7%, 14.5%, and 22.6% at the three different wind speeds,
respectively. In our experiments, the PAO operates reliably at
around 1100 Hz, aligning with our previous evaluation results
listed in Table 6. These test results unequivocally demonstrate
that our hybrid parallel technique significantly enhances the
PAO’s operational speed while maintaining correction stability.

7. Conclusion

In this publication, we have introduced the first dedicated
Th-Net for adaptive threshold combined with the LabVIEW-
based hybrid programming technique. This innovative
approach effectively addresses the limitations inherent in
LabVIEW, enabling multi-processing parallel calculations for
centroid module-based methods in nighttime AO wave front
sensing and dramatically improving accuracy of wave front
detection. The hybrid parallel calculation code, crafted in C++
and Python, seamlessly integrates into LabVIEW as a user-
defined function. When compared to the native LabVIEW
centroid calculations, our PAO system’s operational speed,
powered by the hybrid parallel code, exhibits an increase of
71%–114% across various sub-aperture configurations. At the
same time, the PAO’s SR is improved by 5.7%–22.6% at
different observational wind speeds. This enhancement places
its performance on par with other state-of-the-art nighttime AO
systems. To evaluate the efficacy of our Th-Net and hybrid
parallel programming PAO system, we developed a high-speed
atmospheric turbulence simulator platform, a first of its kind
dedicated to our PAO system. This platform enables the
simulation of various seeing conditions and wind speeds,
providing a robust means to evaluate our PAO’s performance
by measuring the final SR. Thanks to the comprehensive
utilization of available multi-core calculations, this Th-Net and
hybrid parallel technique not only accelerates centroid measure-
ment but also proves more efficient than single LabVIEW
programming. Additionally, the hybrid approach retains the
unique advantages of LabVIEW in AO control software

Figure 17. Focal plane PSF images without (a)–(c) and with (d)–(f) the PAO closed loop correction under the wind speed of 5 m s−1, 15 m s−1 and 25 m s−1, from left
to right respectively.

Figure 18. AO performance measurement results at different wind speeds.
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development, eliminating the need for writing complex commu-
nication protocols and significantly reducing development time.
In conclusion, our Th-Net and hybrid parallel technique mark a
significant stride toward realizing a low-cost, reliable, and
quickly replicable PAO system for future large telescopes.
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