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Abstract

Binary neutron star mergers are unique sources of gravitational waves in multi-messenger astronomy. The inspiral
phase of binary neutron stars can emit gravitational waves as chirp signals. The present waveform models of
gravitational waves only considered the gravitational interaction. In this paper, we derive the waveform of the
gravitational wave signal taking into account the presence of magnetic fields. We found that the electromagnetic
interaction and radiation can introduce different frequency-dependent power laws for both the amplitude and
frequency of the gravitational wave. We show from the results of the Fisher information matrix that the third-
generation observation may detect magnetic dipole moments if the magnetic field is ∼1017 G.
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1. Introduction

In the 20th century, the observation of the first binary pulsar
PSR B1913+16 by Russell A. Hulse and Joseph H. Taylor
(Hulse 1994; Taylor 1994) indicated an energy loss due to
gravitational radiation. Later the GW150914 event (Abbott
et al. 2016a, 2016b) marked the first direct detection of a
gravitational-wave (GW) signal from the coalescing of two
black holes and opened the era of GW astronomy. Then
GW170817 and a gamma-ray burst announced the first direct
observation of GWs from the merger of two neutron stars and
subsequent electromagnetic radiation (Abbott et al. 2017;
Goldstein et al. 2017). Moreover, due to the accompanying
electromagnetic counterparts, this event offers an independent
standard siren measurement of the Hubble constant
(Hotokezaka et al. 2019). GW170817 can also afford some
constraints on physics such as the nuclear coupling of light
axion fields (Zhang et al. 2021) and the emitting region of the
gamma-rays (Matsumoto et al. 2019). The merger of a binary
neutron star system can be divided into distinct phases: an
inspiral phase where the objects gradually approach, and a
merger phase marked by rapid coalescence. The GW signal
emitted during the inspiral phase is a source for detectors such
as the Advanced LIGO/Virgo detectors (Acernese et al. 2014;
Collaboration & Aasi 2015), KAGRA (Somiya 2012) (LVK)
and future Einstein Telescope (ET) (Punturo et al. 2010), Taiji
(Luo et al. 2020) and DECIGO (Seto et al. 2001). The
Advanced LIGO/Virgo are expected to give a merger rate of
binary neutron stars (BNSs) ranging from ∼0.4 to ∼400 yr−1

(Abadie et al. 2010) and the upper limit is 12,600 Gpc−3 yr−1

(Abbott et al. 2016c) since it has a considerable amount

distribution in our Milky Way. Lately, the study of systems that
emit electromagnetic radiation when they coalesce has attracted
interest due to the rich information that can be extracted from
this scenario.
A neutron star gains its strong magnetic field due to the

conservation of magnetic flux after the collapse (Spruit 2008).
Previous observations provided that the magnetic field carried
by neutron stars can reach up to 1015 G (Ferrario &
Wickramasinghe 2005). In some relativistic simulations, the
magnetic fields can reach a value as strong as 1018 G (Bocquet
et al. 1995; Cardall et al. 2001). A neutron star that contains a
magnetic field can be treated as a magnetic dipole. The motion
of a magnetic dipole and its precession around the axis of
rotation can give rise to electromagnetic radiation (Pacini 1967).
Some researches show that a constant magnetic dipole moving
arbitrarily can emit electromagnetic radiation (Heras 1994),
since the moving magnetic dipole moment is equivalent to a
current density vector and then the radiated potential can be
derived by solving Maxwell equations (Heras 1994; Ioka &
Taniguchi 2000; Griffiths 2011). On the other hand, when the
magnetic dipole moment of a neutron star is misaligned with its
spin axis, spin-down will take place due to the energy loss
(Dall’Osso et al. 2011). Such neutron stars with changing
magnetic dipole moments, observed as pulsars, can support rich
observational effects in multi-messenger astronomy.
In the past, most research focused on GW emissions by

simulating large sets of BNS systems before, during and after
mergers. Many of these simulations aimed to measure the
equations of state, explore the effects of magnetohydrody-
namics on GWs during the process, or study the remnants
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following the merger (Anderson et al. 2008; Andersson et al.
2011; Bauswein & Janka 2012; Baiotti 2019). Data analyses
have been conducted to test general relativity, particularly
after the detection of the GW170817 events (Abbott et al.
2019, 2019; Radice & Dai 2019; Abbott et al. 2020, 2021). The
detection of GW from the inspiral phase demands accurate
waveform templates owing to the weak amplitude of the wave.
For the detection of BNSs, most of the present gravitational
waveform models considered only the gravitational interaction
containing the effects of tidal deformation and spin (Aposto-
latos et al. 1994; Dietrich et al. 2017). Few researches focused
on the electromagnetic interaction in detail, which we will
introduce and examine. Due to the presence of strong magnetic
fields, both the electromagnetic dipolar interaction and energy
loss can affect the evolution of orbital separation distance so
that the time-evolution of orbital quadrupole moments differs
from that in a purely gravitational dominant system (Vasúth
et al. 2003). Energy loss of a magnetized neutron star originates
not only from the GWs emission but also from the
electromagnetic waves (EMWs). It is certain that the presence
of magnetic dipole moments in compact objects can affect the
amplitude and changing rate of the angular frequency of GWs,
see Ioka & Taniguchi (2000), Henry et al. (2023). Additionally,
the relativistic simulations in Bocquet et al. (1995) and Cardall
et al. (2001) provides a possibility of the presence of strong
magnetic fields, starting from which we deduce the frequency-
domain waveform model containing the effect of magnetic
dipole moments and evaluate the possibility of detection.

This article is organized as follows. In Section 2 we derive
the equation of motion for two magnetized neutron stars from
the circular-orbit case using the Euler–Lagrange equation. We
adopt the post-Newtonian method including dipolar interaction.
In Section 3 we calculate the total energy loss rate contributed
by both gravitational radiation and electromagnetic radiation
averaged over a period in the adiabatic approximation. We use
this result to compute the time derivative of orbital radius and
further derive the waveform governed by gravitational and
electromagnetic interaction by performing the Fourier trans-
form and stationary phase approximation in Section 4. We
compare the waveform containing the influence of magnetic
field with that predicted for a system dominated by pure
gravity, using matched-filtering techniques for LIGO and ET in
Section 5. In addition, we report in this section the results of
evaluating the parameter estimation obtained from the Fisher
information matrix.

2. Equation of Motion for a Bound Binary System

Throughout this paper, we choose Gaussian units such that
1

4

1

4
0

0
= =m

p p
and keep gravitational constant G and the speed

of light c within the expressions. For a binary system formed
with a long initial separation, it spends most of its lifetime in the
inspiral phase (Maggiore 2007; Liu et al. 2020; Chu et al. 2022)

during which the lowest-order post-Newtonian approximation
is employed to describe it. Thus we consider the Keplerian
orbits of two magnetized neutron stars with masses m1 and m2

and magnetic dipoles moments d1 and d2, respectively. For
simplicity, we assume that the magnetic dipole moments of these
two neutron stars are aligned with their respective spin axes and
with the angular momenta of orbits. Note that we considered
neither the higher order post-Newtonian corrections nor the full
general relativity since in the long-distance inspiral phase the
interactions between the EM and gravitational fields enter the 2.5
post-Newtonian order ( (c 5~ - )), see Henry et al. (2024), which
is negligible. In addition, the internal currents that generate the
magnetic field of the primary are not distorted significantly by
the external field of the secondary and vice-versa since they are
well-separated (Bourgoin et al. 2022). Furthermore, the contrib-
ution of electromagnetic fields to spacetime is much less than the
masses and can be neglected (Ioka & Taniguchi 2000).
It is necessary to introduce the relationship between the

magnetic dipole moment and the surface magnetic field B at
pole: | |d d R B1

2 N
3º = , where RN is the radius of a neutron star,

and we set the same radius for the two neutron stars throughout
this paper. Moreover, we neglect the influence of spin on the
orbital motions. Due to electromagnetic interaction, the orbits
will differ from those of a binary system dominated solely by
gravity.
Given a dipole d2 immersed in the field generated by a

dipole d1, the interaction potential energy is, according to field
theory (Landau & Lifshitz 1975):

( )( ) ( )d d d R d R
U

R

3
, 1D

1 1 22 u u
3

=
⋅ - ⋅ ⋅

here we have defined | |RR = , R r r1 2= - and R R Ru /= . In
our case, this expression is simplified as

( )U
d d

R
, 2D

1 2
3

=

The Lagrangian for the bound system is given by

( )r rL m m
Gm m

R

d d

R

1

2

1

2
. 31 1

2
1 2

2 1 2 1 2
3

 = + + -

The above dot denotes the derivation with respect to time t. It is
convenient to choose the center of mass as the origin of
coordinates, i.e.,

( ) ( )r
rm

M
0, 0 , 4

i

i i
CM

1

2

å= =
=

where, M=m1+m2 is the total mass of the system. Therefore,
r Rm M1 2 /= and r Rm M2 1 /= - . By introducing the reduced
mass μ=m1m2/M and transforming to polar coordinates
(r, j), we can rewrite the Lagrangian as

( )L R R
G M

R

d d

R
T U

1

2

1

2
. 52 2 2 1 2

3
 m m j

m
= + + - = -
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According to Equation (5), we find that the respective kinetic
and potential energies are:

( )T R R
1

2

1

2
, 62 2 2 m m j= +

( )U
G M

R

d d

R
. 71 2

3

m
= - +

It is clear that the system has 2 degrees of freedom and the
orbital motion of the system takes place in a two-dimensional
space. We can express the Euler–Lagrange equation in terms of
the j dimension as:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )d

dt

L L d

dt
R 0. 82




j j
m j

¶
¶

-
¶
¶

= =

Furthermore, the canonical momentum Pj is given by

( )P
L

R . 92




j
m j=

¶
¶

=j

As a result, the canonical momentum Pj, commonly referred to
as the orbital angular momentum l, is conserved throughout the
process. This gives the relationship between angular velocity
and angular momentum:

( )l

R
. 10

2
j

m
=

Subsequently, if we examine the Euler–Lagrange equation for
R, we obtain:

⎜ ⎟⎛
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Multiply by a factor R on both sides of Equation (11) we find

⎜ ⎟
⎛
⎝

⎞
⎠

( )d

dt
R

l

R
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1
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and so the total energy of this system

( )E R
l

R

G M

R

d d

R

1

2 2
132

2

2
1 2

3
m

m
m

= + - +

is conserved, as expected. Under the circular condition, both
the radial velocity and acceleration vanish, leading to a
simplified equation of motion:

( )R
G M

R

d d

R

3
, 14s

2
2

1 2
4

mw
m

= -

where we have defined sj wº , obviously it is a constant.

3. Evolution of Orbital Radius

According to the Virial theorem, for an N-body system
bounded by a potential, if the potential energy U is the sum of
power functions of r: U=∑anr

n, the relationship between the

average total kinematic energy and potential energy is

( )rT U a nr
1

2

1

2
, 15

n
n

nåá ñ = á ⋅ ñ =

where n<−1 for BNS system such that the potential reaches
zero asymptotically at infinity. Thus the kinematic energy in
our case can be written as

⎛
⎝

⎞
⎠

( )T
G M

R

d d

R

1

2

3
, 161 2

3

m
= -

so the total energy has the form:

⎜ ⎟
⎛
⎝

⎞
⎠

( )E
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R

d d

R
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R

d d

G M R2 2 2
1

1
. 171 2

3
1 2

2

m m
m

= - - = - +

3.1. Electromagnetic Radiation

Due to the presence of both gravitational and electro-
magnetic radiation, the conservation of total energy is no
longer maintained. We will start by investigating the energy
emission resulting from electromagnetic radiation. We also
point out that the magnetic reconnection will contribute to
energy loss and bring more phenomena. However, it is very
complicated and we will consider it in future research. As the
neutron star is moving, it is necessary to consider the
transformation of electromagnetic fields in two reference
frames. Denoting the rest frame of the neutron star by S¢ and
the observer frame by S, the magnetic dipole moment d¢ in S¢ is
static. When S¢ moves with arbitrary velocity v, it will induce
an electric dipole moment de according to the Lorentz
transformation of the 4-potential Aμ. In the low-velocity limit,
the electric dipole moment can be expressed as, in the frame S
(Griffiths 2005),

( )d
v d

c
. 18e 2

=
´ ¢

On the other hand, the radiated field BR at field point r of a
magnetic dipole in arbitrary motion ( )s t¢ is calculated by Heras
(Heras 1994):

( )( · )

( )( · )

( )( · )

( ̈ ̈ ) ( )

B
D D d d D a

D D d d D a

D D d d D a

D D d d

c

DK c
c
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c
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c

DK c

3

3

, 19

R
e

e

e

e

u u u
2

5 4

u u u
4 3

u u u
4 3

u u
3 2





=
´ ´ ¢ -

+
´ ´ ¢ -

+
´ ´ ¢ -

+
´ ´ ¢ -

where | ( ) |r sD t= - ¢ , ( ( ))D r s t Du /= - ¢ , K 1= -
v D cu/⋅ and a v= . This expression is complicated. Under
the low-velocity limit and if we consider the source is small
in comparison with the distance i.e., | ( ) |s t D 1/¢ < < , the

3
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calculation can be performed up to the leading order of v c/ and
| ( ) |s t D/¢ , following Ioka & Taniguchi (2000):

( )[( ) ] ( )B D d D a D a
Dc

1
. 20R 3 u u u = ⋅ ¢ ⋅ -

Then we can calculate the total power of electromagnetic wave
by integrating over the solid angle (Landau & Lifshitz 1975):

( )P
dP

d
d

cB D
d

4
. 21R

EM
EM

2 2

ò ò p
=

W
W = W

The only well-defined energy emission power is given by the
time average over one period of the wave:

¯ ( )P
T

dtP
1

. 22
T

EM
0

EMò=

So the energy emission power averaged over a period is given
by

¯ ( )dE

dt
P

d R

c

4

15
, 23sEM

EM

2 2 6

5

w
= - =

where d is the modulus of the effective magnetic dipole
moment ( )d d dm m M2 1 1 2 /= - .

However, the Lorentz boost of the inspiraling neutron star is
different at two different times due to the changing direction of
velocity. The total Lorentz transformation can be treated as a
Lorentz boost plus a pure rotation (Jackson 2021). This will
lead to an additional evolution called Thomas precession. We
considered two different cases for the evolution of magnetic
dipole moments due to the Thomas precession.

Due to the Lorentz transformation, the Lorentz boost is
different between two inertial reference frames with different
directions of motion. In the circular orbital, the Lorentz boost is
different since the velocity of the neutron star changes with
time. Then the neutron star will obtain an additional angular
velocity due to the precession (Jackson 2021):

( )a v
c1

, 24T

2

2
w g

g
=

+
´

where a v, are the acceleration and velocity of a neutron star
respectively. Then an observer in the rest frame S will see that a
vector G in the frame of circular motion S¢ gains an additional
time evolution:

( )G G. 25T w= ´

First for circular orbits with two dipoles both aligned with
the orbital angular momentum. The acceleration and velocity
are perpendicular to each other and both in the orbital plane,
thus the cross-production points to the normal of the orbital
plane. We set the direction of angular momentum to be the z-
axis and thus the angular velocity vector is along the z-axis and
parallel to the two dipoles. This gives the zero changing rate of
dipoles:

( )d d 0, 26T w= ´ =

and so the second order derivative is:

( )
‥
d 0, 27=

thus there is no dipole radiation due to the Thomas precession.
Second, we consider that one of the dipoles is not parallel to

the angular momentum, e.g., d2. Suppose that there is an angle
of inclination as ò, that is, d e d cosz2 2⋅ =  . Note that since
the total angular momentum of the binary neutron star is
conserved, the orbital angular momentum will change with
time, so the motion is generally three-dimensional. However,
we can still require that the orbit is circular just for a rough
estimation of the magnitude of the radiation power.
Due to the Thomas precession, the changing rate of d2 is

given as:

( )d d
a v

d
c1

. 28T2 2

2
2 2

2 2 w g
g

= ´ =
+

´
´

Then we derivative the rate with respect to time, we obtain:
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Note that in the assumption of circular orbits we have a2 ´
v a v0, 02 2 2= ´ = and a v s2 2

3w´ µ . Thus the second
derivative reads:
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µ

According to dipole radiation, the power of such a changing
magnetic dipole moment is roughly:

| | ( )
‥
dP

c
. 31T 2

2
12

8

w
µ µ

Thus the magnitude of radiation power is much less than
Equation (23). In summary, from the estimate of magnitude,
the additional radiation power from Thomas precession can be
neglected.

3.2. Gravitational Radiation

To continue, we need to calculate the energy emission from
gravitational radiation. Following Maggiore (2007), the total
radiated power in the quadrupole approximation integrated
over all the directions is (we have employed the Einstein

4
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summation convention)

⃛ ⃛ ( ⃛ ) ( )P
G

c
M M M

5

1

3
, 32ij ij kkGW 5

2= á - ñ

with the mass quadrupole moment in the equatorial plane:

( )M x x . 33ij
i jm=

We are working on the case of a circular orbit and a
sufficiently slow rate of emission of GW, so the radius of the
binary and the time derivative of j remain constant
instantaneously. According to the relation between Cartesian
coordinates and polar coordinates, we finally derive the specific
expressions of non-zero components of mass quadrupole
moments:
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Note that the emission power of GWs averaged over one period
is the same as the instantaneous power:

¯ ( )P P . 35GW GW=

Therefore, the energy emission power of GWs averaged over
one period is

¯ ( )dE

dt
P

G R

c

32

5
. 36sGW

GW

2 4 6

5

m w
= - =

and finally the rate of total energy emission is

( )dE

dt

dE

dt

dE

dt
. 37EM GW= +

3.3. Evolution of Orbital Separation

Due to the loss of energy, the separation distance of the
binary is reduced and the two neutron stars merge. We neglect
higher-order post-Newtonian or general relativistic corrections
to the flux since they start at ( )c 9~ - (Henry et al. 2024). By
performing time derivatives on both sides of Equation (17)
gives the relation between the time evolution of R and the
energy loss rate. Throughout this paper, we regard the
electromagnetic interaction as a perturbation of orbits, i.e.,

1d d

Gm m R

11 2

1 2
2 < < . Furthermore, from Equation (14) we have

⎜ ⎟
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then we derive R to the first order of d1d2/(GμMR2):
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To continue our analysis, it is convenient to introduce
dimensionless expressions. It is needed to introduce the
characteristic radius:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )R
GM

c

G

c

2
. 403

2

2
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m
=*

We can therefore rewrite quantities such as t, R, M as a
dimensionless expression ˆ ˆ ˆ ( )t ct R R R R G c R, , 2= = = * * * ,
where  represents any mass term such as the total mass and
the reduced mass and the hat symbol above denotes the
dimensionless expression. Note that ( )( )d G m i 1, 2i i = has
the dimension of [R], so the dimensionless expression is
ˆ ( )d d G m Ri i i= * . Then Equation (39) can be rewritten as

⎡
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⎜
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where we have defined ⎛
⎝

⎞
⎠

ˆ ˆˆ
d d, 12d16

5

16
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2
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can integrate the differential equation as

ˆ
ˆ

ˆ ˆ ( )
ˆ

ˆ R

R
dR t

1
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R

R 5

2
0

ò g
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+
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where γ= β/α and we set the initial time to be 0. This gives
the solution:

( ˆ ) ( ˆ) ˆ ( )f R f R t , 430 a- =

( ˆ) ( ˆ ) ˆ ˆ
( )f R

R R Rln 1

2 2 4
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4g
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According to an estimation of the magnitude, the logarithm is
much less than the power parts in the expression, so we neglect
the contribution of the first term in the right hand of
Equation (44), thus we approximately have

( ˆ)
ˆ ˆ

( )f R
R R

2 4
. 45

2

2

4


g g

- +

In order to solve Equation (43), we need to define the time to
coalescence t̂ through ˆ ˆ ˆ ˆt t0 0t t+ = = and t̂0 is the time when
the two neutron stars coalesce. So Equation (43) becomes
(Christiansen et al. 2021):

( ˆ ) ( ˆ) (ˆ ˆ ) ( )f R f R . 460 0a t t- = -
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From this equation we can get the relationship between R̂ and
t̂:

ˆ ( ˆ ) ( )R
1

1 1 4 . 473

g
ag t= + +

In our analysis we considered the assumption that γ? 1.
Actually, the terms of d̂i in α is much less than the unit even
though we choose a large value of B, which can be seen by
substituting some actual values into the dimensionless expres-
sions. Finally, we have the approximate solution to the first
order of 1/γ:

⎡
⎣⎢

⎤
⎦⎥

ˆ ( ˆ ) ( ˆ ) ( )R 4 1
1

2
4 . 481 4 1 2bt

g
bt= + -

By inserting R̂ into Equation (38) and expanding to the leading
order we get (notice the magnitude ˆ ˆd d 11 2 g~ ):

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ˆ ˆ ( ˆ )

ˆ ˆ ( ˆ ) ( )

M

d d

2 4

1
3

2

3

4
4 . 49

s c
3 4 5 8 3 8

1 2
1 2

w bt

g
bt

=

´ - +

- - -

-

here we set ˆ R cs sw w= * and define the chirp mass as Mc=
μ3/5M2/5 together with its dimensionless expression M̂c º

( )GM c Rc
2
* .

4. Waveform of Gravitational Waves

In the theoretical analysis of waveform, we calculate the
waveform in harmonic coordinates, thus there are only two
independent components: the plus polarization

⎜ ⎟
⎛
⎝

⎞
⎠

(ˆ) ˆ ˆ ˆ
ˆ ( )h t

R

D

4 1 cos

2
cos 50s

2 2 2mw i
=

+
F+

and the cross polarization

(ˆ) ˆ ˆ ˆ
ˆ ( )h t

R

D

4
cos sin , 51s

2 2mw
i= F´

here ι is the angle between the orbital angular momentum and
the line of sight of the observer and D̂ is the dimensionless
luminosity distance from the binary to the observer. We select
ι= π/2 so that the GW observed has only plus polarization:

(ˆ) ˆ ˆ ˆ
ˆ ( )h t

R

D

2
cos , 52s

2 2mw
= F+

with the phase defined as:

(ˆ) ˆ ( ˆ ) ˆ ˆ ( ˆ ) ˆ ( )
ˆ

ˆ

ˆ

ˆ
t t dt t dt2 53

t

t

s
t

t

GW
0 0

ò òw wF = ¢ ¢ = ¢ ¢

where ωGW= 2ωs is known as the chirping frequency. From
Equation (49) we can see that ωGW increases as the binary
approaches the coalescence, i.e., t̂ decreases. Substituting

Equations (48) and (49) into Equation (52), we obtain:

(ˆ) (ˆ ) ( )h t A cos , 54t= F+

with

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

(ˆ ) ˆ
ˆ ( ˆ )

ˆ ˆ ( ˆ ) ( )

A
D

M

d d

2
4

1
1

2
3 4 . 55

c
5 4 1 4

1 2
1 2

t bt

g
bt´ - +

-

-

To observe the effects of magnetic dipole moments, we plotted
the waveforms of magnetized and non-magnetized neutron
stars in Figure 1. Note that we set the magnetic field to be of
order ∼1017, under the relativistic simulation results of Cardall
et al. (2001). The equations show that the magnetic dipole
moments contribute additional t̂ terms to both the frequency

(ˆ )GWw t and amplitude (ˆ )A t of the wave. The additional
frequency terms induce a considerable phase shift compared
with the case where there are no magnetic dipole moments.
Also, both the amplitude and frequency increase gradually as
coalescence is approached. So the property is referred to as
“chirp.”
Each detector is sensitive to signals within a specific

frequency range, which varies depending on the instrument.
For instance, the LIGO operates within 10 Hz–1000 Hz and
10−4 Hz–10−1 Hz for LISA and Taiji (LISA Study Team 1997;
Collaboration & Aasi 2015; Luo et al. 2020). In order to know
the frequency distribution of a signal, it is needed to take
Fourier transform and rewrite the signal waveform in the
frequency domain. The expression is:

˜ ( ) ( ) ( )h f dth t e . 56r
i ft2 rò= p

+
-¥

+¥

+

Note that the GW propagates at the speed of light c, when a
wave front is emitted from a source, it takes some time to reach
the observer, so the integrand must be evaluated at the retarded
time tr= t−D/c. Taking into account that the differential of
the retarded time is dtr= dt and that ( )e ecos i i1

2
F = +F - F , we

can rewrite the expression as:

˜ ( ) ( )

( ) ( )( ) ( )

h f e dt A t

e e e

1

2
. 57

i fD c
r r

i t i t i ft

2

2r r r

ò=

´ +

p

p

+ -¥

+¥

F - F

Following Maggiore (2007), we use the stationary phase
approximation, where only the term e i(−Φ+2π ft) has stationary
point, while the term e i(Φ+2π ft) oscillates fast that will be
integrated to a negligibly small value. Thus the expression
reduces to

˜ ( ) ( ) ( )[ ( )]h f e dt A t e
1

2
. 58i fD c

r r
i ft t2 2 r r òp p

+
-¥

+¥
-F

At the stationary point t* we have ( )f t2 GW
p w= F º* . This

indicates that the largest contribution to Fourier components is
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obtained for the value t such that ωGW is equal to 2πf. Taking
into account that A(tr) varies much more slowly compared to
phase, we expand the expression around the point t* to the
second order of (t− t*) and ultimately obtain:

⎜ ⎟
⎛
⎝

⎞
⎠

˜ ( ) ( ) ̈ ( )
( )h f e A t

t

1

2

2
, 59i

1 2

=
F

+
Y+

*
*

where Ψ+(t*)= 2πf (t*+D/c)−Φ(t*)− π/4. From Equation (49)
we can immediately get, keeping it in mind that ωGW is twice the
angular velocity,

⎜ ⎟

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦⎥

(ˆ ) (ˆ ) ˆ ( ) ˆ

ˆ ˆ ( ) ˆ ( )

M

d d

2
8

5
4

12
6

4 . 60

c0
1 4 5 8 3 8 5 8

1 2
7 8 1 8

t t b t

g
b t

F = F -

- +

- -

-

To get the relation between t* and f, or equivalently between
τ* and f we need to solve the equation:

(ˆ ) (ˆ)∣ (ˆ )∣ ˆ ( )ˆ ˆ ˆ ˆt
d

dt
t

d

d
f2 , 61t t

t
t pF = F = - F =t t= =* * *

thus we derive the frequency:

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ˆ ˆ ( ˆ )

ˆ ˆ ( ˆ ) ( )

f M

d d

2
4

1
3

2

3

4
4 . 62

c

3 4 5 8 3 8

1 2
1 2

p
bt

g
bt

=

´ - +

- - -

-

*

*

Since the electromagnetic interaction is much weaker than
gravity, we neglect the contribution of magnetic dipole and
obtain the relation:

ˆ ˆ ( ˆ ) ( )M f
1

16
. 63c

5 3 8 3t
b

p
- -

*

Substituting Equation (63) into the expressions of (ˆ )A t* and
̈ (ˆ )tF * in Equation (59) and restoring G, c we finally obtained

the full expression in frequency domain for further analysis:

⎜ ⎟
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where the phase is given by
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⎞
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All the variables associated with a constant phase have been
grouped together into Ψ0. Moreover, since h+(t) is already
dimensionless, the frequency-domain expression ˜ ( )h f+ carries
the dimension of [ ]T 1- . Clearly, the alteration of magnetic
dipole moments in waveform (64) introduces different
dependencies on frequency in both amplitude and phase,
ultimately reducing to the scenario where only gravity
dominants, namely initial waveform:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

˜ ( )

( )

h f e
c

D

GM

c
f

5

96

, 66

i
i

c

,

1 2

2 3
3

5 6
7 6

i,

p

=

´

+
Y

- -

+

Figure 1. Time-domain waveform of (ˆ)h t+ : The reference point for time is set at the coalescence time tc. We have selected m1 = m2 = 1.55 Me so that the chirp mass
is Mc ; 1.39 Me. We set RN = 13.8 km for the two neutron stars and D = 100 Mpc. For the magnetized neutron stars, we choose the surface magnetic field as
8 × 1017 G.
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with phase

⎛
⎝

⎞
⎠

⎛
⎝

⎞
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f f
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c
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+

+

-
-
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5. Data Analysis

Using the waveform, we can analyze the dependence of ˜ ( )h f+
on the physical properties of neutron stars, especially the surface
magnetic field B. We also estimated how accurately the parameters
will be identified in future observations. In our analysis, we choose
d2= d1/2000 where the approximation γ? 1 is satisfied.

5.1. Matched Filtering

The matched filtering technique is used here to search for
deviation between two waveforms. We introduce the inner product
between two time series a(t) and b(t) (Lindblom et al. 2008):

( ∣ ) ˜( ) ˜ ( )
( )

( )a b
a f b f

S f
df4 Re . 68

n0ò=
+¥ *

The tilde symbols stand for the Fourier transform and the star
denotes the complex conjugation. The quantity Sn( f ) is the
power spectral density (PSD) of noise for a particular detector.

We use this method to quantify the differences between our
modified waveform and initial waveform from which we learn
the influence of magnetic dipole. We calculate the maximized
fitting factor or match between two signals to quantify the
similarity between them:

( ( )∣ ( ) )
( ∣ )( ∣ )

( )a t b t t e

a a b b
maxmatch , 69
t

s
i

,s s

s

=
+

f

f

where the maximization is taken after some proper shift of ts
and fs. As the post-Newtonian approximation is applicable in
the long-distance condition, the computation must be cut off

well before one neutron star reaches the innermost stable
circular orbits.
Using the relationship between magnetic dipole moment and

the surface magnetic field, we compute different matches for
different surface magnetic fields in the frequency domain. To
provide a comparison, we calculated the match for two GW
detectors and illustrated the result of matched-filtering using
fixed masses and radii for the neutron stars. As depicted in the
figures of values of the match, we computed in the 10 Hz–
1000 Hz frequency range in Figures 2 and 3 for the range
10−4 Hz–0.1 Hz (the frequency ranges are considered to cover
the detectabilities of Taiji and DECIGO (Seto et al. 2001; Luo
et al. 2020.) Note that RN has the same value for two neutron
stars. We observe that the match diminishes as masses
decrease. This results from that GWs are generated due to
the changing mass quadrupole moments. As we choose the
electromagnetic interaction to be a perturbation of this orbital
behavior, the deviation between two waveforms remains small
for magnetic fields <1017 G. Note that in our research we
mainly focus on whether the frequency domain waveform can
include the information of magnetic dipole moments in the
lowest-order Newtonian approximation. We choose the magn-
etic fields to be 8× 1017 G just as a special case or an upper
limit, not for the results of current observations. Since the tidal
deformation contributes fifth-order post-Newtonian correction
in the waveform (Flanagan & Hinderer 2008) which is much
less than our approximation and is independent of the dipolar
effect, the tidal deformation does not affect the information of
dipole moments in the waveform.

5.2. Evaluation of Parameter Estimation

Fisher information matrix (FIM) is employed to characterize the
performance in parameter estimation for detectors (Vallisneri 2008).
When considering the influence of parameters, the waveform is a

Figure 2. Matches between the waveforms with magnetized and non-magnetized neutron stars. We set different surface magnetic fields for magnetized neutron stars.
Different colors refer to different masses. The black dashed line denotes the critical value of match below which the detector is expected to well distinguish two
waveforms. The left panel shows the values of the match for the LIGO detector and the right panel is for ET.
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function of parameters, i.e.,

( ) ( )h h , 70il=

where λi is the parameter vector with i ranges from 1 to the
total number of parameters. Once we have the waveform
Equation (64) we can write the strain amplitude detected by a
detector in the frequency domain:

( ) ( )h f F h F h , 71= ++ + ´ ´

here the antenna pattern functions F+ and F× are given by
(Maggiore 2007):

( )

( )

F

F

1

2
1 cos cos 2 ,

cos sin 2 . 72

2 q f

q f

= +

=

+

´

where θ and f denote the sky location. This expression has the
same linear combination as that in the time domain because we
regard θ, f, ι as time-independent. Thus, the detected strain
amplitude relies on the parameters:
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with Ψ×=Ψ++ π/2.
We are especially interested in the influence of magnetic

dipole moments of neutron stars on the waveform. We would
like to see how accurately we can estimate and further constrain
the parameters through GWs since GWs carry information of
the physical properties of neutron stars. Since the surface
magnetic fields and radii of neutron stars are completely
coupled in magnetic dipole moments, it is advantageous to treat
the magnetic dipole moment of the first neutron star as a
distinct and independent parameter.

Figure 3. For future application of the detection of low-frequency GWs by Taiji and DECIGO, we computed matches between the waveforms with magnetized and
non-magnetized neutron stars with different surface magnetic fields using the same parameter set as the former. The left panel shows the values of the match for the
DECIGO detector and the right panel is for Taiji.

Table 1
Relative Errors of d1, D, Mc are Evaluated using the PSD of both LIGO and ET

Detectors, Respectively

LIGO ET
d

d
1

1

D 3.52% 0.26%
D

D

D 4.31% 0.33%
M

M
c

c

D 1.04 × 10−5 3.13 × 10−7

Note. In the computation, we employ the parameter values of m1 = 1.65 Me,
m2 = 1.55 Me and D = 100 Mpc. Additionally, we set B = 6.0 × 1017 G
and RN = 13.8 km so that the magnetic dipole moment is d1 = 7.88 ×
1035 G · cm3.

Table 2
Relative Errors of Surface Magnetic Field B of Different m1 using the ET

Detector

m1 = 1.44 Me m1 = 1.50 Me m1 = 1.80 Me

B

B

D for

B = 7.0 × 1014 G

24.41% 27.48% 46.93%

Note. In the computation, we employ the parameter values of m2 = 1.40 Me

and RN = 13.8 km. Note that we set D = 20 kpc for our Milky Way (Goodwin
et al. 1998). Choice of Parameters refer to Kalogera & Baym (1996), Cardall
et al. (2001).
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Introducing the FIM for a given waveform h (Vallisneri 2008):

⎟⎜
⎛
⎝

⎞

⎠
( )h h

. 74ij
i jl l

G =
¶
¶

¶
¶

The square root of the diagonal elements of the inverse of the
FIM provides the errors of parameters:

( ) ( ). 75i ii
1lD = G-

Then we can calculate the corresponding likelihood:

( ) ( )e . 76i j
ij i j

1
2

,l µ
å l l- G D D



For comparison and estimation of the accuracy, we
computed relative errors of some main parameters for the
two detectors. Note that we regard the magnetic dipole moment
of the first neutron star d1 as the only independent magnetic
dipole moment. When calculating the matrix, we set the angles
to be θ= π/4, f= π/3, ι= π/6 in order to contain h+, h×
components. We provide the results for three main parameters
in Table 1. Especially, we will show below that it is possible to
estimate the magnetic field to a value less than 1016 G from the
waveform in the Milky Way. It is important to see the lower
limit that can be identified. It has been shown that a model can
achieve a perfect fit to data for certain parameters when the
match satisfies the condition (Chatziioannou et al. 2017):

( )N
1 match

2SNR
77

2
- <

where N is the number of intrinsic parameters (here N= 12) of
the waveforms and SNR is the signal-to-noise ratio. On the other
hand, this gives the upper limit for a detector to distinguish two
waveforms. Instead of a source at distance D= 100Mpc, we
estimated the relative errors for magnetic fields of some BNS
systems in our Milky Way. From Table (2) it is shown that in
our configuration with surface magnetic field B= 7.0× 1014 G

for neutron star m1, corresponding to magnetic dipole as
9.20× 1032 G · cm3, the relative error can reach within 30%.
The errors derived from the FIM show a promising

evaluation in estimating the magnetic dipole moments and
chirp mass, due to our selection of an extremely strong
magnetic field carried by neutron stars. We plot the contour of
the likelihood for LIGO, shown in Figure 4. Note that the
method characterizes the performance of a detector in
parameter estimation, thus this will give a more optimistic
estimation than practice.

6. Conclusions and Discussions

The mergers of binary neutron stars are promising electro-
magnetic counterparts of the GW sources in multi-messenger
astronomy. In this paper, we have derived the equation of motion
for a binary neutron star system taking into account magnetic
dipolar interaction. In our analysis, we calculated the total energy
emission rate and the time evolution of orbital radius for circular
orbits by using the post-Newtonian method and by considering
the lowest order multipole radiation for gravitational and
electromagnetic waves. It is shown that both the magnetic
dipolar interaction and electromagnetic radiation can modify the
orbital motion and evolution. Considering the modification we
calculated the gravitational waveform in the frequency domain
including terms related to the magnetic dipole moment. It is
found that the magnetic dipole moment can introduce a
significant phase shift proportional to f−1/3 and introduce an
additional term proportional to f 1/6 in the amplitude.
After obtaining the waveforms containing magnetic dipole

moments, we employ the matched filtering and the FIM for
evaluating the parameter estimation for the LVK detectors and
future ET detectors. In the strong magnetic field regime, we show
that the match of two signals with and without magnetic dipole
decreases as the magnetic fields increase. This suggests the

Figure 4. Likelihood of parameters derived from FIM. The left-hand panel plotted the likelihood of chirp massMc and the magnetic dipole moment of the first neutron
star d1. The figure in the middle shows the likelihood of Mc and the luminosity distance from the binary to our earth D. The right-hand panel is for d1 and D. In the
three figures the contours from the outermost to the innermost are 1σ, 2σ and 3σ levels respectively.
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potential for detecting extremely strong magnetic fields or
providing constraints on the magnetic fields of neutron stars in
future observations by the LVK and ET. The latter could measure
or constrain the magnetic field in a higher accuracy. The analysis
from FIM provides an optimistic evaluation for the parameter
estimations with a high signal-to-noise ratio, especially the
estimation of magnetic dipole moments is limited to a few per
cent for ET. Furthermore, it is capable to estimate magnetic field
at ∼1014 G to an error within 30% in our Milky Way.

Note that the improved sensitivity of future detectors will
result in more detection of GWs from neutron star mergers.
Since neutron stars usually carry strong magnetic fields (Duncan
& Thompson 1992) which can affect the waveforms, this
provides a possibility to detect the strong magnetic fields in
future GW observation. Furthermore, we can also give a
constraint on the magnitude of magnetic fields and further
constrain the equations of the state of neutron stars (Bandyo-
padhyay et al. 1997; Ferrer et al. 2010). It is important to
acknowledge that the spin of a neutron star might not align with
its magnetic axis, resulting in a different modification to the
dynamics in contrast to the current scenario. Thus in future work
we will generalize the current case to the magnetic dipole
moments with arbitrary orientation (Weisberg et al. 1981).
Further, the modification by magnetic dipole moments intro-
duced in this work can be extended to the black hole-neutron star
binaries. Indeed, a rotating black hole in the magnetic fields
produced by the neutron star can accrete charges and form a
magnetic dipole moment (Wald 1974; Liu et al. 2016), with such
effects we can further investigate the black hole-neutron star
mergers and give methods to search for charged black holes.

Acknowledgments

We thank Chen Su for his discussions and suggestions for our
coding work. We thankWenBiao Han for his beneficial discussions
for this paper. We also thank Belahcene Imene for her valuable
advice on this work. This work was supported by the National Key
R&D Program of China (grant No. 2021YFC2203002), and the
National Natural Science Foundation of China (grant Nos.
12173071 and 12473075). This work made use of the High
Performance Computing Resource in the Core Facility for
Advanced Research Computing at Shanghai Astronomical
Observatory.

ORCID iDs

Rundong Tang https://orcid.org/0000-0002-7282-1612

References

Abadie, J., Abbott, B., Abbott, R., et al. 2010, CQGra, 27, 173001
Abbott, B., Abbott, R., Abbott, T., et al. 2019, PhRvX, 9, 011001
Abbott, B., Abbott, R., Abbott, T., et al. 2020, ApJL, 892, L3
Abbott, B. P., Abbott, R., Abbott, T., et al. 2016a, PhRvL, 116, 131103
Abbott, B. P., Abbott, R., Abbott, T., et al. 2016b, PhRvL, 116, 061102

Abbott, B. P., Abbott, R., Abbott, T., et al. 2017, PhRvL, 119, 161101
Abbott, B. P., Abbott, R., Abbott, T., et al. 2019, PhRvL, 123, 011102
Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2016c, ApJL, 832, L21
Abbott, R., Abbott, T., Abraham, S., et al. 2021, PhRvX, 11, 021053
Acernese, F. a., Agathos, M., Agatsuma, K., et al. 2014, CQGra, 32, 024001
Anderson, M., Hirschmann, E. W., Lehner, L., et al. 2008, PhRvL, 100,

191101
Andersson, N., Ferrari, V., Jones, D., et al. 2011, GReGr, 43, 409
Apostolatos, T. A., Cutler, C., Sussman, G. J., & Thorne, K. S. 1994, PhRvD,

49, 6274
Baiotti, L. 2019, PrPNP, 109, 103714
Bandyopadhyay, D., Chakrabarty, S., & Pal, S. 1997, PhRvL, 79, 2176
Bauswein, A., & Janka, H.-T. 2012, PhRvL, 108, 011101
Bocquet, M., Bonazzola, S., Gourgoulhon, E., & Novak, J. 1995, A&A,

301, 757
Bourgoin, A., Le Poncin-Lafitte, C., Mathis, S., & Angonin, M.-C. 2022,

PhRvD, 105, 124042
Cardall, C. Y., Prakash, M., & Lattimer, J. M. 2001, ApJ, 554, 322
Chatziioannou, K., Klein, A., Yunes, N., & Cornish, N. 2017, PhRvD, 95,

104004
Christiansen, Ø., Jiménez, J. B., & Mota, D. F. 2021, CQGra, 38, 075017
Chu, Q., Yu, S., & Lu, Y. 2022, MNRAS, 509, 1557
Collaboration, T. L. S., & Aasi, J. 2015, CQGra, 32, 074001
Dall’Osso, S., Stratta, G., Guetta, D., et al. 2011, A&A, 526, A121
Dietrich, T., Bernuzzi, S., & Tichy, W. 2017, PhRvD, 96, 121501
Duncan, R. C., & Thompson, C. 1992, ApJL, 392, L9
Ferrario, L., & Wickramasinghe, D. 2005, MNRAS, 356, 615
Ferrer, E. J., de la Incera, V., Keith, J. P., Portillo, I., & Springsteen, P. L. 2010,

PhRvC, 82, 065802
Flanagan, E. E., & Hinderer, T. 2008, PhRvD, 77, 021502
Goldstein, A., Veres, P., Burns, E., et al. 2017, ApJL, 848, L14
Goodwin, S., Gribbin, J., & Hendry, M. 1998, Obs, 118, 201
Griffiths, D. J. 2005, Introduction to Electrodynamics (Cambridge: Cambridge

Univ. Press)
Griffiths, D. J. 2011, AmJPh, 79, 867
Henry, Q., Larrouturou, F., & Le Poncin-Lafitte, C. 2024, PhRvD, 109,

084048
Henry, Q., Larrouturou, F. m. c., & Le Poncin-Lafitte, C. 2023, PhRvD, 108,

024020
Heras, J. A. 1994, AmJPh, 62, 1109
Hotokezaka, K., Nakar, E., Gottlieb, O., et al. 2019, NatAs, 3, 940
Hulse, R. A. 1994, RvMP, 66, 699
Ioka, K., & Taniguchi, K. 2000, ApJ, 537, 327
Jackson, J. D. 2021, Classical Electrodynamics (New York: Wiley)
Kalogera, V., & Baym, G. 1996, ApJ, 470, L61
Landau, L. D., & Lifshitz, E. M. 1975, The Classical Theory of Fields.

(Oxford: Pergamon)
Lindblom, L., Owen, B. J., & Brown, D. A. 2008, PhRvD, 78, 124020
LISA Study Team, K. D., et al. 1997, CQGra, 14, 1399
Liu, L., Christiansen, Ø., Guo, Z.-K., Cai, R.-G., & Kim, S. P. 2020, PhRvD,

102, 103520
Liu, T., Romero, G. E., Liu, M.-L., & Li, A. 2016, ApJ, 826, 82
Luo, Z., Guo, Z., Jin, G., Wu, Y., & Hu, W. 2020, ResPh, 16, 102918
Maggiore, M. 2007, Gravitational Waves: Volume 1: Theory and Experiments

(Oxford: Oxford Univ. Press)
Matsumoto, T., Nakar, E., & Piran, T. 2019, MNRAS, 483, 1247
Pacini, F. 1967, Nature, 216, 567
Punturo, M., Abernathy, M., Acernese, F., et al. 2010, CQGra, 27, 194002
Radice, D., & Dai, L. 2019, EPJA, 55, 1
Seto, N., Kawamura, S., & Nakamura, T. 2001, PhRvL, 87, 221103
Somiya, K. 2012, CQGra, 29, 124007
Spruit, H. C. 2008, AIP Conf. Proc.: 40 YEARS OF PULSARS: Millisecond

Pulsars, Magnetars and More, 983 (Melville, NY: AIP), 391
Taylor, J. H. 1994, RvMP, 66, 711
Vallisneri, M. 2008, PhRvD, 77, 042001
Vasúth, M., Keresztes, Z., Mihály, A., & Gergely, L. Á. 2003, PhRvD, 68, 124006
Wald, R. M. 1974, PhRvD, 10, 1680
Weisberg, J. M., Taylor, J. H., & Fowler, L. A. 1981, SciAm, 245, 74
Zhang, J., Lyu, Z., Huang, J., et al. 2021, PhRvL, 127, 161101

11

Research in Astronomy and Astrophysics, 24:115002 (11pp), 2024 November Tang et al.

https://orcid.org/0000-0002-7282-1612
https://orcid.org/0000-0002-7282-1612
https://orcid.org/0000-0002-7282-1612
https://orcid.org/0000-0002-7282-1612
https://doi.org/10.1088/0264-9381/27/17/173001
https://ui.adsabs.harvard.edu/abs/2010CQGra..27q3001A/abstract
https://doi.org/10.1103/PhysRevX.9.011001
https://ui.adsabs.harvard.edu/abs/2019PhRvX...9a1001A/abstract
https://doi.org/10.3847/2041-8213/ab75f5
https://ui.adsabs.harvard.edu/abs/2020ApJ...892L...3A/abstract
https://doi.org/10.1103/PhysRevLett.116.131103
https://ui.adsabs.harvard.edu/abs/2016PhRvL.116m1103A/abstract
https://doi.org/10.1103/PhysRevLett.116.061102
https://ui.adsabs.harvard.edu/abs/2016PhRvL.116f1102A/abstract
https://doi.org/10.1103/PhysRevLett.119.161101
https://ui.adsabs.harvard.edu/abs/2017PhRvL.119p1101A/abstract
https://doi.org/10.1103/PhysRevLett.123.011102
https://ui.adsabs.harvard.edu/abs/2019PhRvL.123a1102A/abstract
https://doi.org/10.3847/2041-8205/832/2/L21
https://ui.adsabs.harvard.edu/abs/2016ApJ...832L..21A/abstract
https://doi.org/10.1103/PhysRevX.11.021053
https://ui.adsabs.harvard.edu/abs/2021PhRvX..11b1053A/abstract
https://doi.org/10.1088/0264-9381/32/2/024001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32b4001A/abstract
https://doi.org/10.1103/PhysRevLett.100.191101
https://ui.adsabs.harvard.edu/abs/2008PhRvL.100s1101A/abstract
https://ui.adsabs.harvard.edu/abs/2008PhRvL.100s1101A/abstract
https://doi.org/10.1007/s10714-010-1059-4
https://ui.adsabs.harvard.edu/abs/2011GReGr..43..409A/abstract
https://doi.org/10.1103/PhysRevD.49.6274
https://ui.adsabs.harvard.edu/abs/1994PhRvD..49.6274A/abstract
https://ui.adsabs.harvard.edu/abs/1994PhRvD..49.6274A/abstract
https://doi.org/10.1016/j.ppnp.2019.103714
https://ui.adsabs.harvard.edu/abs/2019PrPNP.10903714B/abstract
https://doi.org/10.1103/PhysRevLett.79.2176
https://ui.adsabs.harvard.edu/abs/1997PhRvL..79.2176B/abstract
https://doi.org/10.1103/PhysRevLett.108.011101
https://ui.adsabs.harvard.edu/abs/2012PhRvL.108a1101B/abstract
https://ui.adsabs.harvard.edu/abs/1995A&A...301..757B/abstract
https://ui.adsabs.harvard.edu/abs/1995A&A...301..757B/abstract
https://doi.org/10.1103/PhysRevD.105.124042
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105l4042B/abstract
https://doi.org/10.1086/321370
https://ui.adsabs.harvard.edu/abs/2001ApJ...554..322C/abstract
https://doi.org/10.1103/PhysRevD.95.104004
https://ui.adsabs.harvard.edu/abs/2017PhRvD..95j4004C/abstract
https://ui.adsabs.harvard.edu/abs/2017PhRvD..95j4004C/abstract
https://doi.org/10.1088/1361-6382/abdaf5
https://ui.adsabs.harvard.edu/abs/2021CQGra..38g5017C/abstract
https://doi.org/10.1093/mnras/stab2882
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.1557C/abstract
https://doi.org/10.1088/0264-9381/32/7/074001
https://ui.adsabs.harvard.edu/abs/2015CQGra..32g4001L/abstract
https://doi.org/10.1051/0004-6361/201014168
https://ui.adsabs.harvard.edu/abs/2011A&A...526A.121D/abstract
https://doi.org/10.1103/PhysRevD.96.121501
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96l1501D/abstract
https://doi.org/10.1086/186413
https://ui.adsabs.harvard.edu/abs/1992ApJ...392L...9D/abstract
https://doi.org/10.1111/j.1365-2966.2004.08474.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.356..615F/abstract
https://doi.org/10.1103/PhysRevC.82.065802
https://ui.adsabs.harvard.edu/abs/2010PhRvC..82f5802F/abstract
https://doi.org/10.1103/PhysRevD.77.021502
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77b1502F/abstract
https://doi.org/10.3847/2041-8213/aa8f41
https://ui.adsabs.harvard.edu/abs/2017ApJ...848L..14G/abstract
https://ui.adsabs.harvard.edu/abs/1998Obs...118..201G/abstract
https://doi.org/10.1119/1.3591336
https://ui.adsabs.harvard.edu/abs/2011AmJPh..79..867G/abstract
https://doi.org/10.1103/PhysRevD.109.084048
https://ui.adsabs.harvard.edu/abs/2024PhRvD.109h4048H/abstract
https://ui.adsabs.harvard.edu/abs/2024PhRvD.109h4048H/abstract
https://doi.org/10.1103/PhysRevD.108.024020
https://ui.adsabs.harvard.edu/abs/2023PhRvD.108b4020H/abstract
https://ui.adsabs.harvard.edu/abs/2023PhRvD.108b4020H/abstract
https://doi.org/10.1119/1.17759
https://ui.adsabs.harvard.edu/abs/1994AmJPh..62.1109H/abstract
https://doi.org/10.1038/s41550-019-0820-1
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..940H/abstract
https://doi.org/10.1103/RevModPhys.66.699
https://ui.adsabs.harvard.edu/abs/1994RvMP...66..699H/abstract
https://doi.org/10.1086/309004
https://ui.adsabs.harvard.edu/abs/2000ApJ...537..327I/abstract
https://doi.org/10.1086/310296
https://ui.adsabs.harvard.edu/abs/1996ApJ...470L..61K/abstract
https://doi.org/10.1103/PhysRevD.78.124020
https://ui.adsabs.harvard.edu/abs/2008PhRvD..78l4020L/abstract
https://doi.org/10.1088/0264-9381/14/6/002
https://ui.adsabs.harvard.edu/abs/1997CQGra..14.1399D/abstract
https://doi.org/10.1103/PhysRevD.102.103520
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102j3520L/abstract
https://ui.adsabs.harvard.edu/abs/2020PhRvD.102j3520L/abstract
https://doi.org/10.3847/0004-637X/826/1/82
https://ui.adsabs.harvard.edu/abs/2016ApJ...826...82L/abstract
https://doi.org/10.1016/j.rinp.2019.102918
https://ui.adsabs.harvard.edu/abs/2020ResPh..1602918L/abstract
https://doi.org/10.1093/mnras/sty3200
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.1247M/abstract
https://doi.org/10.1038/216567a0
https://ui.adsabs.harvard.edu/abs/1967Natur.216..567P/abstract
https://doi.org/10.1088/0264-9381/27/19/194002
https://ui.adsabs.harvard.edu/abs/2010CQGra..27s4002P/abstract
https://doi.org/10.1140/epja/i2019-12716-4
https://ui.adsabs.harvard.edu/abs/2019EPJA...55...50R/abstract
https://doi.org/10.1103/PhysRevLett.87.221103
https://ui.adsabs.harvard.edu/abs/2001PhRvL..87v1103S/abstract
https://doi.org/10.1088/0264-9381/29/12/124007
https://ui.adsabs.harvard.edu/abs/2012CQGra..29l4007S/abstract
https://ui.adsabs.harvard.edu/abs/2008AIPC..983..391S/abstract
https://doi.org/10.1103/RevModPhys.66.711
https://ui.adsabs.harvard.edu/abs/1994RvMP...66..711T/abstract
https://doi.org/10.1103/PhysRevD.77.042001
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77d2001V/abstract
https://doi.org/10.1103/PhysRevD.68.124006
https://ui.adsabs.harvard.edu/abs/2003PhRvD..68l4006V/abstract
https://doi.org/10.1103/PhysRevD.10.1680
https://ui.adsabs.harvard.edu/abs/1974PhRvD..10.1680W/abstract
https://doi.org/10.1038/scientificamerican1081-74
https://ui.adsabs.harvard.edu/abs/1981SciAm.245...74W/abstract
https://doi.org/10.1103/PhysRevLett.127.161101
https://ui.adsabs.harvard.edu/abs/2021PhRvL.127p1101Z/abstract

	1. Introduction
	2. Equation of Motion for a Bound Binary System
	3. Evolution of Orbital Radius
	3.1. Electromagnetic Radiation
	3.2. Gravitational Radiation
	3.3. Evolution of Orbital Separation

	4. Waveform of Gravitational Waves
	5. Data Analysis
	5.1. Matched Filtering
	5.2. Evaluation of Parameter Estimation

	6. Conclusions and Discussions
	References



