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Abstract

Optical survey is an important means for observing resident space objects and space situational awareness. With
the application of astronomical techniques and reduction method, wide field of view telescopes have made
significant contributions in discovering and identifying resident space objects. However, with the development of
modern optical and electronic technology, the detection limit of instruments and infrastructure has been greatly
extended, leading to an extensive number of raw images and many more sources in these images. Challenges arise
when reducing these data in terms of traditional measurement and calibration. Based on the amount of data, it is
particularly feasible and reliable to apply machine learning algorithms. Here an end-to-end deep learning
framework is developed, it is trained with a priori information on raw detections and the automatic detection task is
performed on the new data acquired. The closed-loop is evaluated based on consecutive CCD images obtained with
a dedicated space debris survey telescope. It is demonstrated that our framework can achieve high performance
compared with the traditional method, and with data fusion, the efficiency of the system can be improved without
changing hardware or deploying new devices. The technique deserves a wider application in many fields of
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1. Introduction

The development of satellite and launch technology has led
to a significant number of resident space objects (RSOs) in
orbit, e.g., communication and navigation satellites, rocket
bodies and space debris produced consequently, which pose a
threat to the safety and sustainability of the space environment.
Obtaining effective information on RSOs, including their
positions and status, which is also referred to as space
situational awareness (SSA), is essential and crucial. Optical
survey utilizing astronomical telescope is an important passive
means for observing and detecting RSOs (Schildknecht 2007),
and compared with other active ways, like laser ranging (Zhang
et al. 2012) and radar (Tingay et al. 2013), it is more
appropriate to perform surveys for high-Earth orbital regions
(Matney et al. 2004; Sun et al. 2015). Furthermore, considering
the relatively low economic cost of optical infrastructures, it is
feasible to develop telescope arrays (Zhang & Zhao 2021) or
make a network with multiple sites (Molotov et al. 2008).

Wide field of view telescopes are widely used in optical RSO
surveys, and because large-scale sky fields can be surveyed in a
shorter time, the efficiency is promoted. The consequent object
detection and extraction algorithms have also been developed
and deployed, among which the traditional astronomical source
extraction techniques, including SExtractor (Bertin & Arnouts
1996) and DAOPHOT (Stetson 1987; Schechter et al. 1993),

are widely applied and have played important roles. Mean-
while, dedicated algorithms are also proposed in specific
applications and achieve great performance in object detection.
In detail, considering the relative movement between back-
ground stars and RSOs, the images of stars and RSOs appear as
different shapes, according to different observing strategies,
and techniques utilizing masking or streak detection work
effectively in data reduction (Kouprianov 2008; Sun et al.
2016; Hickson 2018). Based on the movement characteristics
of RSOs, methods are also proposed to extract and correlate
objects from consecutive frames in celestial coordinates (Sun
et al. 2019; Du et al. 2022; Zhang et al. 2024). Furthermore,
image processing methods including morphology transforma-
tion (Sun & Zhao 2013) and restoration (Sun & Jia 2017) as
well as image stacking (Yanagisawa et al. 2005) are widely
used to improve the signal-to-noise ratio (SNR) of object and
promote the detection efficiency.

However, with the development of telescope and sensor
technology, the detection limit of infrastructures nowadays is
greatly extended, leading to an extensive number of raw images
and many more sources in images. For example, the number of
sources in one wide field image can reach up to greater than
10,000, and due to the deployment of sensors with fast readout
speed, the frame rate is increased significantly and extensive
amounts of data are acquired. Challenges arise for previous
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data reduction and object detection methods, the extraction
efficiency and time cost are affected, and the performance is
limited.

The development of artificial intelligence has triggered a
technological revolution, leading to various object detection
models that, after training, are capable of extracting different
types of sources from a single frame, akin to human perception.
This kind of technique requires large amounts of data to train
the parameters of the model for specific tasks. Considering the
big data obtained by modern astronomical infrastructures, it is
particularly feasible to apply these techniques.

Significant breakthroughs have been made in these areas. For
the Sloan Digital Sky Survey (SDSS), the You Only Look
Once (YOLOV4) is adopted to develop the source detection and
classification network (He et al. 2021). A modified YOLOV3 is
presented for redshift galaxy cluster detection and similar
performance compared with the traditional method is achieved
(Grishin et al. 2023). The convolutional neural network (CNN)
is also widely applied in data reduction of wide field telescopes
(Jia et al. 2020), e.g., detecting images with asteroid streaks
(Wang et al. 2022a) and finding blue horizontal-branch stars
(He et al. 2023). In addition to these one-stage methods, two-
stage-based models are also used for point and streak source
detection in dedicated applications (Dumitrescu et al. 2022).
However, it should be noted that in these applications the
models are trained and validated mostly on simulated data, and
considering the lack of raw training data, the performance is
limited and it deserves to be further investigated.

In our work, a deep learning neural network based on the
YOLOVS model is developed to detect and extract RSOs from
large amounts of raw CCD images. Our method is trained on
raw data with a priori information obtained in traditional ways,
and based on the morphological difference between stars and
RSOs, the model learns these features and extracts RSO images
from a single frame with their measurement information. The
performance is evaluated also on raw data. It is demonstrated
that high efficiency is achieved using our closed-loop network,
and with data fusion, the promotion of the system can be
obtained. In Section 2 the principle and algorithm are
introduced, the application is described in Section 3 and the
results are discussed in Section 4. In Section 5 the conclusion is
drawn.

2. Principles and Algorithms

The deep learning process includes two key steps: data set
construction and neural network structure. In this era of big
data, high-quality data play a crucial role in deep learning, and
most data sets are constructed by manual labeling and
annotation. On the other hand, an appropriate structure would
exhibit excellent performance for specific tasks. For the data
set, we propose an automatic labeling method, which utilizes
previously applied object detection and identification
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algorithms, extracting the position of RSO images in real-time
and based on this information the data set for model training is
built. This approach saves an extensive amount of time and
generates a comprehensive data set. Our method also optimizes
label parameters based on distributions and experiments.
Furthermore, we employ image transformations with a priori
knowledge to promote object detection and improve efficiency,
especially for faint cases. For the network architecture,
considering the RSO images appear as small-scale and faint
sources in a large field of view frame, the network structure is
adjusted in the neck and head areas to better detect objects of
specific categories.

2.1. Network Architecture

YOLO is one kind of cutting-edge convolutional neural
network (CNN), which provides real-time object detection
ability. Different from two-stage CNN detection networks,
which utilize two separate networks firstly to detect candidates
and then classify them, YOLO employs a single network for
positioning with classification to achieve end-to-end detection,
fulfilling our requirements well. During reduction, it divides
input data into several grid cells and predicts bounding boxes in
each grid. These bounding boxes are presented in the format (x,
v, w, h, C, p(cy), p(ca),...), where (x, y) is the center coordinates
of an object, and (w, h) represents the object size including the
width and height. C is the confidence coefficient for a detection
and (p(cy), p(cy),...) show the probabilities for different classes
respectively. A specific loss function is given to evaluate the
differences between the prediction and ground truth of the
bounding boxes. By optimizing parameters in the neural
network through taking the derivative backwards to reduce the
loss function value, the model learns the features of our data set
gradually. The loss function for our network is given as
follows.

Lossial = « * Lossgox + (3 * Lossopy + v * Losscra,

ey

where «, 3 and -y are the weighting coefficients. Lossgox is the
difference in location between the prediction and ground truth.
For YOLOvS, Complete Intersection over Union (CIOU) is
used to obtain this distance.

Lossgox = Lciou(p, ¢, v) = 1
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The Intersection for a given bounding box can be derived as
below.
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where label gt means the parameter is given by ground truth,
and the symbols without gr are obtained by prediction. Then
Union is obtained.

Union = w % h + w8" x h8" — Intersection, ®)

here v, p and c are introduced to represent the distance more
accurately.
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Lossop; refers to the reliability of the predicted rectangle
compared with the actual ground truth box, and Losscpa
denotes the difference between the predicted class and a
specific class. The YOLOvVS5 model employs Binary Cross
Entropy (BCE) loss to evaluate this variance.

LosscLa = —%Z ylogp(i) — (1 — y)log(l — p(@), (9)
i=1

where n represents the number of pixels within the predicted
rectangle. The binary label y; indicates either false or true, with
a value of 0 or 1 respectively. The probability p(i) denotes the
likelihood predicted by the model that a given pixel belongs to
the specified region or class.

2.2. Network Optimization

Different from a multiple-class detection task, for our
network the model is only trained with a single object class.
Consequently, in the loss function, (3 is set to zero for
simplicity. On the other hand, considering that the sizes of RSO
images are generally small relative to the whole frame and the
distribution of images is similar to a classic Gaussian function,
we modify Lossgox with the Normalized Wasserstein Distance
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Figure 1. The architecture of our network.
(NWD; Wang et al. 2022b). The new Lossgox is expressed as
follows.
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LOSSBOX = LOSSNWD =1 — NWD. (12)

The parameter C is determined due to the data set and is set to
16 to optimally perform the training task.

For the neck structure, we employ an additional upsample
layer for detecting faint and small RSO images. Different from
the fundamental P3, P4 and PS5 layers, we substitute PS5 with
P2 in the detection header, which results in a 40% reduction in
model parameters and improves detection capability. The
modified structure is illustrated in Figure 1.

3. Application

3.1. Observations

A dedicated telescope for RSO survey is utilized to perform
trial observation and, based on the raw data, the efficiency of
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Table 1
Detailed Information on the Telescope and CCD Frame
Parameter Value
Aperture 500 mm
Field of view 272 x 272
Frame size 2048 x 2048
Pixel scale 379

0 ~ 65535
Frame transfer

Dynamic range
CCD operating mode

our network is analyzed. Detailed information on this telescope
is shown in Table 1.

During observation, considering the dynamical character-
istics of high-Earth orbital RSOs, their angular movement is
slow relative to a ground observer, hence the stare mode is
adopted. This means the telescope keeps pointing to a specific
horizon field during exposure while the drive is turned off. The
exposure time for a single frame is 2 s, and consecutive images
are acquired with the same azimuth and elevation. With this
strategy, the background stars appear as short streaks in images
while RSOs located in the high-Earth orbital region appear as
points. Due to the relatively wide field, several RSOs may
appear in the same image, as shown in Figure 2.

The time interval for switching fields is 2 minutes, and
approximately 15 raw CCD frames can be obtained for each
field, considering the readout time of the CCD camera and the
pointing setting of the telescope. The observations are
performed in 4 nights. After the large amounts of raw CCD
images are acquired, object detection and tracklet extraction are
performed with previous algorithms. Here tracklet refers to a
series of measured information of the same object, including
centroids and observed positions in right ascension and
declination. In detail, the sources in each image are extracted
and their measurement positions are obtained, then with
astrometry their equatorial positions are derived. According
to the movement difference between stars and RSOs in
consecutive images, the RSO candidates are detected and the
tracklets are generated. At last, these tracklets are correlated
with the catalog (Yu et al. 2021); the ones not correlated to the
catalog are recognized as false detections and the ones
correlated with the catalog are taken as a priori information,
which is used in model training and validation. After
optimization, our previous reduction pipeline can detect the
RSOs in near real-time. It should be noted that after the
tracklets are extracted with the network we developed, the orbit
correlation is also performed and the number of false detections
and correlated objects is obtained, then the performance of our
network is evaluated.

Detailed results obtained with the previous method are
shown in Table 2, including the fields observed, the number of
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Figure 2. Snapshot of a part of the raw CCD image, the green circles indicate
six RSOs in the image.

Table 2
The Results of the Observations with Previous Methods
Observed Extracted False Correlated
Day Fields Images Tracklets Detections Objects
1 695 9032 2816 214 537
2 693 9057 2903 214 584
3 693 8969 2867 418 556
4 691 8739 2835 147 582

raw images acquired each day, the number of extracted
tracklets, and uncorrelated and correlated objects after reduc-
tion. The distribution of eccentricity and semimajor axis of
correlated RSOs is shown in Figure 3. It can be found that
approximately 9000 raw images can be obtained each day, and
more than 2800 tracklets can be extracted. It should be noted
that generally one tracklet may include 8~ 15 position
measurements, hence the extensive amounts of a priori
detections are feasible and reliable for the application of
a CNN.

3.2. Dataset Construction

The obtained data set provides information about RSOs,
including their position measurements and image sizes.
Artificial intelligence models can be applied to learn features
from the data set and then perform object detection on new
data. Therefore, it is crucial to construct a high-quality data set.
Generally, the measured position (x, y) and dimensions (width,
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Figure 3. The distribution of eccentricity and semimajor axis of correlated RSOs.

height, w, h) require manual annotation. In our test based on
previous object detection methods, we have already obtained
the measured positions of RSOs. Then another issue is
choosing the optimal box size for the data set. The width and
height of all RSO images are obtained with SExtractor using a
30 threshold, and the distribution is shown in Figure 4. It
indicates that the majority of RSO images (approximately 85%)
are smaller than 20 x 20 pixels, and they are different from the
background stars, which exhibit high pixel values and larger
sizes. Considering the size of the whole image is 2048 x 2048,
these are typically small and faint objects. According to the
distribution and after some investigations, the width and height
are both set as 16 pixels to achieve a balance between
performance and efficiency in model training.

The variations of background levels and object brightness
potentially cause confusions within the model, and data
normalization is crucial. To address this challenge, a gray
transformation is applied to augment the signals of faint RSO
images. The transformation is performed as follows.

0 x < bkg
| x — bkg
y= T bkg < x < bkg + 50, (13)
o
1 bkg + S0 < x

where bkg and o are mean background level and standard
deviation obtained by SExtractor respectively. The effect of the
augment is shown in Figure 5.

3.3. Model Training

Although the model parameters have been optimized, the
YOLO network still has more than six million parameters. The
training process refers to adjusting these parameters to task-
specific characteristics. Starting from all zero or random values
would cost much more epochs for these model parameters to
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Figure 4. The width and height distribution for all RSO images.

converge, and it consumes a lot more time on a large data set.
Parameter initialization can promote the process and reduce the
time spent on training epochs, so instead of training the entire
data set, we make a smaller data set at first, and it is used for
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Figure 5. The gray transformation for an image.
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Figure 6. The performance of initial weight training.

pre-training to obtain initial weights in our RSO detection task.
This data set is constructed with 200 randomly selected images,
based on the RSO images from the first day and with a 3:1
ratio of training to validation sets. It should be noted that all
these images are manually labeled to avoid abnormal
conditions like the presence of streaks or dense star fields. It
costs approximately 1 hr to perform the pre-training and the
initial weights are obtained for subsequent model training. With
the pre-trained weights, for a training set with one-day of data,
the model converges in approximately 50 epochs and the time
cost is approximately 10 hr instead of 40 hr with a personal
desktop with an NVIDIA RTX 3060 (6G). It should be noted

that the time cost would be reduced to approximately 2 hr if a
professional workstation with more GPUs is utilized. The loss
function of the training and validation for the initial weight
training is shown in Figure 6, along with the precision and
recall curves. These indicate that the loss function decreased
significantly and converged after 150 epochs, while the
precision and recall rates approach 1 and achieve warm up
for subsequent training.

To analyze the performance of our network, two different
training and testing strategies are used for comparison. For the
first strategy, we train the model with the data set from day 1
and test the model on the data set from day 2, then we train the



Research in Astronomy and Astrophysics, 24:115009 (9pp), 2024 November

00175 | train_loss

0.0150¢ ""‘.‘ val loss
9 0.0125}
Q
— 0.0100}

%
0.0075} N
0.0050} e O S,
0 10 20 30

Epochs

Zhao, Sun, & Yu

0.8+ ;
2 od |
= 0.6r |
> ."
0.4 ‘.“ —— precision
5' recall
02% 10 20 30 40

Figure 7. The performance of model training.

model based on the data set from day 3 and test the model with
the data set from day 4. Each data set includes more than
7000 images and 35,000 labels, with a 3: 1 ratio of training to
validation sets. When adopting the second strategy, the data
from the first two days are used for training, and the data from
the remaining two days are used for testing. The convergence
epoch remains at 40 for both two strategies, but the training
time for the second strategy increases due to the data size being
doubled. It is demonstrated in Figure 7 that the pre-trained
weights work effectively, and the training process starts from
low loss and high recall rate so the time cost is saved.

4. Results and Discussions

After the network is trained, we evaluate its performance on
the test set. We also analyze the new objects detected only by
our network to investigate the improvements. In the object
detection phase, after the object detection results are obtained
for each frame, a breadth-first search strategy is used, which
means measurement positions of all potential candidates are
generated, regardless of their confidence levels. Then to
minimize false alarms, we pick the first eight candidates based
on their confidence ratio. Coupled with the well-trained model,
the detection efficiency is promoted by this way.

With the two strategies mentioned previously, for each sky
field the consecutive detection results are extracted, the
tracklets are obtained and then the orbit correlation is
performed. The results are shown in Tables 3 and 4
respectively. It can be found that both training strategies result
in more correlated tracklets and detected objects than the
traditional method, so their performances are better.

Furthermore, with the pre-trained weights, our network
completes object detection in less than 0.1 s for a 2048 x 2048
frame, not accounting for the file I/O time cost. For
comparison, the traditional method will cost 1 ~2s on the
detection phase. It should be noted that this implementation

Epochs

Table 3

The Detection Result of First Application Strategy

Day Objects Extracted Tracklets False Detections
1 535 2805 204

2 588 2939 91

3 564 2862 398

4 583 2841 136

Table 4
The Detection Result of Second Application Strategy

Day Objects Extracted Tracklets False Detections
1 537 2804 193

2 590 2955 21

3 563 2874 422

4 585 2851 125

benefits from the structure of CNNGs. If the frame size increases
dramatically which is likely to happen in the future, the time
cost will not be extended significantly, but in contrast, for
traditional image processing methods, the time cost will be
multiplied accordingly.

Further investigations are made based on the data obtained
with the second strategy, which extracts more RSOs and
tracklets, with fewer false detections. The magnitude distribu-
tion of detections obtained with the traditional way and the
developed network on the second day is shown in Figure 8§,
which demonstrates the most detections and tracklets and the
tail on the faint end is more even in terms of the magnitude
distribution. It is demonstrated that the distributions are similar,
with a peak between 10 ~ 12 mag and the faintest detections
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Figure 9. The images of four newly detected RSOs.

greater than 16 mag. Our method achieves a slightly better
performance both for bright and faint objects. The details are
shown in Table 5. It can be found that new RSOs are detected
from the images from all four days. Certainly, some tracklets
and objects are only detected by our network or the previous
traditional way, hence the detections with these two methods
are different. The images of newly detected objects are shown
in Figure 9. These images indicate that these new detections are
not just point-like, but also appear as streaks or other irregular
shapes. After calculating their apparent angular velocity, it
suggests that they are typical RSOs located in the high-Earth
orbital region. The semimajor axis and eccentricity of these
objects obtained with orbit determination are shown in
Figure 10, and it is demonstrated that most of the newly
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Figure 10. The semimajor axis and eccentricity of the newly detected objects.

Table 5
Newly Detected Objects Compared with Traditional Method

Day New Objects New Tracklets
1 13 75

2 29 414

3 13 48

4 13 83

detected objects are in highly elliptical orbits (HEOs), which
exhibit unique dynamical characteristics. It should be noted that
with data fusion, it is evident that the number of tracklets and
objects will be improved without deploying new infrastruc-
tures, and the efficiency of the system is improved.

5. Conclusions

Due to the development of modern optical and electronic
technologies, the infrastructure and instruments for the RSO
survey have been greatly improved. Challenges arise in data
reduction with these large amounts of data utilizing traditional
ways. Here a novel object detection technique using deep
learning is developed. Based on the end-to-end deep learning
framework, the model is both trained and tested on large
amounts of raw data. The results demonstrate that similar
performance is achieved compared with previous methods, and
the data can be reduced in real-time. In addition, our network
detects a number of new tracklets and objects, improving the
efficiency of the system. It is shown that with Al-based
techniques strong synergy can be achieved for astronomical
data reduction and it certainly will play vital roles in the future.
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