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Abstract

Timing newly discovered pulsars requires gradually building up a timing model that connects observations taken 
days to months apart. This sometimes can be challenging when our initial knowledge of the pulsar’s position is 
arcminutes off from its true position. Such a position error leads to significant arrival time shifts as a result of the 
Earth’s orbital motion. Traditional down-hill fitting timing algorithms become ineffective when our model predicts 
the wrong pulse rotations for our next observation. For some pulsars whose model prediction is not too far off, the 
correct rotation number could be found by trial-and-error methods. For the remaining challenging pulsars, a more 
generalized method is called for. This paper proposes a GPU-based algorithm that could exhaustively search a 
large area of trail positions for probable timing solutions. This could help find phase-connected timing solutions for 
new pulsars using brute force.
Key words: methods: data analysis – (stars:) pulsars: general – (stars:) pulsars: individual (J0706+2707, 
J2149+5643)

1. Introduction

Pulsars are powerful tools for studying fundamental physics,
gravitational theories, and gravitational waves (Wex 2014; Berti
et al. 2015; Kramer et al. 2021; Paulo 2024). Measuring the mass
of neutron stars could help us understand the equation of the state
of super-nuclear matter and the mechanism of neutron star
formation (Antoniadis et al. 2024; Fonseca et al. 2016). Pulsars
could probe the Milky Way’s large-scale structures in magnetic
fields and ionized medium (Alvarez-Muñiz & Stanev 2006). The
extreme density, pressure, and magnetic field of neutron stars, as
well as their internal super-fluidity and super-conductivity,
provide the ideal labs for testing the mechanism of particle
acceleration in the magnetosphere, high-energy radiation,
electromagnetism, and relativistic plasma physics (Ruderman
& Sutherland 1975). Furthermore, the pulsar timing array has
detected evidence for nano-hertz gravitational waves (Antoniadis
et al. 2022; EPTA Collaboration et al. 2023; Reardon et al. 2023;
Xu et al. 2023).

The aforementioned scientific cases start from discovering
pulsars in surveys and solving and timing the discovered
pulsars. More than 3534 pulsars have been discovered until
2024 January, according to the ATNF catalog version 2.1.16

(Manchester et al. 2005); among them, 574 are so-called

millisecond pulsars, i.e., pulsars with a spin period of fewer
than 30 ms.
Solving new pulsars means determining their nature through a

series of initial timing observations. This is done by modeling the
time of arrival (TOA) with a series of pulse numbers and phase
values as predicted by a timing model. The modeling usually
could be well constrained in several observations taken over a
few years for an isolated normal pulsar. However, a millisecond
pulsar in a binary orbit often requires more effort because a
binary system contains more parameters that must be determined
well to phase connect all the observations. More importantly, a
millisecond pulsar has a small rotational period, which could be
much smaller than the uncertainty of model prediction when
projecting months into the future. Without predicting the correct
rotation number, traditional down-hill fitting algorithms cease to
work in improving the timing model. In this case, one usually
has to conduct more observations in a short span of time, trying
to keep more TOA phases connected and improve the precision
of the model so that there is no more pulse number ambiguity.
This process sometimes could take a long time and many extra
observations, even though there are already more than enough
TOAs to provide strong constraints to the timing model.
Freire & Ridolfi (2018) developed the Dracula program

script that automatically tested a number of possible pulse
numbers for each epoch of TOA and tried to find the correct
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timing solution through trial and error. Phillips & Ransom
(2022) developed APT for solving isolated pulsars, and Taylor
et al. (2024) developed APTB for solving binary pulsars
following trial and error methods. This approach could help
solve some millisecond pulsars but would take too long to run
when the real pulse number solution is too many rotations away
from the current best guesses. In these difficult cases, the offset
in pulse numbers is often caused by the pulsar’s positional
errors.

This paper proposes a GPU-based algorithm that could
exhaustively search over a range of R.A. (α) and decl. (δ)
values with necessary fine grinding to brute-force solve a
pulsar. The algorithm could help solve millisecond binary
pulsars when the binary model is reasonably well constrained,
and R.A., decl. errors were the main cause of TOA offsets. The
search in position space requires fine griding. In our test cases,
we must search over square arc minutes of parameter space
with a milliarcsecond grid, i.e., mounting to a 109–1010

position trials. Luckily, this computation is highly paralleliz-
able, making it ideal for a GPU. Our program is a complement
to the existing pulsar-solving tools.7

2. Method

When a radio pulsar is discovered, we first learn its
dispersion measure (DM), spin period, and rough position,
which is precise to a few arc minutes. We then conduct a series
of observations to determine its nature. If the pulsar’s spin
period is stable in the following observations, it is likely an
isolated pulsar; otherwise, it could be a binary system.

Several scattered observations over a year often suffice for
an isolated pulsar to determine its precise spin parameters and
position. For a binary system, dense observations are often
needed to identify the orbital period. In these close observa-
tions, we observe how the pulsar’s spin period varies over time
and infer the binary system’s initial parameters by fitting the
spin periods and sometimes the spin period derivatives by
using a customized program or existing program like PRESTO8

(Ransom 2011).
The initial spin parameters (often only the spin period) and

the initial binary parameters constitute the binary pulsar’s
initial solution. They could be further refined by fitting the
pulsar’s TOAs in timing software such as TEMPO (Nice et al.
2015), TEMPO2 (Edwards et al. 2006), and PINT (Luo et al.
2021).

For most pulsars, we could continue refining our initial
solution by extending our observations once per month and
adding fit to position and spin period derivatives without losing
phase connection. Eventually, we could get a long-term stable
timing solution that reflects the pulsar’s real position and spin

properties. But for a few exceptional pulsars, often millisecond
pulsars, we might find it hard to keep the phase connection
after several months when the extra residuals caused by the
pulsar position error become significantly larger than the pulsar
period. This is because to continue our timing practice, we need
our best model to predict the next epoch’s pulse number so that
the TOAs of the last epoch would be placed within one rotation
of the correct model. If our model is somehow inaccurate
enough to predict the wrong rotation number for our next
epoch, we often cannot immediately get a new solution that
could work with the new TOAs. This problem is called losing
phase connection. This problem could sometimes be solved by
adding or subtracting a few rotations or subtracting from our
prediction, but sometimes, it requires extensive experimenting.
For this reason, Freire & Ridolfi (2018) program the
DRACULA script that automatically experiments by adding
or subtracting a few rotations from observation epochs
disconnected in phase from earlier ones. This is an effective
way to help solve those challenging pulsars, but not a method
guaranteed to work out. Some pulsars require more experi-
ments than the loop-based script. The model predictions could
be off by more than dozens of rotations on several different
epochs, making it difficult for trial-and-error methods to reach
them. An effective method is needed to exhaustively search for
the correct solution under these circumstances.
So, we develop a GPU-based code to find the correct

solution by searching the most probable range of R.A. and decl.
A fine grid is needed in this search because the effect of
position error could be significant on the TOAs. Let us assume
a position error of Δα∼ 1’(∼0.0003 rad); the TOA error that
this introduced could be roughly estimated by 0.0003× 500 s,
i.e., ∼0.15 s. For a millisecond pulsar with a spin period of
1.5 ms, the position-induced error could be nearly 100
rotations. To search and place our solution within one rotation
of the correct model, we need to search for position space in
0.″1 precision. But our algorithm needed to search and place
the solution to nearly the same level as TOA errors, which are
often at 10 μs level; this requires us to search in position space
with a 1∼ 10 mas precision.
The pulsar rotation model is usually expressed in the

reference frame co-moving with the pulsar. Since pulsars do
not rotate at a constant pulse frequency, we typically use a
Taylor expansion to describe the rotational phase as
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here N(tPSR) is the phase/pulse number of the TOA tPSR
observed in the pulsar’s co-moving reference frame, N0 is the
phase/pulse number at a reference epoch t0, ν0 is the pulse
frequency at t0, n0 and ̈n0 are the first and second derivatives of
pulse frequency.

7 https://github.com/ZiyaoFang/DARG
8 https://github.com/scottransom/presto
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To compute a pulsar’s timing residual, we need to perform a
time transformation from a topocentric TOA (ttopo) to the pulsar
time (tPSR):
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On the left-hand side of Equation (2), SSB represents the
center of mass of the solar system, where tSSB is the TOA at the
SSB reference frame. ¢tPSB is the theoretical pulse time at the
pulsar binary system barycenter expressed in the same
coordinate as the solar system barycenter time, and ¢tPSR is the
pulsar’s reference frame pulse time (tPSR) expressed in the same
coordinate as the solar system barycenter time. ¢tPSR is different
from tPSR by an unknown Doppler factor. We usually ignore
this unknown Doppler factor and use ¢tPSR to compute the time
and phase residual of the pulsar as described in Equation (1).

On the right-hand side of Equation (2), ttopo is the topocentric
arrival times observed with the observatory clock, and tcorr is
the clock corrections to the topocentric TOAs. ΔD/f 2 is the
time delay of pulses due to dispersion in the interstellar
medium, where ΔD=D×DM, D is a dispersion constant
when the DM is expressed in the units of cm−3 pc and
frequency f is in MHz. d is the distance to the pulsar, and c is
the speed of light in the vacuum. Since d/c is regarded as a
constant, it can be omitted from our calculation. DR is the
solar system Röemer Delay, a time delay from the light-travel
between the phase center of the telescope and the SSB (Lorimer
& Kramer 2005). The Röemer Delay varies significantly with
the pulsar’s position so it is the main effect we consider (3).

DS is the solar system Shapiro Delay due to the gravitational
perturbation of the light-path (Shapiro 1964) from all solar
system bodies, generally in the initial solving process, we only
consider the delays caused by the Sun and major planets (such
as Jupiter). DE is the solar system Einstein Delay comprised of
gravitational redshift and time dilation (Taylor & Weisberg
1989). ΔB is the time delays from the pulsar’s binary system,
such as the Röemer Delay, which is a function of the pulsar’s
orbital parameters: projected semimajor axis x, orbital period
Pb, eccentricity e, periastron time T0, and the angle between
periastron and the ascending node ω. Because ΔB does not rely
on the pulsar’s position, we do not describe it in detail here.
Once we have deducted all the solar system, propagation, and
pulsar binary effects, the resulting tPSR only differs from the
emission time of the pulsar’s pulse by an unknown constant
Doppler factor. Therefore, this tPSR could be modeled by the
simple rotational phase model mentioned in Equation (1).

Among all the solar system effects, only the Röemer Delay
varies significantly with pulsar position, so the TOA offset
Δttopo due to position error (Δα and Δδ) can be expressed

approximately as:
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Here, ŝinitial, ŝnew are the initial and new values of unit vectors
pointing from the Solar system barycenter to the barycenter of
the pulsar system; rearth is the vector pointing from the SSB to
the phase center of the telescope, and c is the speed of light.
Our program uses the GPU to conduct a grid search over Δα

and Δδ using a fine grid of the order of milliarcseconds to find
our desired solution.
Therefore, suppose we move to a new position, Δα, Δδ

away from our initial position; we will get a new set of TOA
residuals Rnew that is offset from our initial residuals Rinitial:

( ) ( )a d= + D D DR R t , . 4new initial topo

If the new position is exactly the correct position of the
pulsar, the new residuals will likely form a linear trend or a
linear trend with some TOAs offset from the trend by an
integral number of rotations. Here, we assume that the trend
would be linear because only the error of the spin period
manifests into the residual, and the spin derivative is not yet a
prominent effect. If the new residuals form a linear trend, we
could solve for the trend’s sloop k and cutoff b using the least-
square method:
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where xi, yi is TOA (ttopo) and new residual Rnew of each pulse,
and x y, is the mean value of TOAs and new residuals. We can
revise the offset of the spin period according to the least χ2

solution with

· ( ( )) ( )= + ´P P k1 24 3600 6new initial

where k is the trend’s sloop, Pinitial is the spin period of the
initial model, and Pnew is the new period updated according to
the new position.
We show the steps in solving a normal pulsar J0706+2707

in Figure 1. First, we use an initial model that contains only
spin frequency (ν0) and the initial orbital parameters (x, Pb, T0,
etc...), omitting n0 and try to solve the pulsar step by step, until
we cannot connect the last TOA. The resulting residuals are
shown in the top panel. Second, we search for possible
positions in the error box of the initial observed position. For
this normal pulsar, the spin period is ∼70.3 ms, which is larger
than the residual offset due to the position offset in most cases.
When we grid search and find the correct position, we can
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obtain new residuals that form a linear structure as shown in the
middle panel of Figure 1. Finally, we use the least-square fit of
the linear trend to update the pulsar’s period parameter and
recalculate the residual in the GPU for the new position, the
resulting residual is shown in the bottom panel of Figure 1.

Before we begin solving a binary pulsar’s position, we have
to first estimate the binary system’s orbital parameters based on
the pulsar’s first few observations. We fit the pulsar period
measured in the first several observations with a circular orbit
model using fit_circular_orbit.py (Ransom 2011) to estimate
the Keplerian parameters. e.g., orbital period (Pb), the epoch of
periastron passage (T0), and the projected semimajor axis (x).
Then we fit the TOAs of those first observations in TEMPO2
using the estimated Keplerian parameters (Pb, x, and T0) in an
ELL1 timing model (Lange et al. 2001) while fixing the pulsar
position parameters to our discovery position. This procedure
allows us to derive an initial timing solution, including a binary
model that works well until the errors in our pulsar position
start to cause significant residuals. One should note that such a
method likely only works in pulsar-white dwarf systems
with very low eccentricities. For systems with non-negligible

eccentricities, one has to use a more comprehensive method
such as a non-circular orbit fitter. Taking PSR J2149+5643 as
an example, its x∼ 8.2 ls, and e∼ 10−5, this means that the
maximum residual offset caused by not including the
eccentricity is about ex/c∼ 0.1 ms, this corresponds to
∼0.007 in its rotation phase. This is a relatively small offset
that will not significantly affect our procedure and can be
corrected in the end by adding a few more timing parameters to
our model.
Initial timing solution obtained this way could often make

the TOAs phase-connected in the earliest several months but
then stop connecting after the residuals caused by position error
become significant. After that, we start fitting or searching for a
better pulsar position using our GPU program.
For millisecond pulsars in a binary system, the spin period is

often far smaller than the residuals caused by position errors. In
this case, the rotation number of the TOAs, especially the last
one that is not connected, could be offset from the true value.
The steps for solving this pulsar using GPU are shown in
Figure 2.

Figure 1. The steps in solving the normal pulsar J0706+2707. Top panel: The timing residuals of the initial model with the spin period of 70.3 ms. Middle panel: The
residuals of the calculated model, which replace the original model’s position parameters R.A. and decl. with the correct position; Bottom panel: Timing residuals of
the new model with updated R.A., decl., and spin period.
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In the first step, we calculate the pre-fit residuals of the initial
model, which are shown in panel (a) of Figure 2. As one can
see the last TOA residuals are already deviating from 0 by a
significant fraction of phase. What is not shown in this plot is
the phase residual of the TOAs with respect to the pulse
numbers from panel (a), the last one of which could be many
rotations away from the true value. Now, we need to determine
the correct pulse number to which Rnew belongs to ensure the
continuity of all TOA phases. So in the second step, we update
the pulsar position in the timing model and use GPU to
compute the residuals for the updated model, this is shown as
the yellow dots in panel (b) of Figure 2. The yellow dots show
a sinusoidal trend as expected from a position shift and are far
away from the linear trend that we saw from a normal pulsar in
the middle panel of Figure 1. But, if our new position is close
to the true position, the sinusoidal trend should converge back
to a linear line if we also correct the rotation period. The linear
trend is different from the yellow dots only by an integral
number of pulse phases. Here, we employ a small trick to help
bring the residuals to roughly the correct rotation. The TOAs of
the two most adjacent residual groups (marked as green crosses
in the figure) are often close to phase-connected and reside in
clearly the same rotation phase. We could use them to
determine a likely correct linear trend that the TOAs should
adhere to. Drawing a straight line across the two most adjacent
points gives us the purple line in panel (b) of Figure 2. Then,
we move the new residuals (yellow dots) to the same rotation
as determined by the purple line by shifting them with an
integral number of phases and marking them as green dots.

After we moved all the residuals to the respective rotation,
then we removed the linear trend from them. In some cases,

for instance, in our test on PSR J2149+5643, the rotational-
phase-corrected residuals, i.e., the green dots, did not all
reside in one rotation phase. The corrected residual gradually
grew to more than one and wrapped around the purple line.
However, this behavior is very predictable, so we employed
another step in our program that checks for a sudden jump in
the residual phase and then corrects the phase wrapping by
adding or subtracting one rotation from all the subsequent
residuals, resulting in a nearly continuous final residual
curve. If the assumed new position is correct, then the final
residual should all be close to phase 0 after a linear trend is
removed. We test if this is the case by calculating the χ2 of
the final residuals. In the third step, we identify the best-fit
position that produced the smallest reduced χ2 in the second
step. The TOA residual produced by this new position, as
calculated by the GPU program, is shown as the green dots in
panel (c) of Figure 2. The corresponding Δα, Δδ, and new
ν0 are read out and used to update our timing ephemeris. In
the fourth step, we apply the new ephemeris to the TOAs in
PINT/TEMPO2, turn on fitting for the binary parameters,
add eccentricity parameters if needed, and update the timing
residuals. Since the correct position has been found, this
newly updated ephemeris produced a flat residual (bottom
plot of Figure 2).
It is worth mentioning that since this method of calculating

the residuals is different from the timing software like TEMPO,
TEMPO2, and PINT, the value of χ2 may be slightly different,
but the differences are negligible. As we can see in Figure 3, χ2

is unacceptably high over the entire search region except in the
few milliarcseconds around the correct solution.

Figure 2. The steps for solving the millisecond pulsar J2149+5643. Left top panel (a): The residuals of the initial model from a millisecond pulsar with a spin period
of 15.3 ms. Right panel (b): Calculate the new residuals based on the new position and move to the predicted rotation number. Left middle panel (c): The timing
residuals with updated position and spin period. Left bottom panel (d): The timing residuals with updated position, spin period, and orbital parameters.
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3. Result

We tested our algorithm on solving two new pulsars
discovered in the FAST CRAFTS survey9—an isolated pulsar
PSR J0706+2707 and a binary pulsar PSR J2149+5643 from
scratch. For the tests, we used an Intel Xeon Silver 4314 CPU
and one NVIDIA A40 GPU to parallel compute 368,640,000
sets of solutions in each sub-grid using 4.4 GB memory. In
testing pulsar J0706+2707, we used eight observations spanning
one year to find the phase-connected timing solution in a quick
search that took about two minutes. For the binary pulsar J2149
+5643, we used a step of 1 mas and a range of 3′ (both in R.A.
and decl.). The search ultimately took 7.4 hr to complete.

PSR J0706+2707 is an isolated pulsar with a spin period of
70.3 ms. We find its phase-coherent solution easily in quick
searching mode as illustrated in Figure 1. This is due to the
proximity of the initial position to the correct position, and the
deviation did not lead to a significant offset in pulse number.

Comparing the pulse number of the pre-fit and post-fit
ephemeris that all pulses have been arranged in the correct
global rotation count by the initial ephemeris, so the timing
residuals could show a clear linear structure with which we can
easily find the correct position. One should note that the same

pulsar could also be solved by using TEMPO/TEMPO2
through down-hill methods; our GPU program does not show
any advantage in solving this problem. Nevertheless, this
practice shows that the method functions as intended and leads
to a correct solution.
PSR J2149+5643 is a millisecond pulsar in a binary system

with a spin period of 15.3 ms and orbital period of 2.06 days; we
discovered it in September 2021 and then observed it 17 times
until 2023 December (Miao et al. 2024, in preparation). The
timing residual of the initial model is shown in panel (a) of
Figure 2. We commenced our GPU program when the time span
of the observations reached one year. One can see that the last
TOA falls far from the model prediction and lost phase solution
(reducedχ2= 8344.083). After we exhaustively tested all the
R.A. and decl. 6″× 6″ grid of 1 mas resolution, using the
procedure described in Section 2, we found the lowest
reduced χ2= 246.803 residuals (green dots in panel (c) of
Figure 2). After we add n0 and eccentricity relation parameter to
the model and refit the TOAs using the GPU computed new
position, the new best-fit residuals show a nice phase connection
(panel (d) of Figure 2) (Miao et al. 2024 in preparation).
So far, we have demonstrated that our GPU program

correctly found the position, period, and pulse number to phase
connect all TOAs for an isolated pulsar and a millisecond

Figure 3. Distribution of residuals’ reduced χ2 over positional offsets.

9 http://crafts.bao.ac.cn/pulsar

6

Research in Astronomy and Astrophysics, 24:115004 (7pp), 2024 November Fang et al.

http://crafts.bao.ac.cn/pulsar
http://crafts.bao.ac.cn/pulsar
http://crafts.bao.ac.cn/pulsar


pulsar when solving them. A caveat is that the new parameters
found by our GPU program do not include P. Once we fit the
TOAs with the new parameters plus a P, we will get a new set
of position parameters about 20 mas offset from the initial GPU
solution. The new position parameters belong to the phase-
coherent solution, which presents the most accurate position of
existing observation data. This final solution also worked well
connecting the TOAs from the following observations not
considered in our test.

4. Conclusions

Our results show that the GPU program presented in this
paper can easily solve an isolated pulsar and also help solve a
binary system when conventional methods find it difficult.

Like in most previous binary pulsar-solving practices, to use
our method, one needs to perform a dense orbital observation
campaign first to get a good initial orbit model, such that the
errors in the orbital model do not accumulate enough to throw
our fitting off. One common source of error in the orbital model
is the eccentricity of the orbit, which is often not easy to
measure in the first few observations. Likely, for most MSP-
white dwarf systems, the eccentricity is rather low, and the
maximum offset caused by not including eccentricity is about
ex/c, this is often smaller than a millisecond and does not
accumulate over time. Inaccuracies in other orbital parameters,
such as Pb could accumulate but also could be mitigated by
making more than one TOA per epoch and making sure that the
orbital parameters could get the pulsar periods of each
observing epoch right first. Our GPU program only exhaus-
tively searches in position space; for this to work, the binary
solution must be sufficiently precise so as not to introduce large
TOA errors in subsequent observations. Thus, planning the
initial orbital campaign with enough dense observations is still
important.

A caveat of our method is that the program does not yet
search for spin period derivatives and, thus, does not work
when the observation spans over years where the effect of the
spin derivative is not negligible.

A second caveat of the method is that it tries to find a phase-
connected solution that contains the correct pulse numbers but
does not guarantee the solution is physically correct since the
period derivative is omitted, and this causes the output position
parameters to be offset from the true value, especially when
the observing span is short. A physically trustworthy pulsar
spin solution still takes over one year of phase-connected
observations.

Nevertheless, we provide a new tool for solving difficult
pulsars, and this work could enable further development of
brute-force pulsar-solving tools.
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