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Abstract

The early time observations of Type Ia supernovae (SNe Ia) play a crucial role in investigating and resolving
longstanding questions about progenitor stars and the explosion mechanisms of these events. Colors of supernovae
(SNe) in the initial days after the explosion can help differentiate between different types of SNe. However, the use
of true color information to identify SNe Ia at the early-time explosion is still in its infancy. The Multi-channel
Photometric Survey Telescope (Mephisto) is a photometric survey telescope equipped with three CCD cameras,
capable of simultaneously imaging the same patch of sky in three bands (u, g, i or v, r, z), yielding real-time colors
of astronomical objects. In this paper, we introduce a new time-series classification tool named Mephisto Early
Supernovae Ia Rapid Identifier (Mesiri), which, for the first time, utilizes real-time color information to distinguish
early-time SNe Ia from core-collapse supernovae. Mesiri is based on the deep learning approach and can achieve
an accuracy of 96.75%± 0.79%, and AUC of 98.87%± 0.53% in case of single epoch random observation before
the peak brightness. These values reach towards perfectness if additional data points on several night observations
are considered. The classification with real-time color significantly outperforms that with pseudo-color, especially
at the early time, i.e., with only a few points of observations. The BiLSTM architecture shows the best performance
compared to others that have been tested in this work.
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1. Introduction

The investigation of supernovae (SNe) is of paramount
significance. As an illustration, Type Ia supernovae (SNe Ia), as
standardized candles, provide a reliable means of measuring
cosmic distance. They have led to the discovery of the
universe’s accelerated expansion (Riess et al. 1998; Perlmutter
et al. 1999) and also provide a valuable means of constraining
the Hubble constant (e.g., Freedman et al. 2001; Shah et al.
2021). The importance of obtaining early signals from SNe Ia
explosions is crucial for various reasons. The radiative signals
in the early time can offer import constraints on the explosion
mechanism, progenitor system, and their physical origins
(Kasen 2010; Nugent et al. 2011; Marion et al. 2016;
Hosseinzadeh et al. 2017; Jiang et al. 2018; Dimitriadis et al.
2019; Bulla et al. 2020; Burke et al. 2021; Ashall et al. 2022;
Sai et al. 2022). Moreover, variations in luminosity during this
phase can reveal several aspects such as interactions with a
companion star in a binary system, the surrounding envelope of
the progenitor, or the circumstellar material ejected by the
progenitor before the explosion (Meikle et al. 1996;
Kasen 2010; Cao et al. 2015; Dimitriadis 2019; Shappee
et al. 2019; Jiang et al. 2021). Following that, spectroscopic or
photometric follow-up at early stages can also serve as a
valuable benchmark for further observations at later epochs.

The earlier an object can be classified, the more opportunities
there are for the community to perform follow-up observation,
and the more likely it is to bring about entirely new discoveries
(Piro & Morozova 2016; Jiang et al. 2018; Stritzinger et al.
2018; Fausnaugh et al. 2021; Liu et al. 2024). Last but not
least, in the initial days following an explosion, changes in
color can reveal an asymmetric distribution of elements created
through nucleosynthesis (Ni et al. 2022) and the helium
burning on the surface of a white dwarf (Jiang et al. 2017). The
color evolution at early times can also be used to probe the
location within the ejecta of 56Ni and other radioactive isotopes
(Dessart et al. 2014). The studies of early-time color curves of
SNe Ia indicate that two branches may exist, i.e., the red and
blue branches (Stritzinger et al. 2018; Bulla et al. 2020). This
implies that using them as standard candles for cosmic distance
measurements can introduce systematic errors, thus affecting
the accuracy of cosmic distance measurements. Additionally,
there exist similar limitations in current SNe explosion models
and the Hubble constant (Shah et al. 2021, and references
therein). Thus, a precise and detailed identification of early-
time SNe Ia is crucial and indispensable.
To address these challenges and further unravel the

mysteries of the universe, an increasing number of large-scale
survey telescopes are currently in operation or planned,

Research in Astronomy and Astrophysics, 24:115003 (24pp), 2024 November https://doi.org/10.1088/1674-4527/ad7e68
© 2024 National Astronomical Observatories, CAS and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. Printed in China.

1

https://orcid.org/0000-0002-8700-3671
https://orcid.org/0000-0002-8700-3671
https://orcid.org/0000-0002-8700-3671
mailto:xer@ynu.edu.cn
mailto:x.liu@ynu.edu.cn
https://doi.org/10.1088/1674-4527/ad7e68
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad7e68&domain=pdf&date_stamp=2024-10-25
https://crossmark.crossref.org/dialog/?doi=10.1088/1674-4527/ad7e68&domain=pdf&date_stamp=2024-10-25


including the Vera C. Rubin Observatory Large Synoptic
Survey Telescope (LSST; Ivezić et al. 2019), the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS;
Kaiser 2004; Flewelling et al. 2020), the Catalina Real-Time
Transient Survey (CRTS; Drake et al. 2009), the Dark Energy
Survey (DES; Abbott et al. 2018), the Asteroid Terrestrial-
impact Last Alert System (ATLAS; Tonry et al. 2018), the
Zwicky Transient Facility (ZTF; Bellm et al. 2019; Masci et al.
2019), the 2.5 m Wide Field Survey Telescope (WFST; Lou
et al. 2016; Shi et al. 2018; Lou et al. 2020; Hu et al. 2022; Lei
et al. 2022; Lin et al. 2022), and so forth. These on-going and
future surveys can generate enormous amounts of data, and
trigger millions of real-time alerts each night. This presents
both unprecedented opportunities for studying transients and
new challenges in efficiently processing and analyzing vast
data sets.

The observation of SNe can be accomplished through the
utilization of both spectroscopic and photometric techniques.
Spectroscopic observations provide accurate constraints but
require longer observation time and cannot be applied in SN
searching from large-scale surveys. On the other hand, due to
the high efficiency of photometric observations, more effects
have focused on the early and rapid classification by
photometric surveys. Various methods have been employed
to analyze the observational data, including visual inspection,
template matching, spectroscopic analysis, and machine
learning, particularly deep learning-based methods (Huertas-
Company & Lanusse 2023; Huertas-Company et al. 2023;
Smith & Geach 2023). The color of celestial objects contains
rich information and can be used for measurement of stellar
atmospheric parameters and accurate flux calibration (Allende
Prieto 2016). Poznanski et al. (2002) pointed out that based on
V− R and R− I colors, SNe Ia with redshift less than 0.1 can
be distinguished from the other SNe. Thus, the color and color
evolution can provide valuable information on celestial objects.

In the investigation of early-time photometric classification of
SNe, the Young Supernova Experiment (YSE; Jones et al. 2021)
aims to obtain well-sampled Pan-STARRS g, r, i, z light curves of
thousands of transient events, capable of discovering young
transient events with a luminosity of about 21.5mag; Charnock &
Moss (2017) achieve high accuracy in classifying the SNe using
deep recurrent neural networks (DRNNs) with the data including
redshift before the night of the sixth observation with signal-to-
noise ratio (SNR) > 4. RAPID (Muthukrishna et al. 2019) uses
DRNNs with gated recurrent units (GRUs) to automatically
identify transient phenomena from the initial alert to the entire light
curve by using PLAsTiCC; SuperNNova (Möller & de Bois-
sière 2020) uses Bayesian neural networks and can incorporate
additional information to improve early time classification of SNe
Ia and core-collapse supernovae (CCSNe), but requires between
2.4± 1.2 and 3.3± 1.4 photometric epochs on average to start
accurately classifying SNe. Automatic Learning for the Rapid
Classification of Events (ALeRCE; Carrasco-Davis et al. 2021;

Förster et al. 2021; Sánchez-Sáez et al. 2021) is a broker system
light curve classifier for processing the alert stream from the ZTF
by employing a balanced random forest method based on feature
extraction; Qu & Sako (2022) proposed a photometric classifier,
Supernova Classification with a Convolutional Neural Network
(SCONE), based on a convolutional neural network (CNN) using
wavelength-time heatmaps, achieving good classification results
for early-time SN light curves. Fink (Leoni et al. 2022) utilizes
feature extraction and active learning to identify early-stage SNe Ia.
A recurrent neural network (RNN) and its variants, including Long
Short-Term Memory (LSTM; Hochreiter & Schmidhuber 1997),
GRU (Cho et al. 2014; Chung et al. 2014), and Bidirectional Long
Short-Term Memory (BiLSTM) network, have been shown to be
particularly powerful where sequential data are accompanied by a
set of discrete labels (Charnock & Moss 2017; Caramete et al.
2020; Chaini & Kumar 2020; Dékány & Grebel 2020; Chatterjee
et al. 2021; Čokina et al. 2021; Abduallah et al. 2022). However,
until now, the overwhelming majority of the previous work has
focused on single-band light curves for the classification of SNe.
As illustrated here, only a few studies aim to promptly identify
early-time SNe Ia after the explosions. Multi-band simultaneous
observational real-color information has not yet been explored for
early-time classification.
This paper is organized as follows. A brief overview of the

Multi-channel Photometric Survey Telescope (Mephisto) will
be provided in Section 2. We elaborate on our utilization of
SNCosmo (Barbary et al. 2022) to simulate the data in
Section 3. The deep learning architectures based on RNNs,
LSTM, GRU, and BiLSTM, as well as the model assessment
metrics, are outlined in Section 4. Our findings are presented in
Section 5. Additional discussion is provided in Section 6. In
Section 7, we encapsulate the culmination of our research
findings. We implement a flat ΛCDM standard cosmology with
ΩΛ= 0.7, ΩM= 0.3, H0= 70.0 km s−1 Mpc−1 in our simula-
tions, and assume the comoving volumetric rate of SNe is
10−4 yr−1 Mpc−3 (Barbary et al. 2012).

2. Multi-channel Photometric Survey Telescope

Mephisto3 (Yuan et al. 2020) is a wide-field of view
telescope with a 1.6 m primary mirror located at the Lijiang
Observatory in Lijiang City, Yunnan Province, China. It is
equipped with three CCD cameras, each with a field of view of
2 square degrees, capable of simultaneously imaging the same
patch of sky region in three different bands (u, g, i or v, r, z).
Figure 1 presents the transmission curves of the Mephisto u, v,
g, r, i, z filters. For comparison, we also overplot the early
spectra of one classical well-observed Type Ia case, SN 2011fe
(Pereira et al. 2013). For the purpose of facilitating visual
comparison, we have rescaled the spectra of the SN.

3 http://www.mephisto.ynu.edu.cn/
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Mephisto survey mode, with sampling intervals ranging
from days (D) to minutes (M), allows for systematic searches
and studies of various types of explosive events in the universe
(e.g., Wang et al. 2024). In this work, we investigate the role of
real-time color information in SN classification with an ideal
case of 1 day cadence.

3. Simulation

With the objective of preparing the training sample, we
simulate the photometric light curve of SNe for u, v, g, r, i, z
filters of Mephisto using SNCosmo,4 a Python package for SN
cosmology analysis. Different SN parameters in our simulation

are adopted from Open Supernova Catalog (OSC, Guillochon
et al. 2017). The corresponding number of SNe in different
classes (in column Nb), average peak magnitude (in column
Mpeak

b ) and standard deviation of the peak magnitude (in
column sM

b ) are derived from all bands in OSC mentioned in
Table 1. The t0 column expresses the average rise time5, and we
employ a Gaussian distribution across distinct categories. The
models column indicates the number of built-in SN models in
SNCosmo. The last column represents the overall number of
samples for training, validation, and testing, which is obtained
from simulations and the subsequent filtering. The selection
criteria are described later. For a typical SN Ia, the average rise

Figure 1. Mephisto transmission curve of u, v, g, r, i, z filters combined with early spectra of SN 2011fe (Pereira et al. 2013). The legend indicates SN 2011fe spectra
corresponding to −15.2 days, −13.3 day, and −11.3 days before reaching its peak luminosity.

Table 1
Built-in Model Parameters and Samples for our Model

Class Supernova Nb Mpeak
b sM

b t0 Model Samples

TNSNea Ia 6995 −19.03 0.86 ( ) 20, 1 15 2141

CCSNe Ib 110 −17.44 1.128 ( ) 20, 1 34 6420
Ic 139 −17.70 1.727 ( ) 20, 5 31
Ib/c 56 −17.71 1.189 ( ) 20, 5 2
Ic BL 21 −18.57 3.616 ( ) 20, 1 12
II 1513 −17.75 1.780 ( ) 20, 1 46
IIb 69 −17.72 1.189 ( ) 20, 1 24
IIn 188 −18.84 1.60 ( ) 20, 1 15
IIP 147 −17.02 1.250 ( ) 15, 1 28
IIL 3 −18.60 0.086 ( ) 13, 1 1

Notes.
a TNSNe denotes thermonuclear SNe.
b The data are derived from all bands in the OSC statistics.

4 https://sncosmo.readthedocs.io/en/stable/index.html 5 All the rise times in this work refer to those in the rest frame.
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time is about 20 days after the explosion. However, in Yao
et al. (2019), among a sample of 127 SNe, 50 are detected at
least 14 days prior to the peak of the light curve, with a subset
of 9 events being detected more than 17 days before the g-ZTF
band peak. In Miller et al. (2020), the mean rise time of SNe Ia
is estimated to be ∼18.9 days. Other rise times of SNe Ia have
also been presented in other work (Firth et al. 2015; Branch &
Wheeler 2017), which are between 17 and 20 days. Since our
work focuses on the early time classification of SNe Ia, we only
select samples with a minimum rise time of 17 days in the light
curves after the explosion for model training and testing.

We concentrate on SNe with a redshift range of [0, 0.1] owing
to the limiting magnitude of Mephisto. To generate the redshift
values for the observed SNe, we utilize the built-in zdist function
in SNCosmo. The resulting redshift distribution is illustrated in the
left panel of Figure 2. We perform further selection for different
training subsamples. The right panel of Figure 2 shows that of the
sample, which contains three days of observations before the peak
of the light curve. The redshift distribution of other subsamples
does not show much difference. SNCosmo offers a rich variety of
SN models, including 15 submodels specifically for SNe Ia, such
as the widely used SALT2 and SALT3 models. In this simulation,
we adopt the parameters of SALT2 as the fundamental parameter
settings for all other models. Additionally, as our emphasis lies in
the detection of early-time SN Ia explosions, the necessity for
extended light curve observations’ post-peak luminosity is
obviated. In addition to SNe Ia, we also incorporate other types
of SNe provided by SNCosmo, including SNe Ib, Ic, Ib/c, Ic-BL,
IIP, IIL, IIb, and IIn. By including these diverse types of SN
models, the simulated light curves of SNe within the same class
become more varied. The number of submodels corresponding to
each type of SN is listed in the Table 1 column models. As for
SNe Ia, we adopt hsiao (Hsiao et al. 2007), hsiao-subsampled
(Hsiao et al. 2007), salt2 (Guy et al. 2007; Ellis et al. 2008;

Guy et al. 2010; Betoule et al. 2014; Taylor et al. 2021), salt2-
extended (Hounsell et al. 2018; Pierel et al. 2018), salt3
(Kenworthy et al. 2021), salt2-extended-h17 (Hounsell et al.
2018), nugent-sn91bg (Nugent et al. 2002), and mlcs2k2
(Jha et al. 2007) models. After obtaining the simulated flux of
the celestial object, we utilize Equation (1) for the conversion of
flux to magnitude.

( ) ( )= - * +mag 2.5 log flux 25.0, 1

where it is assumed that the zero-point is 25.0, the default value
built-in SNCosmo. Based on the pilot observation and weather
monitoring at Lijiang Observatory (GMG; Xin et al. 2020), we
simulate the measurement error in the light curves of SNe. The
SNR is calculated by Equation (2).

( )=
+ + +

n

n n n n
SNR , 2

target

target skybright readout dark

where ntarget represents target flux, nskybright is sky background
noise flux, nreadout represents readout noise flux and ndark is
dark current noise flux. The 5σ limiting magnitude of a 20 s
exposure in six filters of Mephisto are 20.07, 20.23, 21.09,
21.22, 20.91, and 19.51, respectively. To establish a compara-
tively realistic and comprehensive sample for training and
testing purposes, we apply some selection criteria:

1. Observations with low SNR (<5) or below the 5σ
limiting magnitude are dropped.

2. At least 17 days of observations before the g-band peak
of the light curve.

3. Samples with at least 20 days of observations in total.
4. Historical observational data statistics reveal that SNe Ia

account for approximately 25% of the total SNe from
OSC (Guillochon et al. 2017). Thus, we construct our
simulation sample with the same ratio, i.e., the number of
SNe Ia to CCSNe is approximately 1:3.

Figure 2. Left: the initial redshift distribution of SNe generated by SNCosmo zdist function, given the input volumetric SN rate, the cosmology, and the observed area
and time. Right: the redshift distribution of the training sample which has a three-day observation before the peak in the light curve.
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After applying the selection, a total of 8561 samples of the
simulated effective light curve are available, including 2141
SNe Ia samples and 6420 CCSNe samples (Table 1). An
instance of simulated light curves and color light curves can be
seen in Figures 3 and 4,6 respectively. Here, we define Days
after the trigger as the days with continuous following
observations since the first detection of a Mephisto transient
finder trigger. Dust in the Milky Way and host galaxy will
affect the shape of an observed SN spectrum. It is important to
take these effects into account in our model when fitting the
model to observed data for a more realistic situation.
Consequently, we utilize the built-in SN models and dust
parameters in SNCosmo for dust extinction and reddening,
including dust extinction in the host galaxy and the Milky Way.
We add both host galaxy dust and the Milky Way dust. Dust
propagation effect is referenced from Fitzpatrick (1999), and
host effects and dust in the Milky Way are referenced from
Barbary et al. (2012). Another assumption that we must make
clear is that host galaxy effects are not taken into account when
identifying SNe Ia in this study.

4. Method

4.1. RNN, LSTM, GRU and BiLSTM

In time-series data classification, RNNs, such as LSTM,
GRU, and BiLSTM, demonstrate superior performance and are
widely applied. With the aim of selecting the optimal method
for identifying early-time SNe Ia, in this work, we train several
DRNNs to classify the light curves of SNe Ia from CCSNe and
name our approach Mephisto Early Supernovae Ia Rapid
Identifier (Mesiri). The training procedures and parameters of
Mesiri are shown in Figure 5.

The DRNN models a function that maps an input multi-band
light curve matrix, Ist, for transient s up to a discrete time t onto
output probabilities over classes {c= 0, 1, 2},7

( ) ( )q=y f I ; , 3st
t

st

where θ stands for the parameters (e.g., weights and biases of
the neurons) of our DRNN architecture. We define the input Ist

as a t× 12 (or t× 12 +1, when redshift is considered) matrix
representing the light curve up to a time step t, where 12
represents input features including u st, g st, i st, u st

error, g st
error,

i st
error, (u− g)st, (g− i)st, (u− i)st, ( )-u g st

error, ( )-g i st
error,

( )-u i st
error. Among them, the first six quantities represent the

magnitude and magnitude error corresponding to u, g, i bands,
while the following six quantities represent the true color
information and the associated color information errors. Here,
the true color refers to color information obtained through
simultaneous observations in multi-bands, as opposed to color
information obtained through non-simultaneous multi-band
observations. The output yst is a probability vector with length
3, where each element ystc is the model’s predicted probability
of each class c, such that y 0c

st and å == y 1c c
st

0
2 . From

Figure 3, it is evident that in certain filters, we have limited data
as a result of fluctuations in the throughput efficiency of
different bands. To align the data points simultaneously
observed with different filters, we utilize the Gaussian Process
(GP) for interpolation (Demianenko et al. 2023). We perform
interpolation based on time points, i.e., starting from the
earliest observed point and ending with the latest one. In most
cases, the earliest data appear in the g or r bands since they
have relatively high efficiency. A case in point is the
observations in the u, g, i filter if the g-band has 60 observation
points ([0, 59]), while the observation time range for the u-band
is [5, 35], so we interpolate the values in the [0, 4] and [36, 59]
intervals using the GP. The same interpolation technique is
applied to the other bands. Moreover, there is a possibility that
no observation data are available for a particular filter. In such
cases, we adopt the commonly used padding technique in
neural networks to fill in the values with a padding value of −1.
The interpolated images before and after interpolation are
displayed in the left and middle panels of Figure 6 respectively,
and the right panel shows the corresponding color light curves.
The embedded subplot in the upper left corner of the right
panel represents the color evolution in the first 17 days. Finally,
the Mesiri pipeline is illustrated in Figure 7.
We define the global objective function as

( ( )) ( ) ( ( )) ( )= - + - -y p y y p yLoss log 1 log 1 , 4

where we sum the weighted categorical cross-entropy overall t
time steps in the training set, such that y assumes the binary
label {0,1}, and p(y) is the probability that the output belongs
to y. We expect p(y) to be as large as possible when y= 1.
Look at the ideal case: when y is a positive case, p(y)= 1, and
the loss is 0; On the contrary, when p(y) tends to 0, ( )p ylog
tends to negative infinity, leading to a very large loss. We
describe the architecture in detail as follows:

Input. The input is a t× 12 matrix, or t× 12 +1 when
redshift is considered. However, as we are implementing a
sequence classifier, we can consider the input at each time
step as being a vector of length t× 12. Here input features
include six magnitude items: u st, g st, i st, u st

error, g st
error, i st

error,

and six color items: (u− g)st, (g− i)st, (u− i)st, ( )-u g st
error,

( )-g i st
error, ( )-u i st

error, corresponding to the abbreviations in

6 We select samples based on whether any one of u, g, i bands meets the
criteria, then pad in the missing data as inputs for the model. Figure 4 shows the
color evolution obtained from the original photometric data, resulting in some
missing data points (e.g., the second panel from the top in the right column in
Figure 4) in the color plot. Such a scenario does indeed occur.
7 In the classification of RNNs, an additional category is typically added to
the output classes, often referred to as the “unknown” or “other” category. The
purpose of this additional category is to handle samples that the model cannot
accurately classify into known categories, namely those that do not belong to
any known category in the training set. This approach helps the model better
deal with unknown samples, thereby improving the modelʼs generalization
ability and the accuracy of classifying unknown samples.
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Figure 3. A sample of the SNe light curves from Mephisto is plotted with different symbols. The error bars are also indicated. The observation points with low SNR
(<5) are excluded (see Section 3).
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Figure 4. The evolution of color indices for different types of SNe are plotted with different symbols (see Section 3)

7

Research in Astronomy and Astrophysics, 24:115003 (24pp), 2024 November Zhang et al.



Figure 7 Input matrix with magnitude items: u, g, i, u_e, g_e,
i_e, and six color items: ug, gi, ui, ug_e, gi_e, ui_e.
First Layer. We apply all RNN/LSTM/GRU/BiLSTM unit
cells in this study, as they offer significantly shorter training
times without deterioration in classification performance.
They can capture dependencies in time-varying data by
controlling the information remembered at each step of the
light curve. In the initial layer, each input sequence is
encoded into a higher-dimensional representation one time

step at a time, utilizing 256 units to generate an output vector
of dimension t× 256.
Second Layer. The second RNN/LSTM/GRU/BiLSTM
layer is conditioned on the input sequence. It takes the output
of the first layer and generates an output sequence. We set up
this layer with 128 units, with dropout and recurrent dropout
layer in this layer to maintain the t× 128 output shape.
Third Layer. The third RNN/LSTM/GRU/BiLSTM layer is
conditioned on the second sequence. It takes the output of the

Figure 5. The flowchart of training procedures and parameters of Mesiri.

Figure 6. The left and middle panels represent the original observed light curves in u, g, i filters and the GP interpolated light curves, respectively. The corresponding
color curves are displayed in the right panel. The embedded subplot indicates the color evolution in the first 17 days after the trigger.
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second layer and generates an output sequence. Again, we
establish this layer with 64 units, with a dropout layer in this
layer to maintain the t× 64 output shape.
Dense Layer. In neural networks, a dense layer is the
fundamental and simplest type of layer, often known as a
fully connected layer. It establishes a connection between all
64 neurons from the previous layer with 3 neurons in the
output layer by employing Equation (5). In the problem of
classification, the output vector includes both SN categories.
Neurons. The output of each neuron in a neural network
layer can be formulated as the weighted sum of the
connections to it from the preceding layer

⎛

⎝
⎜

⎞

⎠
⎟ˆ ( )å= +

=

y f W x b , 5i
j

M

ij j i
1

where xj are the different inputs to each neuron from the
previous layer, Wij are the weights of the corresponding inputs,
bi is a bias that is added to shift the threshold of where inputs
become significant, j is an integer running from 1 to the number
of connected neurons in the previous layer (M), and i is an
integer running from 1 to the number of neurons in the next
layer. For the dense layer, x is simply the (1× 64) matrix from
the output of the second layer, y is made up of the three output
classes, j runs from 1 to 3 and i runs across the 64 input
neurons from the last layer.
Dropout. We also implement dropout regularization to each
layer of the neural network to reduce overfitting during

training. This is an important step that effectively ignores
randomly selected neurons during training, such that their
contribution to the network is temporarily removed. This
process causes other neurons to more robustly handle the
representation required to make predictions for the missing
neurons, making the network less sensitive to the specific
weights of any individual neuron. We set the dropout rate to
20% of the neurons present in the previous layer each time
the dropout block appears in the DRNN in Figure 5.
Recurrent Dropout. Just as with regular dropout, recurrent
dropout has a regularizing effect and can prevent overfitting.
We set the dropout recurrent rate to 20% of the neurons
present in the previous layer each time the dropout block
appears in the DRNN in Figure 5.
Activation function. Each neuron in a neural network applies
an activation function to introduce nonlinearity, which
enables the network to handle a wide range of data. The
most commonly used activation function for feed-forward
networks is the hyperbolic tangent function, commonly
abbreviated as tanh.
Sigmoid regression. The sigmoid regression activation
function is utilized in the final layer, specifically to handle
binary classes. This function is applied to the dense layer
output of each time step, normalizing the output vector
between 0 and 1. Consequently, the sum of the values across
all classes in each time step generates a total value of 1. This
process enables the output to be interpreted as a proportional

Figure 7. The flowchart of Mesiri pipeline. We show the BiLSTM-based cell unit as an example; it can be replaced by other cells in different tests.
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likelihood that the input SN of each time step belongs to a
certain class. The resulting vector of probabilities is
generated as a result of this procedure.

( ˆ) ( )=y ysigmoid , 6

is computed with a sigmoid activation function that is defined
as

( ) ( )=
+ -

x
e

sigmoid
1

1
. 7i xj

We utilize the output sigmoid probabilities to prioritize the
most fitting SN classes for each SN light curve at each
time step.

4.2. Evaluation

In evaluating performance, we utilized five commonly used
metrics to evaluate our Mesiri. The most straightforward metric
is accuracy by employing Equation (8), which refers to the
proportion of correctly classified SNe in each class to the total
number of SNe in each class. The precision, also known as
purity, is the ratio of true positive predictions to the total
number of positive predictions for each class defined by
Equation (9). The recall, also known as completeness, is similar
to the true positive rate. It is a measure of the number of correct
predictions in each class compared to the total number of that
class in the testing set and is defined as Equation (10). The F1
score is the harmonic mean of precision and recall, combining
their trade-offs defined by Equation (11). It ranges from 0 to 1,
with a higher value indicating better model performance. The
F1 score can be used as a comprehensive evaluation metric for
the performance of classification models. The AUC represents
the area under the Receiver Operating Characteristic (ROC)
curve, which measures the accuracy of a binary classification
modelʼs predictions. AUC represents the area under the ROC
curve and measures the accuracy of the modelʼs classification
at different thresholds. AUC ranges from 0 to 1, with a higher
value indicating better model performance. By observing AUC,
we can also understand the modelʼs performance at different
thresholds, helping us choose the optimal classification thresh-
old. These metrics can help evaluate the performance of
classification models and measure their accuracy, coverage,
and stability from different perspectives. Apart from the
aforementioned evaluation metrics, the confusion matrix is a
common approach to visualize the performance of a classifica-
tion model, defined as in Table 2.

( )=
+

+ + +
Accuracy

TP TN

TP TN FP FN
, 8

( )=
+

Precision Purity
TP

TP FP
, 9

( )=
+

Recall Completeness
TP

TP FN
, 10

( )= *
*
+

F1 score 2
Precision Recall

Precision Recall
. 11

Here TP, TN, FP, and FN represent the number of true
positive samples, the number of true negative samples, the
number of false positive samples, and the number of false
negative samples, respectively.

5. Result

The variation of light curves in the Mephisto u, v, g, r, i, z
bands is attributed to transmission efficiency. Therefore, we
employ GP and padding interpolation to interpolate the original
light curve data, ensuring uniform light curve length across
each band.
During the model training process, we divide the data into

training, validation, and testing sets. For the purpose of
enhancing the objectivity of performance evaluation and
mitigating the risk of overfitting, we employ a five-fold
cross-validation approach during model training, i.e., the
training is repeated five times, and each time, the testing set
is selected differently from the simulation sample. Multiple
models are trained using distinct sets of simulated data points at
the early stages of the SN explosion, e.g., different numbers of
data points before the peak. This allows us to achieve a diverse
set of models tailored to specific data scenarios for improved
classification matching. The experimental results, as shown in
Figure 8 and Table 3, present the accuracy of identifying early-
time SNe Ia under different scenarios without redshift
information. Here, we emphasize that since the uncertainties
associated with each evaluation are derived from the standard
deviation computed five-fold cross-validation, some of these
values (see Table 3 and Appendix A) may exceed 100% after
incorporating the standard deviation. A similar scenario is also
depicted in Section 6 from Figures 9 to 15. The first column in
Table 3 represents the neural network base cell units utilized in
Mesiri, while the subsequent column of time signifies the
observational epochs of pre-maximum luminosity. Most of the
results show acceptable performance, e.g., accuracy greater
than 96%, and our models based on BiLSTM are not only
lightweight but also highly accurate. It is worth noting that the
identification accuracy of SNe Ia from a light curve, when first
discovered/triggered without a redshift, is 97.15%± 0.63%.
Further details can be found in Section 6.1. The detailed
identification results for each scenario can be found in

Table 2
Confusion Matrix

Predicted Positive Predicted Negative

True Positive TP FN
True Negative FP TN
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Figure 8. Comparison of models for five evaluation metrics in each cell-based model. The cell name is labeled in each panel. The gray horizontal dashed line
corresponds to a value of 96%. It can be observed that all evaluation metrics have achieved good results with the inclusion of real-time color. The network architecture
based on BiLSTM units shows the best performance.
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Appendix A and Table A1. Furthermore, Appendix C and
Figure C present all confusion matrices. We also adopt a
normalized version of the confusion matrix for easier
interpretation.

The increasing accumulation of observational data demon-
strates the classification accuracy of the simultaneous observa-
tion of three bands with colored features, which is comparable
to that of non-simultaneous observation of three bands with
colored features. This observation underscores the positive
impact of increased observational data on classification
accuracy. Through tests conducted on a Windows 11 operating
system with an Intel® CoreTM i7-10700 CPU @ 2.90 GHz
processor running a classifier in Jupyter Notebook, testing was
performed on 31 epochs of 5 observed target sources. The
average time to classify each instance was approximately
within 2 s. It is relevant to mention that our network
architecture is implemented using TensorFlow (Abadi
et al. 2016) and Keras (Chollet et al. 2015). The entire
pipeline is implemented using the Python programming
language and scikit-learn (Pedregosa et al. 2011).

6. Further Comparison

Given that the findings indicate the superior performance of
the network architecture utilizing BiLSTM, all subsequent
analyses will be conducted with a focus on the BiLSTM model.

6.1. Early Observation and Training Sample

In the following, the “very early” and “early” observations in
the context of the training sample are described. The “very
early” observation scenario is considered as the observation at a
very early time (just after the explosion/discovery) and with a
good cadence. For instance, if a source has observational data
from Mephisto for 17 days before peak brightness across all
three bands, then “very early time” is taken as [1, 2, 3, 4, 5,...,
17] sequentially. The second scenario (i.e., “early”) means our
observations are comparatively not so early, and the data
acquisition is random before the maximum luminosity (e.g., 3,
7, 10, 15,K., days after the explosion/discovery).
In Figure 9, the accuracy of early and very early time

classification models is compared. The blue triangle line represents
the results of an early SN explosion with random epochs of
observation, while the light blue shaded region represents the
standard deviation of model errors after five-fold cross-validation.
On the other hand, the green cross line and green shaded region
represent the results of early explosion using sequential epochs of
observation. Upon examining the results, it is evident that the
two trained models produce nearly similar outcomes. Here, the
fact to be noted that the identification accuracy, precision, and
AUC of “very early” SNe Ia, when the first discovery/trigger
without redshift, are 97.15%± 0.63%, 92.86%± 4.10%, and
98.5%± 0.75%, respectively.

6.2. With Redshift versus Without Redshift

Lochner et al. (2016) and de Soto et al. (2024) observe that
redshift is not notably influential in the classification of SNe at low
redshifts, whereas Qu & Sako (2022) demonstrates that the
inclusion of redshift information enhances performance at all
epochs. The spectroscopic redshift is time-consuming and difficult
to obtain at the early stage. In reality, using deep learning for
photometric redshift is an active area of research (e.g., Brescia et al.
2021; Zhou et al. 2022). Therefore, we implement a comparative

Table 3
Accuracies for Light Curves with 1, 3, 6, 9, and 17 Epochs (day(s)) of Pre-maximum Without Redshift Information

Base cell 1 day 3 days 6 days 9 days 17 days

RNN 97.23% ± 0.69% 97.89% ± 0.82% 98.21% ± 0.62% 98.21% ± 0.87% 100.0% ± 0.0%
LSTM 96.54% ± 0.94% 99.44% ± 0.17% 99.64% ± 0.10% 99.76% ± 0.25% 100.0% ± 0.0%
GRU 96.46% ± 0.41% 98.95% ± 0.47% 99.69% ± 0.14% 99.97% ± 0.05% 100.0% ± 0.0%
BiLSTM 96.75% ± 0.79% 99.32% ± 0.61% 99.81% ± 0.12% 99.92% ± 0.06% 100.0% ± 0.0%

Note. These averages and standard deviations were computed from five independent runs. Note that each evaluation, when combined with uncertainties represented by
standard deviations, may exceed 100%.

Figure 9. The accuracy of “very early” and “early” time classification models
is compared. The blue triangles and shaded region represent the results with
random epochs of observation before the maximum light (peak) and the
standard deviation of model errors after five-fold cross-validation, respectively.
The green symbols exhibit the results of the early time explosion using
sequential epochs of observation.
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analysis to assess the impact of redshift. The backbone architecture
is diagrammed in Figure 10, which is similar to Mesiri, with the
only difference being the addition of redshift information between
the third and fourth layers. Figure 11 demonstrates that our
constructed classification model remains insensitive to the

inclusion of redshift information during the initial phase of the
SN explosion. With the redshift information, the variation of the
estimate, i.e., the shaded region, shrinks slightly.

6.3. Simultaneously versus not Simultaneously

To differentiate Mephisto’s performance from other tele-
scopes under the condition of non-simultaneous observation
data, we process the simulated data to obtain approximately
non-simultaneous observation data. We then implement a
comparative analysis using the BiLSTM. It should be
emphasized that these data are still based on Mephisto’s
observation scheme. Specifically, the data were processed as
follows: first, the early-time data of the u, g, i bands were
randomly selected for multiple observations. For example, if
we want to study the classification with three observations, we
randomly select three observations before the peak luminosity
in the u-band, and the same for the g and i bands. The selected
u, g, i data would be aligned. It is important to note that this
alignment does not refer to aligning the data in the time
domain. Subsequently, the color information and corresp-
onding color error information will be calculated. Nevertheless,
here the color information is not the true color obtained through
simultaneous observations. Finally, the selected data would be
inserted into the model for training.
In Figure 12, one can see that our network demonstrates

good performance in the classification of SNe, e.g., the AUC

Figure 10. Mesiri with input features that incorporate redshift information between the third and fourth layers.

Figure 11. The accuracy of early classification models with and without
redshift is compared. The blue triangle line represents the results of an early SN
explosion with random epochs of observation, while the light blue shaded
region represents the standard deviation of model errors after five-fold cross-
validation. The results of early explosion with redshift are represented by the
green cross line and green region.
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Figure 12. Comparison between simultaneous/non-simultaneous observations for five evaluation metrics. The blue triangle solid line with the corresponding light
blue area represents the results obtained from simultaneous observations, and the green cross line represents those obtained from non-simultaneous observations.
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reaches nearly 100% after three days of observation. In almost
all cases, the simultaneous observation outperforms that of the
non-simultaneous one, especially when there are only a few
days of observations. With the accumulated sufficient data,
Mesiri achieves similar high performance in the early time
identification of SNe Ia in both simultaneous and non-
simultaneous observation scenarios.

6.4. With Color versus Without Color

We emphasize that each additional computation incurs a
time cost, even in the present era with remarkable computing
capabilities. To assess the modelʼs capacity to deduce color
information, we undertook a test to determine if explicitly
incorporating color information into the data improved the
model’s performance.

The experimental results from Figure 13 demonstrate that the
accuracy of observed data explicitly containing color information
exceeds 96%. Starting from the accumulation of second
observation data, the identification accuracy of SNe Ia surpasses
98%. This is depicted by the solid lines in the light blue triangle
region of Figure 13. Conversely, observed data without explicit
color information exhibit lower accuracy, below 94% for the
majority of early-time SN eruptions. This is shown by the dashed
lines in the light green region of Figure 13. Consequently, it can
be inferred that the accuracy of observed data explicitly containing
color information significantly surpasses the accuracy achieved
when color information is not explicitly displayed. It is worth
noting that even without explicitly displayed color information,
the combined observations of the u, g, i bands using our BiLSTM-
based model architecture result in an identification accuracy of
SNe Ia that is still above 89.55%± 0.59%. This accuracy

surpasses the precision attained in existing research on early-time
identification of SNe Ia.

6.5. u, g, i versus v, r, z

On account of the scheduled survey mode of Mephisto,
which is divided into filter combinations of u, g, i and v, r, z,
this section examines the efficacy of identifying SNe Ia in the
early stages of their explosion under the v, r, z filter
combination mode. We selected the BiLSTM method, which
had the best comprehensive evaluation in the above methods,
as the final basic unit method to compare the performance of
SNe Ia in the u, g, i and v, r, z bands. The comparative
evaluation criteria employ the same metrics as u, g, i,
specifically encompassing accuracy, precision, recall, AUC,
and F1 score. Since these five metrics yield comparable
findings upon comparison, only the accuracy comparison in
Figure 14 is displayed. The classification accuracy, shown in
Figure 14, indicates that the u, g, i filters yield slightly better
accuracy than the v, r, z filters when the observed data span one
or two days. In this regard, we compare the early-time spectral
data of SNe Ia and CCSNe by selecting and combining them
with the Mephisto total efficiency curve. We found that the
variation of emission and absorption lines in the u, g, i bands of
SNe Ia explosions are much larger than those of CCSNe during
the early time explosion. Furthermore, the variations of
emission and absorption lines in the u, g, i bands during the
early time of SNe Ia explosions are stronger than those in the v,
r, z bands. In spite of that, both the u, g, i and v, r, z-based
methods achieve an accuracy of over 94% in the early time
identification of SNe Ia.

Figure 13. The accuracy of classification models, with or without color, is
compared in this plot. The results of an early SN explosion with random epochs
of observation are represented by the blue triangle line, while the light blue
region represents the standard deviation of model errors after five-fold cross-
validation. On the other hand, the results of early explosion without color
information are represented by the green cross line and green region.

Figure 14. The accuracy of early classification models is compared with
respect to v, r, z. The blue triangle line represents the results of early SN
explosions based on epochs of observation in u, g, i, while the light blue region
indicates the standard deviation of model errors after performing five-fold
cross-validation. Conversely, the results of early explosions using v, r, z mode
epochs of observation are represented by the green cross line and green region.
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6.6. Shallow Learning

Gagliano et al. (2023) achieve comparable or superior results
to the leading classification algorithms with a simpler network
architecture with the photometric redshift, extinction, and host
galaxy photometry (shallow learning) and achieve an overall
accuracy of 82%± 2% and an accuracy of 87%± 5% at both
early (within 3 days of an eventʼs discovery) and late phases
(within 30 days of discovery). We also construct a shallow
learning architecture with only a light curve with true color
information, by way of contrast, as diagrammed in the left
panel in Figure 15. It consists of a single BiLSTM layer of 64
units. The right panel in Figure 15 is a comparison of the
accuracy between Mesiri and shallower learning. Upon
scrutiny, it becomes evident that, despite its reduced computa-
tional time, the shallow learning model does not demonstrate
the same level of effectiveness as Mesiri.

7. Summary

The Mephisto has established itself as a powerful facility for
time-domain astronomy owing to its capacity to capture the
real-time color of various celestial objects, including transients.
The real-time color of an SN explosion can provide vital
information about the progenitor stars and the explosion
mechanism, especially during the early phase. The real-time
color with better accuracy can be used for the early
classification of transients such as various types of SNe or
tidal disruption event (TDEs), or similar objects. We take
advantage of simultaneous three-band photometry by the
Mephisto facility and study the classification between SNe Ia
and CCSNe. We developed an identifier, Mesiri, based on an
RNN. The training samples are simulated according to the
observing features of Mephisto (see simultaneous multi-band

observations), the weather conditions of its location, and 1 day
cadence observational mode data. We focus on both real-time
and non-real-time observational data with random cadence. The
identifier Mesiri can efficiently identify early observed SNe Ia
with accuracy, precision, and an AUC above 96%. Moreover,
the accuracy, precision, and AUC reached 96.75%, 98.42%,
and 98.87%, respectively, when real-time data were considered
(i.e., once we had single epoch observational data). Specifi-
cally, the identification accuracy, precision, and AUC of SNe Ia
when the first discovery/trigger without redshift are
97.15%± 0.63%, 92.86%± 4.10%, 98.5%± 0.75%, respec-
tively. Our result has a better significance than the previous
studies of a similar kind and emphasizes the crucial information
by the true color. The key points of our study are summarized
below:

1. The classification utilizing true color demonstrates
superior performance compared to that employing
pseudo-color, particularly during the initial phases
characterized by limited observations.

2. In this study, several neural networks are compared,
including RNN, LSTM, GRU, and BiLSTM. Our results
show that BiLSTM performs best in the early classifica-
tion of SN Ia explosions with true color information.
Therefore, BiLSTM has been employed in successive
evaluations (see Section 6).

3. Mesiri remains insensitive to the inclusion of redshift for
low redshift SNe.

4. Our calculation indicates that although the identification
accuracy of SNe Ia is higher (96%) when the explicit
color information (i.e., (u− g), g− i), (u− i), (u− g)error,
(g− i)error, (u− i)error) is utilized, if we only use three
bands and their corresponding errors (i.e., u, g, i, uerror,

Figure 15. Shallow learning architecture, which is composed of a single BiLSTM layer of 64 units, is shown in the left panel. A comparison of the accuracy between
normal learning architecture (blue triangle line and light blue region) and shallower learning (green cross line and light green region) is displayed in the right panel.
Following five-fold cross-validation, the standard deviation of model errors is represented by the light shadow region.
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gerror, ierror), the identification accuracy is good enough
(∼90%) but consumes less computation time.

5. The u, g, i filters yield slightly better accuracy than the
v, r, z filters when the observed data span one or two
days. Nevertheless, both the u, g, i and v, r, z-based cases
achieve an accuracy better than 94% in the early time
identification of SNe Ia.

Additionally, one major source of contamination is the
extinction and reddening from the Milky Way and the host
galaxy. We perform extra comparisons with test samples
including extinction (Ohlson et al. 2024). By applying the
Mesiri classifier to light curves with extinctions, we observed
that the identification accuracy decreases to ∼88% on average.
Such an effect will be incorporated in our future study.

Moreover, it is noteworthy that the training sample employed
in our study was not subjected to data balancing, resulting in an
imbalanced sample ratio between SNe Ia and CCSNe during
model training. Despite this, our model can achieve unprece-
dented performance with true color information. However, in our
study, we acknowledge the following limitations. First, we carry
out our research using simulated data, which cannot reflect the
real observational noise or other systematics. A larger training
sample with real observations, especially data from the target
telescope, i.e., Mephisto, is required. Second, the study of SNe Ia
has also revealed their inherent diversity, which was not taken
into account in our simulated data. The classification of subtypes
of CCSNe as well as other transients, such as TDEs and
kilonovae, will be included in our classification scheme using
true color information in future studies. It is worth noting that
Mephisto is presently in the commissioning phase, and it is

already providing good scientific data (e.g., Chen et al. 2024a,
2024b; Yang et al. 2024).
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Appendix A
Mesiri Early Classification Evaluations

In Section 5, to concisely present the experimental findings,
we have selected evaluation results for five scenarios of Mesiri
as listed in Table 3. Here, we enumerate all scenario evaluation
results obtained from our experiments. Table A1 presents an
elaborate account of diverse evaluation metrics following a
five-fold cross-validation on SNe Ia using units, taking into
account the quantity of observed data from the commencement
of the SN explosion.

Table A1
Utilizing Mesiri for the Early-time Identification of SNe Ia Across all Scenarios in the Initial Stages of SN Explosions

ObsDay(s) Accuracy Precision Recall F1 score AUC

1 96.75% ± 0.79% 98.42% ± 0.95% 67.9% ± 7.93% 80.08% ± 6.07% 98.87% ± 0.53%
2 99.07% ± 0.18% 99.3% ± 0.56% 91.23% ± 1.81% 95.08% ± 0.99% 99.92% ± 0.02%
3 99.48% ± 0.24% 99.56% ± 0.53% 95.3% ± 2.64% 97.36% ± 1.26% 99.98% ± 0.00%
4 99.32% ± 0.61% 99.56% ± 0.53% 94.24% ± 5.72% 96.73% ± 3.09% 99.96% ± 0.04%
5 99.9% ± 0.08% 100.0% ± 0.0% 99.14% ± 0.80% 99.57% ± 0.40% 100.0% ± 0.00%
6 99.52% ± 0.42% 99.35% ± 1.30% 96.36% ± 3.29% 97.8% ± 1.96% 99.91% ± 0.14%
7 99.81% ± 0.12% 100.0% ± 0.0% 98.29% ± 1.08% 99.14% ± 0.55% 100.0% ± 0.00%
8 99.42% ± 0.55% 99.38% ± 1.23% 95.7% ± 5.26% 97.41% ± 2.59% 99.99% ± 0.01%
9 99.82% ± 0.18% 100.0% ± 0.0% 98.49% ± 1.60% 99.22% ± 0.82% 99.96% ± 0.07%
10 99.92% ± 0.06% 100.0% ± 0.0% 99.35% ± 0.53% 99.67% ± 0.26% 100.0% ± 0.00%
11 99.94% ± 0.11% 100.0% ± 0.0% 99.53% ± 0.93% 99.76% ± 0.47% 100.0% ± 0.0%
12 99.89% ± 0.08% 99.71% ± 0.57% 99.42% ± 0.71% 99.56% ± 0.35% 100.0% ± 0.0%
13 99.9% ± 0.19% 99.53% ± 0.93% 99.53% ± 0.93% 99.53% ± 0.93% 100.0% ± 0.00%
14 99.33% ± 1.31% 100.0% ± 0.0% 91.67% ± 16.6% 94.74% ± 10.5% 99.38% ± 1.25%
15 99.92% ± 0.15% 100.0% ± 0.0% 98.75% ± 2.5% 99.35% ± 1.29% 100.0% ± 0.0%
16 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%
17 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0% 100.0% ± 0.0%

Note. Note that each evaluation, when combined with uncertainties represented by standard deviations, may exceed 100%.
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Appendix B
Sample Distribution

Given the assumption in our sample selection that the rise
time to peak luminosity of the SN explosion is 17 days,
practical observational constraints often prevent the availability
of complete observational data. To simulate realistic scenarios,
each scenario assumes a different duration of observational

data. Consequently, we employed a scenario-specific model
training approach to better illustrate the sample distribution for
the pre-maximum epochs in each scenario during the model
training process. Figures B1, B2, and B3 depict the sample
distribution for the pre-maximum epochs in each scenario
(the pre-maximum epochs are provided in the title description
of each subplot).
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Figure B1. The sample distribution for the pre-maximum epochs in each scenario (the pre-maximum epochs are provided in the title description of each subplot).
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Figure B2. Continued from B1, the sample distribution for the pre-maximum epochs in each scenario (the pre-maximum epochs are provided in the title description of
each subplot).
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Appendix C.
Confusion Matrix

As highlighted in 4.2, in addition to the five metrics for
model evaluation provided after model training in the main
text, there is also the commonly used evaluation metric of the
confusion matrix. We employed Mesiri for each scenario-
specific training sample, as illustrated by the distribution of
sample pre-maximum luminosity in Appendix B, and the
corresponding confusion matrices for each scenario are
provided. Figures C1 and C2 represent confusion matrices.
From left to right and top to bottom, each subplot represents the
confusion matrix of the corresponding samples (left panel) and
is normalized in percentages (right panel) for the pre-maximum
epoch of observations, respectively. Beneath each set of
confusion matrices, descriptions are provided for the sampled
scenarios that align with the model training.

Figure B3. Continued from B2, the sample distribution for the pre-maximum
epochs in each scenario (the pre-maximum epochs are provided in the title
description of each subplot).
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Figure C1. Confusion matrices, from left to right and top to bottom, each subplot represents the confusion matrix of the corresponding samples (left) and normalized
confusion matrix (right) for the pre-maximum epoch of observations, respectively.
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Figure C2. Continued from C1, from left to right and top to bottom, each subplot represents the confusion matrix of the corresponding samples (left) and normalized
confusion matrix (right) for the pre-maximum epoch of observations, respectively.
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