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Abstract

Molecular line emissions are commonly used to trace the distribution and properties of molecular Interstellar
Medium. However, the emissions are heavily blended on the Galactic disk toward the inner Galaxy because of the
relatively large line widths and the velocity overlaps of spiral arms. Structure identification methods based on voxel
connectivity in Position-Position-Velocity (PPV) data cubes often produce unrealistically large structures, which is
the “over-linking” problem. Therefore, identifying molecular cloud structures in these directions is not trivial. We
propose a new method based on Gaussian decomposition and graph theory to solve the over-linking problem,
named InterStellar Medium Gaussian Component Clustering (ISMGCC). Using the Milky Way Imaging Scroll
Painting (MWISP) 13CO(1–0) data in the range of 13°.5� l� 14°.5, |b|� 0°.5, and −100� Vlsr�+200 km s−1,
our method identified three hundred molecular gas structures with at least 16 pixels. These structures contain 92%
of the total flux in the raw data cube and show single-peaked line profiles on more than 93% of their pixels. The
ISMGCC method could distinguish gas structures in crowded regions and retain most of the flux without global
data clipping or assumptions on the structure geometry, meanwhile, allowing multiple Gaussian components for
complicated line profiles.
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1. Introduction

As the ingredient of star formation, molecular interstellar
medium (ISM) is an essential part of the galactic material cycle and
plays an indispensable role in the evolution of galaxies.
Observations of molecular line emissions, especially those from
carbon monoxide (CO) molecules (Heyer & Dame 2015), are
commonly used to trace the spatial distribution of molecular gas.
The radial velocity of molecular lines helps analyze the kinematics
and dynamics of molecular gas. Mapping observations of lines
result in data cubes with three dimensions, commonly referred to
as Position-Position-Velocity (PPV) data cubes. However, identi-
fying molecular gas structures in PPV data cubes for further
analysis is not trivial. While manual segmentation is possible when
the spatial and velocity coverage is small, many automatic methods
have been proposed to fulfill this task on large data sets and
specialized for different targets. For instance, the algorithms
CPROPS (Rosolowsky & Leroy 2006), SCIMES (Colombo et al.
2015), and DBSCAN (Ester et al. 1996; Yan et al. 2020) are
applied to identify molecular clouds that are continuous in both
spatial and velocity extents. Some other methods are aimed at the
hierarchical structures of molecular clouds, e.g., ASTRODENDRO
(Rosolowsky et al. 2008), DENDROFIND (Wünsch et al. 2012),
and QUICKCLUMP (Sidorin 2017). To detect molecular cores or

clumps within molecular clouds, ClumpFind (Williams et al.
1994, 2011), FellWalker (Berry 2015), Gaussclump (Stutzki &
Guesten 1990; Stutzki 2014), and more recent ones like LDC (Luo
et al. 2022), ConBased (Jiang et al. 2022), FacetClumps (Jiang
et al. 2023), SS-3D-Clump (Luo et al. 2024) are the appropriate
algorithms. There are also algorithms designed to find filamentary
structures, e.g., DisPerSE (Sousbie et al. 2011; Sousbie 2011) and
FilFinder (Koch & Rosolowsky 2015, 2016).
Even though lots of methods have been developed to find

various kinds of objects from data cubes, there are still
unresolved problems. For instance, Solomon et al. (1987)
noticed that the 12CO(1–0) emission toward the galactic disk is
blended at 3 K level with immense features as large as ∼5° and
∼60 km s−1, which is the result of the over-linking problem in
PPV data cubes. When finding structures in a PPV data cube,
each voxel above the cutoff level is an element to be clustered.
The most commonly used methods, e.g., ASTRODENDRO,
cluster the voxels based on the friends-of-friends principle, also
known as “single-linkage,” which means two connected voxels
will bring all their previous companions into the same cluster
without considering their companions’ PPV separations. When
the dip between two blended spectral peaks is not deep enough,
the voxels between the two peaks act as a bridge connecting the
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two structures into a huge one, even though the original
structures could have a large velocity difference. Such an over-
linking problem of single-linkage methods is also known as the
“chaining phenomenon.” As we will show in Section 3, the
over-linking problem can create clustering results stretching
across multiple spiral arms. This often happens in CO emission
data because of its high intensity and large line width.
Increasing the intensity cutoff might split the enormous
structures but at the cost of losing a large portion of flux.

Miville-Deschênes et al. (2017) designed a hierarchical
clustering method with Gaussian decomposition to solve the
over-linking problem, but it still needs an intensity threshold
decent procedure. The method sets a series of integrated intensity
levels from large to small and merges the clusters that meet
certain criteria above each level. Another suitable method is the
Agglomerative Clustering for ORganising Nested Structures
(ACORNS; Henshaw et al. 2019, 2020) algorithm. Zhang et al.
(2024) utilized ACORNS and confirmed the multi-layer nature
of the Cygnus region with distance measurements, which in turn
illustrates the importance of such methods toward velocity-
crowded regions. The successes of hierarchical clustering
(Miville-Deschênes et al. 2017), ACORNS (Henshaw et al.
2019), and a more pioneer method named Friends In VElocity
(FIVE; Hacar et al. 2013) inspired us that decomposing the
spectra into Gaussian components is a promising step in solving
the problem. Methods that directly manipulate PPV voxels
above certain thresholds do not often consider the inequivalence
between the connectivity on spatial and velocity axes, but these
axes can be separately processed after Gaussian decomposition.

In this work, we propose a method that finds gas structures in
emission line data cubes. It is named InterStellar Medium
Gaussian Component Clustering (ISMGCC). ISMGCC is
designed to find structures with continuity in both spatial and
velocity directions and keep most pixels of each structure
having single-peaked line profiles. Meanwhile, it recovers most
flux from the raw data cube. This paper is organized as follows:
In Section 2, we give a detailed description of the ISMGCC
method. Then in Section 3, we describe the data set used to test
ISMGCC. Section 4 presents the Gaussian decomposition
result, establishes a set of metrics to evaluate the method
performance, shows the parameter experiments, and demon-
strates the structure identification results. In Section 5, we
discuss some important features, connections with the previous
methods, and the limitation of ISMGCC. Finally, the paper is
summarized in Section 6.

2. Method

Here we propose the ISMGCC method for molecular gas
structure identification in PPV data cubes. A molecular gas
structure is a PPV region that contains significant emissions
with continuity in both spatial and velocity dimensions. The
line profile along the velocity axis tends to be single-peaked at

each spatial location. Our method solves the over-linking
problem without extra flux loss or assumptions on the structure
geometry. The main idea is to split the structures with soft
boundaries based on probability, with which the problem is
converted into finding communities in a weighted graph.
One cause of the over-linking problem is the broad widths of

emission lines. The large supersonic line width has been
identified since the first detection of CO(1–0) (Wilson et al.
1970). Many factors can broaden the line profile, e.g.,
turbulence and high optical depth. In crowded regions, spectral
peaks from multiple structures can be blended due to their
small velocity separation compared to their line widths. To
overcome this problem, one can use Gaussian components to fit
the spectrum at each location, which can be considered a
transformation from the “dense” PPV data cube into sparse
points in PPV space. This transformation can be expressed as

{ ( )} { ( ˆ ˆ ˆ ) } ( )T x y z g v a v x y i i N, , ; , , , , : , , 1i i i i iMB s ¢ ¢ Î  

where N is the number of Gaussian components used to fit the
data cube, i is the index of the Gaussian component, and

( ˆ ˆ ˆ )g v a v x y; , , , ,s ¢ ¢ is a Gaussian profile as the function of
radial velocity v,

( ˆ ˆ ˆ ) ˆ ( ˆ)
ˆ

( )⎡
⎣⎢

⎤
⎦⎥

g v a v x y a
v v

; , , , , exp
2

. 2
2

2
s

s
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The parameters to describe a Gaussian component include
amplitude (â), centroid velocity (v̂), velocity dispersion ( ˆ )s ,
and its spatial location ( )x y,¢ ¢ .
All the procedures in our method are based on the results of

Gaussian decomposition. Any Gaussian decomposition algo-
rithm can be used to create the input table. Many spectral fitting
techniques have been developed in previous works, including
semi-automatic ones, for example, SCOUSE, SCOUSEPY
(Henshaw et al. 2016, 2019), and fully automatic ones, such
as, GaussPy (Lindner et al. 2015), Behind The Spectrum (BTS;
Clarke et al. 2018), and the one applied in this work, GAUSSPY+
(Riener et al. 2019). Users of our method can select the
most suitable decomposition method for their data set. This
decoupling brings the potential of ISMGCC to use line profiles
other than Gaussian, e.g., Lorentz and Voigt. As long as the line
profile is symmetric and can be described with parameters
similar to ˆ ˆa v, , and ŝ, i.e., height, center, and width, ISMGCC
could adapt it with minimal modification.
ISMGCC is more like a tool in the intermediate stage of

finding the objects for scientific analysis. It cuts the data along
the velocity dimension and creates 2D maps for each structure.
A complete workflow can be decomposing the data cube into
Gaussian components, then finding structures with ISMGCC,
creating 2D maps for each structure, and finally, utilizing other
tools on the 2D maps to define the objects of study based on
scientific goals. For example, users who want to find clumps or
filaments can process the data cube with Gaussian
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decomposition and ISMGCC, and then use some specific
methods (e.g., GaussClump, FilFinder) on the 2D maps
generated by ISMGCC to find the objects of their interests.

As the Gaussian decomposition procedure is not part of
ISMGCC, we will start with a collection of Gaussian
components as the entry point to describe the method step-by-
step. Our application of GAUSSPY+ to decompose the data cube
is in Section 4.1. The first operation determines the velocity
coherence between Gaussian components (Section 2.1), with
which a weighted graph can be established using the probability
of Gaussian component pairs belonging to the same structure as
edges (Section 2.2). In Sections 2.3–2.4, we describe how the
Gaussian components in a graph are clustered into structures and
the definition of their PPV boundaries. At the end of this section,
the parameters and implementation of ISMGCC will be briefly
introduced (Section 2.5).

2.1. Aperture Clustering for Velocity Coherence

Determining the coherence between Gaussian components
requires thoughtful operations. Here we describe a robust
procedure with only three dimensionless parameters to fulfill
the task. The output of the current step is the probability of two
Gaussian components coherent with each other in velocity.

As illustrated by Figure 1, circular apertures with radii
Rap= 3 pix centered at each location with detected Gaussian
components are created. Gaussian components in each aperture
are clustered by their centroid velocity (v̂) with the MeanShift
algorithm (Comaniciu & Meer 2002). This algorithm moves
the components toward the local density peak iteratively until
the movements stop. Gaussian components that end up at the
same place are clustered as the same group. In the right panel of

Figure 1, we plot the Gaussian components with different
colors and markers based on the MeanShift clustering results.
Gaussian components within the same group are vertically
stacked while their horizontal locations are their v̂. Hereafter,
we will refer to Gaussian components in the same group in
each aperture as a Gaussian Component Group (GCG).
Because of Rap> 1 pix, one component can appear in multiple
apertures. Therefore, one Gaussian component could belong to
multiple GCGs in different apertures and have different
companions. Specifically, given two Gaussian components
(g1, g2) with their spatial separation smaller than Rap, the
number of apertures containing both g1 and g2 is ( )N g g,share 1 2 ,
while the number of apertures where g1 and g2 belong to the
same GCGs is Nsame(g1, g2). This configuration can be utilized
to define the probability of two Gaussian components coherent
with each other in velocity

( )
( )
( )

( ( ) )
( )!

( )

⎧

⎨
⎪

⎩
⎪

P g g

N g g

N g g

N g g

N g g

,

0 if
, 2

,
;

, 1,

,
, else,

3

v,coh 1 2

same 1

share 1 2

same 1 2

same 1 2

d

l
=

<

G +

where δ is a decision boundary that controls the minimal
aperture number proportion of g1 and g2 belonging to the same
GCGs. When δ= 0.5 and (g1, g2) are not in the same GCGs for
half of the shared apertures, we truncate the probability to zero.
Once (g1, g2) have passed this criterion, Nsame(g1, g2) becomes
important. The cumulative probability function (CDF) of a
Poisson distribution is applied to convert Nsame into a
probability, where the expected rate of occurrences λ can be
derived from the mean value of Nsame among all Gaussian

Figure 1. A schematic view of the aperture clustering procedure. The left panel is a field of view where the size of each point is proportional to the number of Gaussian
components on that pixel. Points with more than four Gaussian components are labeled by the number of components therein. For each point with at least one
Gaussian component, we create an aperture with a radius of Rap = 3 pix, as shown by the light gray circles. The red circle is an instance of such apertures, centered at
the red point. The right panel shows the velocity distribution of all Gaussian components in the red circle. Through MeanShift clustering, the Gaussian components are
clustered into groups denoted by different colors and shapes. In the right panel, Gaussian components in the same group are vertically stacked to show the component
number in each group.
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component pairs with ( )N g g, 0share 1 2 > . Figure 2(a) shows an
example of the curve between Nsame and Pv,coh.

The parameters involved in this step include Rap, δ, λ, and
bandwidth of the MeanShift algorithm. The expected
number of occurrences λ can be directly derived from the
distribution of Nsame. The bandwidth parameter of the
MeanShift algorithm controls the flat kernel width that
determines the probability density along the velocity axis,
which is in units of km s−1. In our practice, we use the
amplitude-weighted mean of Gaussian components’ velocity
dispersion multiplied with a coefficient β as the bandwidth
of the current aperture

ˆ ˆ
ˆ

( )a

a
bandwidth , 4b

s
= å

å

where β controls the relative amount. Smaller β values lead to
stronger separation between Gaussian components along the
velocity axis and more GCGs in each aperture. Through these
simplifications, only three dimensionless parameters are
retained at this stage: Rap in units of pixels, δ, and β. In
Section 4.2, we will explore the parameter space and select an
optimized parameter set for usage.

2.2. Building Weighted Graph

A molecular gas structure with Gaussian components as its
elements can be considered a weighted graph G. The Gaussian
components are nodes in G, while the edges connect the nodes.
The probabilities of node pairs belonging to the same structure
could be the weight of each edge, denoted as P(g1, g2). In the
above subsection, we have derived the probability of two
Gaussian components coherent in velocity. To have a more
comprehensive definition of P(g1, g2), the spatial connectivity

between g1, g2 and the prominence of each Gaussian components
should also be considered.
For spatial connectivity, we use ò= 1.5 pix as the threshold

for determining whether two Gaussian components are spatially
connected, as shown in panel (c) of Figure 2. The probability of
two Gaussian components (g1, g2) spatially connected is

( )
( )
( ) ( )⎧

⎨⎩
P g g

g g

g g
,

0, sep , ;

1, sep , ,
5spatial 1 2

1 2

1 2
=
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
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

where sep(g1, g2) is the spatial separation between g1 and g2 in
units of pixels.
We define the probability of a Gaussian component being a

real one as

( ) ·
( )
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⎜ ⎟
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⎤
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where ˆs a rms= is analog to the signal-to-noise ratio.
Equation (6) contains two parts. The first part with a threshold
η1 and the error function (erf) is the CDF of a Gaussian
distribution, where η1 acts as the location parameter for the
distribution. In short, the first part makes Preal= 0.5 when
s= η1. Meanwhile, the second part with a sign function
truncates Preal= 0 when s< η0. Panel (b) of Figure 2 shows the
curve of Preal(g), revealing that η0 sets the minimal s
requirement for a Gaussian component to have Preal> 0, while
η1 controls the value of s when Preal= 0.5.
With all three kinds of probabilities defined, we can define

the probability of two Gaussian components belonging to the

Figure 2. Curves of the functions that help define the probability of Gaussian components belonging to the same structure. Panels (a) and (b) correspond to
Equations (3) and (6), respectively. Panel (c) demonstrates the step function that converts the spatial separation between two Gaussian components into a probability of
them having spatial connectivity, which corresponds to Equation (5).
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same structure as

( ) ( ) · ( ) · ( ) · ( )
( )

P g g P g P g P g g P g g, , , .

7
1 2 real 1 real 2 spatial 1 2 v,coh 1 2=

Using all the Gaussian components as the nodes and
probability P of Gaussian component pairs as the edge weights,
we can build a weighted graph G for further operations.

2.3. Finding Communities in the Graph

In graph theory, communities are node groups with higher
edge density within groups than between them. This definition
of community allows weak connections between groups
without chaining them into one structure. This feature is
suitable to solve the over-linking problem caused by single-
linkage clustering. We have constructed the weighted graph G
in the previous subsection, where nodes represent Gaussian
components and edge weights denote the probability of
Gaussian component pairs belonging to the same structure.
Now the communities in G correspond to the molecular gas
structures of our interest.

The first step to find the communities in G is removing all
the zero-weight edges where P(g1, g2)= 0. This could largely
simplify the connections in G and split it into multiple
subgraphs {Gi}. These subgraphs can be separately processed
in parallel. For every subgraph Gi, we decide whether it has
already been a good molecular gas structure. If there is any pair
of Gaussian components (g1, g2) in Gi meets the following
criteria: (a) g1 and g2 are on the same pixel; (b) g1 and g2 are at
least once clustered into different GCGs in the aperture
clustering procedure (Section 2.1), we consider Gi as a velocity
complicated one because of the multi-GCG signs therein,
which requires further segmentation. If there is no such multi-
GCG sign across the entire spatial coverage of Gi, we consider
Gi as a well-defined molecular gas structure.

To visually describe the further segmentation process, we
use Figure 3 as a schematic diagram to demonstrate the idea.
Each circle with a number inside represents a node in a
complicated subgraph. Locations of the nodes in Figure 3
depend on the spatial and velocity coordinates of their
corresponding Gaussian components. The edges between the
nodes are represented by the lines connecting the circles, where
the dashed lines are connected to the nodes omitted for clarity.
The red edges are labeled with their weights, i.e., the
probability of the two connected nodes belonging to the same
structure. For example, the edge connecting node 1 and node
20 has P= 0.03 as its weight. The other red edges between
structures A and B also have small weight values. On the
contrary, the other edges in Figure 3 have an average weight
value of 0.2, an order of magnitude larger than the red ones,
which makes the coiled line in Figure 3 a rational boundary
between structure A and B. This probability-based soft
boundary is the key to solving the over-linking problem

because of its flexibility. To find such boundaries, we utilize
the Clauset–Newman–Moore greedy modularity maximization
algorithm (Clauset et al. 2004) to split the subgraph into
communities, i.e., the molecular gas structures. This algorithm
optimizes a quantity named “modularity” (Newman &
Girvan 2004; Newman 2004), which measures the quality of
a particular graph division. It considers each node an individual
community at the beginning and keeps combining community
pairs until the modularity no longer increases. A dimensionless
resolution parameter (γ) required by the algorithm controls
the size of communities. Smaller γ values make the algorithm
favor larger community size. In Section 4.2 we use experiments
to select an optimized value of γ.

2.4. Post Process

Even though we have determined the Gaussian component
members in the molecular gas structures with the previous
operations, giving each structure a PPV boundary still helps the
recovery of the isolated Gaussian components. The isolated
Gaussian components are those clustered into structures with
N N 16pix pix,min< = . The post-process procedure described
here would make the valid structures absorb their nearby
isolated Gaussian components.
As will be described in Section 4.1, due to the complicated

profile of the spectral peaks, we allow the existence of multiple
Gaussian components for one structure on each pixel. While
the amplitude (â), centroid velocity (v̂), and velocity dispersion
(ŝ) of each Gaussian component are given by GAUSSPY+, the
total integrated intensity (W), centroid velocity (V̂ ), and
velocity dispersion (s̃) of the Gaussian component ensemble
on a given pixel belonging to the same structure can be derived
through the following equations:

( )W w 8
i

N

i
1

å=
=

ˆ ˆ
( )V

w v

W
9i

N
i i1=

å =

˜
[ ˆ ( ˆ ˆ ) ]

( )⎡
⎣
⎢

⎤
⎦
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w v V
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10i

N
i i1

2 2
1
2

s
s

=
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where w can be derived from â and ŝ through

ˆ ˆ ( )w a2 . 11p s=

Then we can define the upper and lower velocity bounds for
each pixel of the structure with ˆ ˜V 1.5s .
As for the spatial boundary, the flood fill algorithm

implemented in scikit-image (van der Walt et al. 2014)
is utilized to define a closed 2D contour on the plane of the sky.
Then we use linear interpolation to fit the upper and lower
velocity bounds for each pixel within this spatial range. This
gives a closed 3D PPV boundary for each structure. Isolated
Gaussian components within the PPV boundary will be
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absorbed. Because only the isolated Gaussian components from
the invalid structures are reassigned in this step, there would be
no Gaussian components belonging to multiple valid structures.
By now, we have reached the end of the entire method,
assigned the decomposed Gaussian components into structures,
and given a PPV boundary for each valid structure.

2.5. Parameters and Implementation

There are some parameters involved in the method that
control its behavior. We design the adjustable parameters to be
dimensionless or in units of pixels. These parameters are
summarized in Table 1. Users can change these parameters
based on their needs. As our method can work on the results of
any Gaussian decomposition method, the parameters of
GaussPy+ are not included in Table 1. In Section 4.2, we
will demonstrate the impact of these parameters with
experiments.

ISMGCC is currently implemented with Python and open-
source packages. The manipulations of the weighted graph are
through the networkx package (Hagberg et al. 2008),
including the community-finding procedure in Section 2.3 using
the greedy_modularity_communities function. We
also utilized the MeanShift algorithm (Comaniciu & Meer 2002)
implemented in scikit-learn package (Pedregosa et al.
2011) for the aperture clustering procedure in Section 2.1. The
post-process in Section 2.4 applied scikit-image (van der
Walt et al. 2014) to determine the final spatial borders of
structures and employed scipy (Virtanen et al. 2020) to
interpolate the upper and lower velocity boundaries. The code is
available online5 with documents and examples. The output of
our method is tables containing the structure IDs of the input
Gaussian components. Functions that convert the result Gaussian
component table into pixel tables and 2D maps will also be

Figure 3. Illustration of finding communities in a subgraph with multiple Gaussian component groups. Each node with a number inside represents a Gaussian
component, while the edge connecting two Gaussian components possesses the probability of them belonging to the same structure. The coiled line is the boundary
determined by the community-finding procedure. The average weight value of the solid and dashed black edges is ∼0.2, an order of magnitude larger than the weights
of the red edges between Structure A and B.

5 https://github.com/Haoran-Feng/ismgcc
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provided. The detailed usage information will be delivered in the
document.

3. Data

We utilize a fraction of the data from the Milky Way
Imaging Scroll Painting (MWISP) survey (Su et al. 2019) to
test the ISMGCC method. MWISP observes the entire Galactic
plane in the northern sky using the PMO-13.7 m telescope.
Three CO emission lines, 12CO, 13CO, and C18O= (1–0), are
observed simultaneously. The typical rms noise levels (σrms)
for the three lines are ∼0.5, ∼0.3, and ∼0.3 K, respectively,
with the corresponding velocity channel widths of 0.158,
0.167, 0.167 km s−1, and beam sizes of 49″, 52″, 52″. The
observations are taken in position-switch On-The-Fly (Sun
et al. 2018) mode. Details on the survey, instruments, and noise
analysis can be found in related papers (Yang et al. 2008; Shan
et al. 2012; Su et al. 2019; Cai et al. 2021). From the three lines
observed by MWISP, we have chosen 13CO(1–0) to test our
method, because it is optically thin at most locations and has a
relatively high detection rate (Wang et al. 2023a, 2023b).

Spatial and velocity ranges of the utilized MWISP 13CO data
are 13°.5� l� 14°.5, |b|� 0°.5, and −100� Vlsr�+200 km s−1.
The velocity interval is wide enough to enclose most of the
emission from the galaxy in this direction. The direction centered
at l= 14°, b= 0° is pointing at the inner galaxy, which is suitable
to evaluate the performance of our method in crowded regions. To
give an overview of this data cube, we plot the integrated intensity
map and longitude–velocity map in the top panels of Figure 4.
The velocity interval for the two maps is narrowed down to [−55,
170] km s−1 for clarity. To reduce the impact of noise, only voxels
with three consecutive channels brighter than 3σrms are included
in creating the maps. But all the values reported in this paper are
still using the raw data cube with the full velocity interval of
[−100, +200] km s−1 without any masking operation. The nine
cells in the bottom panels of Figure 4 show the average
13CO(1–0) spectra from the nine red apertures in the upper left

panel. These spectra have complicated line profiles, especially in
the velocity range of [0, 60] km s−1. The signals peaked at
different velocity could be heavily blended. Using single-linkage
clustering methods to find structures in this kind of data would
give an immense structure containing the majority of flux in the
entire data cube.
To demonstrate the problem visually, we apply ASTRODEN-

DRO on the data cube and plot the largest dendrogram structures
above each intensity level in Figure 5. On top of each panel
column is the threshold TMB,th value, while the two rows are the
integrated intensity maps and longitude–velocity maps, respec-
tively. The two spiral-arm-like structures around 20 and 40 km s−1

could not be distinguished until TMB,th 1.8 K∼6σrms, but there
is still a structure ∼47.5 km s−1 attached to the 40 km s−1 arm.
Increasing TMB,th to 2.1 K finally removes the 47.5 km s−1 part
and isolates the one around 40 km s−1, but the emissions in their
outskirts are heavily lost. For comparison, we also plot the spatial
and velocity boundaries of the first two largest structures identified
by ISMGCC as red and gold contours in Figure 5. They
correspond well with the 40 and 47.5 km s−1 portions with the
outskirts largely retained.

4. Results

4.1. Gaussian Decomposition of Spectra

We utilize GAUSSPY+ (Riener et al. 2019) to fit the entire
data cube with Gaussian components. It automatically
estimates the noise level of each spectrum, determines the
number of Gaussian components, and fits all spectra with
considerations of spatial coherence. The default parameters of
GAUSSPY+ were applied, while the values of the smoothing
parameters α1= 2.18 and α2= 4.94 were taken from the test
on MWISP data (Riener et al. 2020). On the current data set,
the Gaussian decomposition retains 98.3% of the total flux in
the raw data cube.
Figure 6 shows the fitting result centered at l= 14°.02,

b=−0°.10. It takes twelve Gaussian components to fit the

Table 1
Parameters of ISMGCC

Symbol Recommended Value Tested Values Description

Rap 3 3, 5, 7 Radii of the apertures for velocity coherence clustering, in units of pixels (Section 2.1);
β 0.50 0.25, 0.50,

0.75, 1.0
bandwidth coefficient that controls the MeanShift clustering, smaller value leads to more velocity slices
(Section 2.1);

δ 0.5 0, 0.5, 0.8 Minimal value of N Nsame share for two Gaussian components having a chance to be coherent with each other
(Section 2.1);

η0 0 0, 3 Amplitude-to-noise threshold for a Gaussian component to have Preal > 0 (Equation (6), Section 2.2);
η1 5 3, 5, 7 Amplitude-to-noise value for a Gaussian component to have Preal = 0.5 (Equation (6), Section 2.2);
ò 1.5 1.5 Maximum spatial separation between two Gaussian components for being spatially connected, in units of

pixels (Section 2.2);
γ 0.01 0.001, 0.01,

0.1, 1.0
The resolution parameter of the Clauset–Newman–Moore algorithm (Clauset et al. 2004), controls the
community sizes in the graph, smaller values lead to larger communities (Section 2.3);

Npix,min 16 16 Minimal Number of pixels for a structure to be considered as a valid one (Section 2.4).
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spectrum. However, due to the complexity of the line profiles,
multiple Gaussian components are required to describe some of
the peaks. For example, the highest peak (∼40 km s−1) is
decomposed into three Gaussian components because of its
skewed shape. Another example is the second highest peak
(∼25 km s−1) decomposed into two Gaussian components due
to its broad base. These examples imply that assuming only one
Gaussian component exists at each location of a given structure
is inappropriate. Therefore, our method allows multiple
Gaussian components on the same pixel to be clustered into
the same structure. The Gaussian components shown in the

bottom of Figure 6 are colored by the final clustering result of
our method. It can be seen that our method has a relatively
rational segmentation between the structures along this line of
sight.

4.2. Metrics, Experiments, and Parameter Setting

To evaluate the performance of the ISMGCC method with
variable parameter settings, three metrics are applied: Flux
Recovery Ratio (FRR), Single Peak Ratio (SPR), and Border
Inner Ratio (BIR). These metrics are designed to reflect

Figure 4. An overview of the MWISP 13CO(1–0) data used in this work. The upper left panel is the integrated intensity map within the velocity interval of [−55,
170] km s−1. The upper right panel shows the longitude–velocity map. The nine cells in the bottom contain the average spectra from the nine red apertures shown in
the upper left panel.
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performance from three perspectives: flux, velocity coherence,
and rationality of spatial borders. FRR is the sum of flux in the
valid structures divided by the total flux of the data cube. The
valid structures here are those with N N 16pix pix,min = .

To evaluate how well the structures are segmented along the
velocity axis, we define the SPR as the number of pixels with
only one peak divided by the total number of pixels among all
structures. Specifically, as the Gaussian components have been
clustered into structures, we can recover the line profile on each
pixel for each structure with the Gaussian components therein.
Using the same spectrum example as Figure 6, we show the
recovered line profile of each structure in the main panel of
Figure 7. Even though multiple Gaussian components are
sometimes required to describe the line profile, it could still be
single-peaked, e.g., the highest one near 40 km s−1 in the main
panel of Figure 7. When there is at least one prominent dip in the
line profile, it should be considered a multi-peaked situation,
e.g., the one around 40 km s−1 in the inset panel of Figure 7,
where the spectrum is taken from another pixel. A peak must be
higher than the dip around it for more than 0.3 K, which is close
to the rms noise level of MWISP 13CO data. Otherwise, it is not
considered prominent and will not contribute to the number of
peaks. With the number of peaks on each pixel of each structure
derived, we can calculate the SPR with

( )
( )

N

N
SPR 1

number of peaks 2
, 12

j j

j j

pix,

pix,
= -

å

å



where j is the index of structure, Npix,j is the number of pixels in
structure j.

Besides the velocity axis, the rationality of structure
segmentation along the two spatial dimensions is also important.
Therefore, we use the BIR to reflect the intensity contrast
between spatial border pixels and inner structure pixels. The BIR
is the average integrated intensity ratio between the border and
inner structure pixels. The border pixels belong to the structure
but touch at least one foreign pixel. Pixels from all valid
structures are counted together. Equation (8) defines the
integrated intensity of a pixel in a given structure.
In consideration of the goal of our method, higher FRR and

SPR scores are favored while the lower BIR is preferred. To
evaluate the impact of the parameters shown in Table 1 and
choose an optimized parameter setting, we tested the method
on a parameter grid containing 864 settings with various β, Rap,
η0, η1, γ values. Table 1 contains the tested values of each
parameter. We demonstrate the three metrics of the experiments
in Figure 8. The FRR, SPR, and BIR as functions of β are
displayed in the three rows of panels in Figure 8. As shown in
Table 1, six parameters have more than one tested value.
Therefore, besides β on the x-axis, the other parameters are
shown as lines with different colors in panel columns, η0, η1,
Rap, δ, and γ, from left to right, respectively. Vertical locations
of the points in each panel represent the average metric score
with the current β and the value of another parameter. For
example, in the top left panel of Figure 8, the vertical
coordinate of the blue point with β= 0.50 is the average FRR
of 108 parameter settings with β= 0.50 and η0= 0. These 108
experiments cover all tested values of the remaining para-
meters. The colored error bands around the average values

Figure 5. The largest dendrogram structures above each threshold (TMB,th). Each panel column corresponds to a value of TMB,th, where the first row is an integrated
intensity map and the second row is the longitude–velocity map. The spatial and velocity boundaries of the first two largest structures identified by ISMGCC are
denoted as the red and gold contours, respectively.
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represent the dispersion of the metric values. The widths of the
error bands are derived by the 95% confidence interval of the
average value using bootstrap.

Choosing the setting of parameters is a process of
compromise. For instance, larger β values lead to better FRR
and BIR, but damage SPR. Therefore, to balance the three
metrics, we have chosen β= 0.50 in the final setting on the
current data set. Meanwhile, the values of some other
parameters are easy to decide. For example, η0= 0.0 has better
FRR than η0= 3 and no obvious adverse impact on SPR and
BIR. Rap does not seem to have a large metric difference
between the tested values, therefore, we have set it to three for
runtime performance.

The final optimized parameter setting is β= 0.5, η0= 0,
η1= 5, Rap= 3, δ= 0.5, and γ= 0.01. This setting yields
FRR= 0.92, SPR= 0.93, and BIR= 0.34 on the current data
set. With this optimized parameter setting, our method can
recover more than 90% of the flux in the raw data cube. Note
that only the flux in structures with N N 16pix pix,min = is
included in the numerator. Meanwhile, these structures show
single-peaked profiles in 93% of their angular area.

4.3. Structure Finding Results

Our method identified three hundred valid structures in the
current data set with the optimized parameter setting from the
previous subsection. To visually display the structure finding
results of our method and demonstrate the spatial segmentation,
we draw the spatial boundary of each structure on the

integrated intensity maps with various velocity intervals in
Figure 9. Because the structures are crowded between 12 and
60 km s−1, narrower velocity intervals are used in this range to
reduce the number of structures in each panel. Some structures
with large velocity spans can appear in multiple panels with the
same boundary colors. For example, the structure outlined by
the orange contour appears in the center of all top row panels,
because its large velocity gradient causes a wide velocity span.
In Figure 9, one can notice that there is a large structure

outlined by the dark green contour at the [33, 37] km s−1 and
[37, 43] km s−1 panels. We plot its integrated intensity map,
longitude–velocity map, and average spectrum in Figure 10. Its
average line profile is a single peak around 40 km s−1, while its
emission shows continuity in the longitude–velocity map.
Given this velocity information, this structure is well-defined in
spatial and velocity dimensions. In Figure 11, we show another
large-scale structure recovered in the cube. Unlike the first
example in Figure 10 that touches the data edge, this structure
has a complete spatial boundary. It shows complex internal
substructures while the continuity on the velocity dimension is
solid. In the right panel, the recovered average spectrum shown
by the red curve perfectly fits the current peak of the raw
average spectrum. The emission corresponds to the other peak
around 40 km s−1 can also be seen in the longitude–velocity
map, which is part of the emission from the first example
shown in Figure 10. The raw average spectrum contains two
prominent peaks, one around 40 km s−1 and the other near
47.5 km s−1. The dip between them is deep but has an intensity

Figure 6. An example of the Gaussian decomposition. This spectrum is taken from the 13CO(1–0) data cube with a pixel size of 30″ and a beam size of ∼52″. The
Gaussian components at the bottom are the fitting result of gausspy+ and colored by the final structure identification result of our method. We vertically shifted the
Gaussian components by −1.5 K for clarity. The red curve overlaid on the spectrum is the sum of the Gaussian components. The inset panel demonstrates the fitting
residual and the rms noise of ∼0.27 K.
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value of 0.6 K. This means that the single-linkage methods
processing voxels of the data cube would not be able to
disconnect the two structures along the velocity axis unless
using a very high cutoff threshold, a consequence of which
would be the loss of a significant amount of flux. The spatial
and velocity boundaries of the two structure examples in
Figures 10 and 11 are shown as the red and gold contours in
Figure 5. The method proposed in this work can distinguish
emissions from multiple velocity layers without excluding
large amounts of diffuse emission.

To reveal the property distributions of the identified
structures, we plot the histograms of their 13CO peak brightness
temperature (Tpeak), angular area, and velocity dispersion in
Figures 12(a), (b), and (c), respectively. We use the tool
delivered with ISMGCC to generate recovered data cubes from
clustered Gaussian components to measure these quantities.
From the distributions shown in Figure 12, it can be concluded
that most structures have weak 13CO emissions and small
angular areas, while a few large structures have high Tpeak and
possess a large portion of the total flux. As shown in
Figure 12(d), the structures with Tpeak� 3 K hold only 17%
of the total flux. The weakest gas structures have Tpeak< 1 K,
close to three times the rms noise level. Given that the reported
values are of peaks, the Gaussian decomposition and our
method can recover flux from the velocity channels with a
signal-to-noise ratio smaller than three. Although the flux in the
27 structures with Tpeak< 1 K only constitutes 0.05% of the
total flux in all structures, this weak-signal-sensitive feature of
our method could also significantly increase the recovered flux

in those relatively large structures. For comparison, clipping
out the recovered data cubes at 0.3, 0.6, and 0.9 K would
decrease the FRR from 92% to 85.7%, 74.6%, and 63.2%,
respectively.
The median values of Tpeak and angular areas are 1.7 K and

11.25 arcmin2, respectively. There are 243 structures with
Tpeak� 3 K. The remaining 57 structures with Tpeak> 3 K hold
more than 80% of the total flux and create a tail between ∼3 K
and ∼15 K in the Tpeak distribution. The bright subset with
Tpeak> 3 K has a flat angular size distribution, as shown in
Figure 12(b), while the distribution of all structures is skewed
toward the method threshold (N 16 4 arcminpix,min

2= ~ ). As
shown in Figure 12(e), 18 structures have angular areas greater
than 100 arcmin2, covering ∼57% of the total angular area of
all structures.
The velocity dispersion distribution of the bright subset is very

similar to that of all structures, with median values of 1.14 km s−1

in the bright subset and 1.11 km s−1 among all structures.
Figure 12(f) shows the velocity dispersion cumulative distribu-
tions of the bright and dimmer subsets, which seem identical. The
p-value from the two-sample Kolmogorov–Smirnov test is 0.52,
not rejecting the null hypothesis of identical distributions. In
molecular clouds, the velocity dispersion is correlated to its
physical scale, known as Larson’s first relation (Larson 1981).
The detailed analysis requires accurate distance estimations, which
are beyond the scope of this work.
The data applied here is toward the inner galaxy at l= 14°,

b= 0°, which means multiple spiral arms might be seen
through this line of sight. We plot the VLSR distribution with the

Figure 7. Examples of line profiles of multiple structures. The main panel is the same example as Figure 6. Overlaid on the spectrum is the recovered line profile for
each structure. The inset panel contains a spectrum from another location, where the structure around 40 km s−1 has a line profile with two peaks. Note that the line
profiles in both panels near 40 km s−1 belong to the same structure.
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typical radial velocities of the spiral arms in Figure 13. The
approximate velocities of these arm segments are taken from
Reid et al. (2019). We label the spiral arm segments at the
near/far side with arrows in darker/lighter gray. Even though
there seem to be some associations between the distribution
peaks and the spiral arm velocities in the range of [10,
50] km s−1, the number of structures (300) is not large enough
to have a solid determination of the velocity peaks. Therefore, a
larger data set should be used for a more prominent correlation
between the structure velocity and the spiral arm segments.

5. Discussion

5.1. Important Features of ISMGCC

The proposed method has some features worth discussing.
Few assumptions are included in defining the molecular gas
structures targeted by our method. In spatial dimensions, there

is no prior assumption on the geometry of structures. The
spatial boundary of each structure can have arbitrary geometry
based on pixel connectivity. Besides, we have no assumption
on the number of Gaussian components on each pixel of a
structure, which is different from the ACORNS (Henshaw et al.
2019) algorithm where two components from the same location
can never be linked to the same cluster. We discard the single-
component assumption because of the complicated line profile
of 13CO emissions at high-column-density regions where the
optical depth could be high and self-absorption might exist.
Fitting the complicated line profiles caused by these factors
requires multiple Gaussian components.
There is always a compromise between isolating the blended

structures and preserving more flux. Our method is designed to
strike a balance between distinguishing blended structures and
retaining as much flux as possible. The traditional single-
linkage methods can distinguish multiple structures at the cost

Figure 8. Evaluation of the method performance on three metrics. Three rows of panels show the trend of the Flux Recovery Ratio, Single Peak Ratio, and Border
Inner Ratio, from top to bottom, respectively. All panels use β, the bandwidth coefficient, as the x-axis. The error bands indicate the 95% confidence interval of the
average metric values using bootstrap. Note that the y-axes of the bottom row panels are inverted to make the upper side always preferred.
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of increasing intensity cutoff values. However, setting a high
cutoff threshold would significantly reduce the FRR. Many
voxel-based methods use a signal-to-noise cutoff parameter to
distinguish noise and signal. But it is impossible to determine a
clipping level at which most of the emission is kept and most of

the noise is suppressed (Dame 2011). The optimized parameter
setting of our method given in Section 4.2 has η0= 0, which
means that there is no global cutoff on the decomposed
Gaussian components. This makes our method sensitive to the
weak signals extracted by Gaussian decomposition.

Figure 9. Spatial boundaries of the identified structures overlapped on the integrated intensity maps with various velocity intervals. On top of each panel is the velocity
interval in units of km s−1.
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5.2. Connections with Previous Methods

The ISMGCC method is not the first one that interprets PPV
data with graphs. An earlier graph-based method named
Spectral Clustering for Interstellar Molecular Emission Seg-
mentation (SCIMES; Colombo et al. 2015) uses dendrograms
as inputs and recasts them as graphs. It regards the dendrogram
leaves as the graph nodes (vertices) and the highest branches
connecting node pairs as the edges, where the edge weights are
defined through the similarity criteria based on the volume
and/or luminosity of the dendrogram leaves. Then the graphs
are optimally cut into segments through spectral clustering.
Because the definitions of volume and luminosity consider
each leaf’s size (with distance) and velocity dispersion,
SCIMES is more like a physical-oriented approach than a
simple pixel/voxel-based segmentation method. The idea of
using graphs to represent PPV data from SCIMES inspired the
design of ISMGCC. Even though both SCIMES and ISMGCC
utilize weighted, undirected, and simple graphs, the graphs
used in SCIMES are fully connected, i.e., there is always an
edge between any pair of nodes in the graph, while those in
ISMGCC are not. The edges could only exist between
Gaussian components with spatial separations smaller than
the radii (Rap) in the aperture clustering procedure (Section 2.1)
of ISMGCC. Therefore, instead of spectral clustering that
works well on fully connected graphs, we have chosen a
community-finding algorithm to cut the graphs.

Another important physical-oriented approach is the gravity-
based G-virial method (Li et al. 2015). It generalized the virial
parameter (Bertoldi & McKee 1992) from the self-gravity of
regions to the gravitational interactions between voxels in the
PPV data cube. The G-virial value of a given voxel is the sum
of gravitational boundedness from all the other voxels (see
Equations (5) and (6) in Li et al. 2015). Even though it is still

voxel-based, the definition of G-virial has considered the
inequivalence between the spatial and velocity dimensions.
Because the gravitational boundedness (I) between two voxels
is proportional to their spatial (δr) and velocity separations (δv)
with different indices, i.e., I r v

1 2d dµ - - . This fact makes the
irrelevant velocity components have minimal contributions to
the G-virial of the current voxel. Therefore, converting the PPV
data cube into a G-virial cube and then finding the structures
with DENDROGRAM or other methods could have a robust
region definition. Besides, the recovered data cube for each
structure identified by ISMGCC could also be the input of the
G-virial method. In this way, the gravitational coherent regions
can be identified without the contamination from irrelevant
velocity components.

5.3. Limitation of ISMGCC

The design of ISMGCC absorbed some ideas from previous
works. Meanwhile, its major difference from the voxel-based
approaches is that the flux of each voxel can be assigned to
multiple structures. This characteristic came from the Gaussian
decomposition, through which ISMGCC could distinguish
structures in crowded regions. However, it implicitly assumes
that the spatially overlapped structures have distinguishable
radial velocities, leaving an inevitable limitation on ISMGCC
and any other methods working with PPV data. When the
velocity difference between two overlapped structures is too
small, they may be identified as one structure. This effect could
be severe toward the regions with a shallower distance-velocity
slope (see Figure 7 in Peek et al. 2022). We use two structures
in our sample to demonstrate such a limitation. To simulate
various velocity crowdedness, we shift their Gaussian compo-
nents with four centroid velocity differences (ΔV ) between
them. Their Gaussian components are also relocated until the

Figure 10. The largest molecular gas structure in the current data set. The three panels from left to right are the integrated intensity map, longitude–velocity map, and
average spectrum. The spectral profile in the right panel is the raw average spectrum within the spatial range denoted by the solid red contour in the left panel. The red
curve overlapping on the spectrum is the sum of all Gaussian components belonging to the structure. The half-max value of this red curve defines the velocity interval
of the integrated intensity map. The dashed blue lines in the middle and right panels denote this velocity interval. The velocity border in the longitude–velocity map is

defined by the median values of ˆ ˜V 1.5s along each longitude, where V̂ and s̃ are defined by Equations (9) and (10). The dashed red rectangle in the left panel shows
the spatial range of the longitude–velocity map.
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Figure 11. The second largest structure. Description of the elements is the same as Figure 10.

Figure 12. Panels (a), (b), and (c) show the distributions of 13CO peak brightness temperature (Tpeak), angular area, and velocity dispersion of three hundred valid
structures identified by ISMGCC. The subset with Tpeak > 3 K is shown in red in all panels. Panel (d) demonstrates the cumulative fraction of the total flux as a
function of structure Tpeak. Panel (e) is similar to panel (d) but for the angular area. Panel (f) presents the velocity dispersion cumulative distributions of the bright and
dimmer subsets.
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Figure 13. The centroid velocity (Vlsr) distribution of the three hundred structures. The approximate radial velocities of spiral arm segments (Reid et al. 2019) in this
direction (l = 14°) are annotated. Lighter gray arrows and labels denote the arm segments at the far side of the galaxy. Abbreviations of the arm segments include:
SgN/F (Sagittarius arm Near/Far), ScN (Scutum arm Near), N1N (Norma arm 1st Quadrant Near), 3kN/F (3 kpc arm Near/Far), Per (Perseus arm), and Out (Outer
arm). Structures with Tpeak > 3 K are shown in red.

Figure 14. A simple simulation of ISMGCC results with various velocity crowdedness. The top row contains the “true” structure finding results, where the blue and
green points represent the Gaussian components in two structures. These components are shifted along the velocity axis to various degrees and fed into ISMGCC again
without their old affiliations. The outputs in the middle row are the new structure finding results, while the bottom row displays the corresponding recovered average
spectra. The ΔV on top of each column denotes the centroid velocity difference between the original structures. When ΔV is too small, e.g., the rightmost column, the
two structures are not distinguishable and end as one structure.
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two structures are spatially overlapped. Figure 14 demonstrates
the ISMGCC results with the four ΔV values [10, 5, 2,
1] km s−1, from left to right, respectively. As ΔV decreases, the
two structures gradually become indistinguishable. This simple
simulation indicates that the ISMGCC method could fail to
distinguish the structures blended on both the spatial and
velocity axes.

6. Summary

In this work, we propose a new method named ISMGCC to
find molecular gas structures in emission line data cubes. Based
on Gaussian decomposition and graph theory, our method
could disentangle the complicated molecular gas distributions
in crowded regions with minimal flux loss and no prior
assumptions of the structure geometry. It also does not limit the
number of Gaussian components on each pixel of a structure,
enabling it to tolerate distorted line profiles. All parameters are
either dimensionless or in units of pixels, reducing the
difficulty for users in adjusting the parameters on different
data sets.

We tested the ISMGCC method on the MWISP 13CO data in
the range of 13°.5� l� 14°.5, |b|� 0°.5, and −100� Vlsr�
200 km s−1. The main results are as follows:

1. Three hundred structures with at least 16 pixels are
identified;

2. These structures retain 92% of the flux in the raw data
cube and have single-peaked line profiles on 93% of their
pixels;

3. The less numerous large-scale structures dominate the
total flux and angular area;

4. Unlike the flux and angular area, the velocity dispersion
seems less affected by Tpeak. Structures above and below
Tpeak= 3 K have identical distributions on their velocity
dispersion;

5. The centroid velocity distribution is not significantly
correlated with the expected spiral arm segments because
of the small structure number. Data with wider spatial
coverage might bring more insights on this.

Some possible improvements to ISMGCC could be made in
the future. For example, using multiple emission lines with
various optical depths, chemical abundance, and critical density
simultaneously might help find more complete structures across
large physical condition ranges. As for the MWISP data, we
could use C18O data to trace the centroid velocity at the high-
column-density regions and apply 12CO to determine the
outskirts of the gas structure. Furthermore, more multi-line
surveys have been performed in recent years, e.g., CHaMP
(Barnes et al. 2011), FUGIN (Umemoto et al. 2017), Mopra-
CO (Burton et al. 2013), ThrUMMS (Barnes et al. 2015), FQS
(Benedettini et al. 2020), SEDIGISM (Schuller et al. 2017), and
OGHReS (Urquhart et al. 2024). These surveys have acquired

data with various molecules and transitions, providing great
application scenarios for our method. Using ISMGCC with the
future multi-line improvement might bring us a more
comprehensive picture of the gas structure in molecular ISM.
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