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Abstract

Fast and reliable localization of high-energy transients is crucial for characterizing the burst properties and guiding
the follow-up observations. Localization based on the relative counts of different detectors has been widely used
for all-sky gamma-ray monitors. There are two major methods for this count distribution localization: x>
minimization method and the Bayesian method. Here we propose a modified Bayesian method that could take
advantage of both the accuracy of the Bayesian method and the simplicity of the x> method. With comprehensive
simulations, we find that our Bayesian method with Poisson likelihood is generally more applicable for various
bursts than the y*> method, especially for weak bursts. We further proposed a location-spectrum iteration approach
based on the Bayesian inference, which could alleviate the problems caused by the spectral difference between the
burst and location templates. Our method is very suitable for scenarios with limited computation resources or time-
sensitive applications, such as in-flight localization software, and low-latency localization for rapidly follow-up

observations.

Key words: methods: data analysis — methods: analytical —

1. Introduction

High-energy transients, e.g., Gamma-ray Bursts (GRBs)
(Klebesadel et al. 1973) and Soft Gamma-ray Repeaters (Woods
& Thompson 2004), are usually first discovered in the gamma-ray
band. Fast and reliable localization of these bursts is critically
important for joint observation in multi-wavelength and multi-
messenger astronomy. For instance, in the case of the first

(stars:) gamma-ray burst: general

gravitational wave electromagnetic counterpart event (GW170817)
(Abbott et al. 2017a, 2017b; Li et al. 2018), the localization of
GRB 170817A given by Fermi Gamma-ray Burst Monitor (GBM)
and INTEGRAL/SPI-ACS (Goldstein et al. 2017; Savchenko
et al. 2017) helped to establish the association between GW 170817
and GRB 170817A, and guide the follow-up observations of this
GW source in multi-wavelength.
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Unlike soft X-rays, gamma-rays are very difficult to focus on
for imaging. Thus various methods are proposed to localize
gamma-ray transients with different kinds of instruments: (1)
Counts distribution among detectors used by all-sky Gamma-
ray monitors (Mazets & Golenetskii 1981; Pendleton et al.
1999; Meegan et al. 2009; Suarez-Garcia et al. 2010;
Connaughton et al. 2015; Goldstein et al. 2020; Wang et al.
2021; Li et al. 2022). (2) Time-delay localization methods (i.e.,
triangulation) jointly used by multiple spacecraft (Hurley et al.
2013; Xiao et al. 2021). (3) Sky map reconstruction with coded
mask imaging (Preger et al. 1999; Goldwurm et al. 2003;
Matsuoka et al. 2009; Krimm et al. 2013; Cordier et al. 2015).
(4) Direct measurement of the incident direction of individual
photons in relatively high energy (about 10 MeV to GeV)
based on Compton scattering (Schoenfelder et al. 1993;
Thompson et al. 1995) or pair production (Feroci et al. 2007;
Atwood et al. 2009). (5) Localization with modulation
technique used by collimator-based instrument (e.g., Insight-
HXMT. Li et al. 2021).

Here we focus on the counts distribution localization method
for all-sky monitors, i.e., localization based on fitting the source
counts in different detectors with different orientations to the
template which is the expected counts of burst source from all
possible locations. Depending on which statistics to use and
how to deal with the burst spectrum, this method could be
generally grouped into two approaches: (1) Localization with
x° minimization and fixed spectral templates, which is
represented by the DoL algorithm used by the Fermi/GBM
(Connaughton et al. 2015; Goldstein et al. 2020). This
approach fits the counts distribution in different detectors with
several localization templates which are made from several
fixed spectra. Obviously, the real spectrum of the burst could
usually differ from that of the fixed templates, leading to
systematic errors. However, this method is simple and fast, thus
widely used in in-flight localization software (Connaughton
et al. 2015; Zhao et al. 2021). (2) Localization with the
Bayesian inference and fitting the burst location and spectrum
simultaneously, represented by the BAyesian Location Recon-
struction Of GRBs (BALROG) algorithm (Burgess et al. 2018)
and the Markov Chain Monte Carlo (MCMC)-based localiza-
tion algorithm developed for Gravitational wave high-energy
Electromagnetic Counterpart All-sky Monitor (GECAM) (Liao
et al. 2020). This kind of method is arguably able to give more
accurate results than the former, however, it usually requires
more computing resources (Burgess et al. 2018).

For the Bayesian-based method, BALROG showed a notable
improvement over the DoL algorithm (i.e., x* minimization)
both in accuracy and precision for localization (Burgess et al.
2018; Berlato et al. 2019). However, Goldstein et al. (2020)
compared the accurateness and robustness of the BALROG
algorithm and the updated GBM Team’s official automated
system (RoboBA) based on the DoL algorithm and found that
the updated RoboBA is more accurate for the selected GRBs
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and that there are some technical problems for BALROG
algorithm, such as convergence and sensitivity issues.

There are some scenarios where the computing resource is
constrained or time consumption is sensitive, e.g., in-flight
localization software and low-latency localization calculation
for rapid follow-up observations. The x* minimization method,
which employs the pixelized sky map and fixed templates, is
widely used in these cases since it requires fewer computing
resources. However, although y” is generally valid when the
counts number is large enough (i.e., >15-20), it will bias when
the count number is few.

To balance the calculation speed and localization accuracy in
the above applications, we propose a modified Bayesian
localization method based on the above two types of
localization methods, which alleviates the bias from X2 and
the required computing resource is also few as the x> method.
We also investigate the difference and performance between
our Bayesian localization method and the y* minimization
method with detailed formula derivation and simulations. In
order to mitigate the imperfection of the methods with fixed
templates, we also propose a location-spectrum iteration
approach based on the Bayesian inference.

This paper is structured as follows: In Section 2, we describe
our modified Bayesian localization method, then we revisit the
X2 minimization method. To make a fair comparison, we
assume the expectation of the background is precisely known
in this paper. These two localization methods are validated in
Section 3. In Section 4, The location-spectrum iteration
localization strategy is described. Finally, a summary is given
in Section 5.

2. Bayesian Method and x> Minimization Method
2.1. Our Bayesian Methods

In analog to the DoL’s x® minimization method (see
Section 2.2.1) with fixed spectral templates, we modified the
Bayesian localization method using the fixed spectral templates
with likelihood maximization for each incident direction and
with the assumption of the known background.'® We note that
this Bayesian method could invoke different likelihoods. Here
we tested both the Poisson likelihood and simplified Gaussian
likelihood, as discussed below.

2.1.1. Bayesian Method with Poisson Likelihood

If the background is known precisely, the observational data
(i.e., counts in a given detector) follow a simple Poisson

19 We note that, in the localization of real observations, the expected value of
the background is unknown. We can only obtain the estimated background B
and its uncertainty og from background analysis (e.g., the polynomial fitting to
the background intervals), and these background uncertainties should be
considered in the likelihood of Poisson data. To deal with this case, the Poisson
data with Gaussian background (PGSTAT) profile likelihood can be utilized,
e.g., Zhao et al. (2023).
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distribution:

(B + M)S - exp(—(B + M))
S!

PPoisson(SlB’ M) = (1)

where B is the expected background counts, M is the expected
source counts, and S is the measured counts. The sum of the
background B and source M is the expected value of the
measured counts. Based on this Poisson distribution, the
Poisson likelihood and its logarithmic form for fixed spectral
templates the localization method can be written as:

Lo(i) = ﬁ (b + f; - mj )Y - ej}:(_(bj +fomy)

Jj=1 j

@)

ln Ep(l) = Z[Sj . ll’l(bj —i—fl‘ . mj,i) — (bj —I—fl‘ . mj,i) — lnsj!]
j=1

3)

where s; is the total observed counts in detector j, n is the total
number of detectors and b; is the expectation value of the
background. Here we use f;-m;; as the expected source
contribution, where m;; is the localization template of a specific
spectrum, which is a matrix of counts of each detector j for
each incident direction i (the whole sky is pixelized with
HEALPiXx), and f; is the normalization factor to account for the
fluence ratio between the real burst and the preset fixed burst
spectrum used to generate the template m; ;.

During the localization process with fixed templates, f; could
be derived from the maximization for each direction (i), thus
the burst position (i.e., direction i) is the only parameter of
interested, whose prior could be assumed to be uniform all over
the celestial sphere: Byior (i) = %, where N is the total number
of the HEALPix pixels of all sky. In this work, the HEALPix
pixels number is set to 41,772, i.e., ~1° for each pixel. With
the parameter prior and likelihood as shown in Equation (3),
the location results (location center, probability map, and
credible region) could be derived through the Bayesian
inference.

We summarize this Bayesian localization method based on
Poisson likelihood (denoted as Bpojs hereafter) as follows:

Step 1: For each incident direction i, maximize the likelihood
(L)) by adjusting the normalization factor f;. The
maximization of likelihood (Equation (2)) and logarithmic
likelihood (Equation (3)) are equivalent for this process.

Step 2: Calculate the posterior probability through Bayesian
inference. Thus the posterior distribution, P(i|s), could be
derived from the prior probability Ppio(i), conditional
probability for a given direction i to obtain the observed
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counts s and evidence P(s):
1 .
pils) = Dror® PG __y - PO
P@s) S+ PGsli’)
_ PGl “
2P (sli’)

By substituting the conditional probability (P(s|i)) with the
likelihood (L(i)), one can get the posterior probability for
each direction (i), which is also the localization probability
map:

L3)
L3
Step 3: For simplicity, we take the direction with the maximum

P(i) as the location center and the Bayesian credible region

with N% highest posterior density (HPD) as the N%
confidence interval of the burst position.

P(i) = *)

2.1.2. Bayesian Method with Gaussian Likelihood

In order to understand the GBM DoL’s y* method (see
Section 2.2.1) in the Bayesian framework, here we structure a
Gaussian likelihood. The Gaussian distribution reads:

1 S — (B + M))?
m.g'exp(—( (202 ) ) ©

where o7 is the variance. Thus the Gaussian likelihood and its
logarithmic form can be written as follows:
n

. 1 (sj — (b + f; - m;))?
L = | | —_ — 7
G(l) j=1 m . Jj exp( 20’3 ) ( )

. " 1 (s; — b+ f - mj,i))2
InL = 1 — . (8
n Lg(i) jz:ll n o 20 ] )

Generally, the variance o? could be either data-dependent or
model-dependent. However, to approximate the mathematical
form of DoL’s x? (see Section 2.2.1), here the variance is
chosen to be model-dependent:

0% = b+ f - my. )

PGaussian (X) =

Parameters are defined the same as in the Poisson case
mentioned above.

Note that the variance is equal to the expectation as the
counts follow the Poisson distribution. Using Gaussian
distribution to approximate Poisson is generally valid when
the number of counts is large (i.e., >15-20).

Because the model-dependent variance term (Equation (9))
of Equations (7) and (8) for each direction generally
approaches s;, this term could be dropped out through the
maximizing process, Equation (8) thus could be written as a
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Table 1
The Localization Methods Described in Section 2

Abbreviation Localization Method Statistics Error Region Estimation® Description
Brois Bayesian with Poisson Likelihood Poisson Likelihood HPD® Credible Region Section 2.1.1
Bsg Bayesian with Gaussian Likelihood Gaussian Likelihood HPD Credible Region Section 2.1.2
XéBM x* Minimization with Approximate Solution X’ Ax? Section 2.2.1
X12qu x*> Minimization with Numerical Solution X’ Ax? Section 2.2.2
Notes.

# The error estimation is for the localization error region.
b Highest Posterior Density (HPD).

simplified Gaussian likelihood form:

n . — (b: " oms )2
In Lsg(i) = =) b — & ;f 1)) :

Jj=1 J

10)

Now, it is clear that maximization of this simplified Gaussian
logarithmic likelihood is equivalent to x* minimization used by
DoL (see Section 2.2.1). From the framework of likelihood, it
is explicit that the normalization factor f; used in DoL is an
approximate solution that maximizes simplified Gaussian
logarithmic likelihood (see Equation (10) in Blackburn et al.
2015), resembling the approximate solution for minimizing y°.
Owing to the difficulty to obtain the analytical solution of f; in
Equation (10), we employ the Powell algorithm (Powell 1964;
Press et al. 2007) to numerically calculate f; for the maximum
of the likelihood. This numerical solution can also be used for
the x* minimization.

Once the simplified Gaussian logarithmic likelihood of each
incident direction is calculated, the posterior probability and
credible region could be derived as Section 2.1.1. This
Bayesian method with simplified Gaussian likelihood is
denoted as Bgg hereafter.

2.2. x? Minimization Methods
2.2.1. x? Minimization with Approximate Solution

The x* employed by GBM team’s DoL algorithm is defined
as (see Equations (A1) and (A2) in Connaughton et al. 2015):

2 o 8 = B+ f - m))?
X0 =) Ty

j=1

1D

where s; and b; are the total observed and estimated background
counts observed in detector j (between 50 and 300 keV for
Fermi/GBM Nal detectors), respectively, m;; are the model
counts (i.e., localization template) in the same energy range for
detector j in direction i. The normalization factor f; for direction

i is defined as:

s m; i (s; — bj)

j=1 Sj
f=— (12)

Y

7

Once x? for the whole sky map is calculated, the contour of
Ax? = Cis regarded as the N% statistical error region, where C
is the Percent Point Function of the x* distribution with degree
of freedom 2 for N%, i.e., sz =2.3 represented the 68%
statistical uncertainty.

From the comparison between this x> method and the above
Bayesian method (Bsg), the normalization factor f; used by
DoL is simply an approximate solution to minimize \* (see
Section 2.1.2). Also, this x* does not consider the uncertainties
of the estimated background. Furthermore, the large number of
counts is implicitly assumed since the Gaussian distribution
is used.

This y* method used by the GBM DoL algorithm is denoted
as XéBM hereafter.

2.2.2. x? Minimization with Numerical Solution

As mentioned above, Equation (12) is an approximate
solution to minimize \* and it could be accurately calculated
by numerical solution. Thus we studied a ? statistic in which
the normalization factor f; comes from a numerical solution and
other calculations are the same as Section 2.2.1. This x>
method is denoted as Xl%/IIN in this paper.

The main technical details of these four localization methods
using different statistical frameworks mentioned in this section
are summarized in Table 1.

3. Comparison and Validation

To quantitatively evaluate and compare the above four
localization methods, we conduct a Monte Carlo (MC)
simulation®® to make tests.

20 We note that the real observation suffers from unknown systematic errors
and is thus not suitable for this test.
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Table 2
Characteristics of the Burst Used in the Localization Simulation

Source Intensity Type Medium Bright Burst

Spectral Model Comptonized
Spectral Index -1.50
Epeax (keV) 200
Duration (s) 10.0
Fluence (erg cm™?) 1.2 x 10°

Note. The incident angle is Zenith =585, Azimuth =22°50 in GBM’s
spacecraft coordinates which corresponds to R.A. = 184°65, decl. = —67°72
(true position) at 2021-01-01T01:00:00 UTC. The fixed background level is set
to 1000 counts s~ ' for each detector. Fluence is calculated in 10—1000 keV.

It should be noticed that several treatments are employed for
simplicity and clarity: (1) The expectation value of the
background is assumed to be known which allows us to
eliminate the influence of background uncertainties. Such an
effect is trivial for the present comparison study. (2) The
Fermi/GBM detector configuration (i.e., 12 Nal detectors) and
instrumental response are adopted, however, these localization
methods are applicable for any other all-sky monitors of a
similar design, such as GECAM.

Key parameters (such as the position and spectrum of the
burst source) used in the simulation are listed in Table 2. The
simulated counts in each detector are derived from the Poisson
fluctuation of the total expected counts, which are the expected
counts of source contribution (i.e., burst spectrum convolved
with the detector response) plus the expected background.

The localization simulation results for the medium bright
burst (see Table 2 for burst parameters) are shown in Figure 1.
To validate the location probability map and credible region,
we check the distribution of the real burst position’s cumulative
probability in the location maps for simulated bursts. This
distribution check and the detailed inspections of location maps
for individual simulated bursts show that all these four
localization methods based on Bayesian and x> minimization
can give consistent and correct location results (especially the
localization error region) for medium bright bursts. This finding
is understandable because the medium bright bursts could give
a large number of counts in detectors, the Gaussian distribution
could well approximate the Poisson distribution, and the Ax?
could be used to derive the confidence region.

However, we find that some localization methods would fail
to give a correct probability map when the burst becomes weak
to some extent. Here we explore the burst intensity threshold
where these methods give generally reliable localization results
for two different cases: background-dominant case and source-
dominant case.

For the background-dominant case (i.e., the background
counts are much more than burst source counts), we take GRB
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170817A as the input burst. The time-integrated spectrum of
GRB 170817A (Goldstein et al. 2017) is adopted (the total
source counts in the brightest three detectors ~900) and the
background level is set to 600 counts/detector in our
simulations. We verified the localization results as the input
burst intensity decreases. Here we define the Signal-to-Noise
Ratio (SNR) as L% ¢6r the three brightest detectors. As

/Background

shown in Figure 2, when the SNR decreases to 9, all
localization results of B and x? are basically around the one—
one line. But when SNR is ~8 (i.e., the summed source counts
in the brightest three detectors ~430 and the input burst
intensity decreases to ~38% of GRB 170817A), the two X2
methods start to deviate one—one line, while the two Bayesian
methods could still give a correct localization probability map.

When the burst intensity decreased to SNR = 3 (the summed
source counts in the brightest three detectors ~130 which
means ~14% of GRB 170817A), all methods failed to give a
correct localization probability map. These two Bayesian
methods overestimate localization error regions while two x>
methods underestimate error regions. The Bayesian method
seems closer to the one—one line than the two x> methods.
Although it cannot give a correct probability map <90%
confidence level (CL), we note that Bpos and Bsg could give a
correct credible region at >90% CL, i.e., 95.45% and 99.73%
CL. As the detection horizon of gravitational detectors
increases, the detected GW events would be further and the
GW-associated GRBs might be weaker, say ~14% to ~30% of
GRB 170817A, for which the y* methods will underestimate
the location error, thus we suggest that a credible region >90%
CL of Bpors and Bsg should be used to estimate the location
error of these weak bursts.

For the source-dominating case (i.e., the background counts
are less than the source counts), the background level of 0.5
counts/detector is adopted for simulations. As shown in
Figure 3, when the total observed counts are ~570 for 12
detectors (the brightest detector’s observed counts are ~80),
these four localization methods can obtain the correct
localization map basically. But when the total observed counts
decreased to ~100 for 12 detectors (the brightest detector’s
observed counts are ~20), all methods start to deviate from
one—one line except for Bpors. Bsg and Xi/[IN are obviously

closer to the one—one line than XéBM' When the total observed
counts decreased to ~20 for 12 detectors (the brightest
detector’s observed counts is ~3), a correct localization map
could also be obtained for Bpgs. We note that some very short
duration (~ms) bursts, e.g., the Terrestrial Gamma-ray Flashes
(Fishman et al. 1994; Roberts et al. 2018), could reach such
low counts.

From these tests, one can note that the performance of
Bayesian methods is better than x* methods for the same inputs
and settings. The Bayesian method with Poisson likelihood is
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Figure 1. Test results for medium bright bursts (Table 2) with simulations. The upper panels (a) to (d) show the statistical results (i.e., the fraction of bursts with the
cumulative probability N% of true position < the corresponding confidence level N%) for four localization methods (see Table 1): (a) Bpors (see Section 2.1.1), (b)
Bsg (see Section 2.1.2), (c) X,ZWN (see Section 2.2.2), (d) XéBM (see Section 2.2.1). The dashed line represents the one—one line. The confidence level is 10% to 90%
step by 10% as well as 68.27%, 95.45%, and 99.73%. The lower panels (e)—(h) show inspections of individual simulated bursts for the same localization method as the
corresponding upper panels. The magenta and green lines mark 68.27% and 95.45% HPD credible regions, respectively. The purple cross and red star represent the

location center and true position, respectively.

more applicable than Gaussian-based methods. Therefore,
Bpors is recommended for localization. It should be noted that,
as mentioned above, the simple Poisson likelihood
(Equation (3)) used in this paper should be replaced by the
PGSTAT likelihood in real data for considering the background
uncertainties (Burgess et al. 2018).

For the original DoL. method X(ZEBM’ its normalization factor
f; is an approximate solution of x? minimization. As
improvements, vaHN conducts the minimization with a
numerical solution, and Bsg enhances it under the statistical
framework of Bayesian. Thus in comparison with XéBM’ the

improvements of xi,[m and Bgg could be seen in the tests as
shown in the background-dominant and source-dominant weak
bursts localization. Besides, due to the Gaussian assumption of
X~ localization methods, they could only be used for those
cases with sufficient counts in detectors, which means the burst
should not be too weak (say <30% of GRB 170817A) or too
short (say ~ms). We note that the localization capabilities
depend on the bursts’ properties (e.g., spectrum), detector
configuration, and incident angle, thus the above threshold for
the correct location may vary with the instrument setting and
incident angle of bursts.

There are many settings and choices in the localization
analysis that may potentially affect the final results. They are
usually complex and coupled together, such as the selection of
detectors, choice of spectral channels binning, spectral models,
iteration termination criteria, etc. Some of them have been
discussed in previous studies (e.g., Burgess et al. 2018; Berlato
et al. 2019). Here we explore how to divide energy channels to
optimize the localization results with simulations. To estimate
the influence on the localization caused by the different data
binning strategies in spectral channels, we did simulations for
the medium bright burst with two kinds of binning data in the
whole energy range (i.e., from 8 to 1000 keV): just one whole
energy channel for each detector or divided to eight energy
channels for each detector. For the divided energy channels, the
mathematical Poisson likelihood and logarithmic likelihood
are:

Lpqiv ()
_ H H (bj,k+fi'mj,k,i)sj'k'e:(p’(*(bj,k+f,"mj,k,i)) (13)
jok e
In Lpaiv() = DY six - In(bjx + f; - mjx)
ik
— (bjx + f; - mjx) — Insjg!] (14)
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Figure 2. Test results for background-dominating weak bursts. The upper panels show the localization results obtained with different localization methods at Signal-
to-Noise Ratio (SNR) = 9, including (a) Bpoys (see Section 2.1.1), (b) Bsg (see Section 2.1.2), (c) XIZ\/IIN (see Section 2.2.2), (d) XéBM (see Section 2.2.1). Here SNR is

defined as % for the brightest three detectors. The medium panels show the corresponding localization results obtained with different methods mentioned in

the upper panels at SNR = 8 and the lower panels show those results at SNR = 3. Other captions are the same as Figure 1. The localization statistical error is
reasonable for all methods at SNR = 9. Xlz\/IIN and xéBM start to deviate one—one line at SNR = 8 and then more severe at SNR = 3. For SNR = 3, two Bayesian
methods overestimate localization error regions while two y* minimization localization methods underestimate localization error regions. Although all localization
methods cannot give a correct probability map <90% confidence level, Bpors and Bsg still could give a correct localization probability map at >90% HPD credible
region.

where s; ;. and b; ;. are the total observed counts and background 8 to 1000 keV) case. This tendency also could be found in the
for energy channel k in detector j, f;-m;,; is the expected source-dominant weak bursts as shown in Figures 4(d) to (f).
source contribution in a single channel.

As presented in Figures 4(a) to (c), the divided channels (i.e., 4. Location-spectrum Iteration Localization
eight channels from 8 to 1000keV) case can reduce th? In real observations, using the fixed spectral templates is
location center offset and error region with a factor of ~= imperfect. An inevitable problem of the fixed templates
compared to that of the integrated channel (i.e., 1 channel from localization strategy is that the spectra of preset templates
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Figure 3. Test results for source-dominating weak bursts. The upper panels show the statistical results obtained with different localization methods (see Table 1) at
~570 total observed counts for 12 detectors (the brightest detector’s observed counts is ~80), including (a) Bpojs (see Section 2.1.1), (b) Bsg (see Section 2.1.2), (c)
XJZ\AIN (see Section 2.2.2), (d) X(ZSBM (see Section 2.2.1). The medium panels show the statistical results obtained with the different methods mentioned in the upper
panels at ~100 total observed counts for 12 detectors (the brightest detector ~20 counts) and the lower panels show those results at ~20 total observed counts for 12
detectors (the brightest detector ~3 counts). The localization statistical error is reasonable for all methods at ~570 total observed counts, and all methods except for
Bpois start to deviate one—one line at ~100 total observed counts and then more severe at ~20 total observed counts. Bsg overestimates localization error regions

while Xlz\/lIN and XéBM underestimate localization error regions. However, Bsg and XIZ\A[N are more closer to one—one line than original DoL. method XéBM'

usually differ from those of bursts, which may introduce

substantial systematic errors.

To illustrate the performance of the fixed templates
localization strategy, i.e., the deviation of location induced
by the difference of spectrum, a simulation using Bpors
localization method with fixed templates for the medium
bright burst is implemented. As shown in Figure 5, the

statistical distribution of the location results significantly
deviates from the expected value with the error region being
underestimated.

Since the fixed template localization has advantages in the

calculation, to alleviate the above issues of fixed templates
localization, we propose a location-spectrum iteration approach
for Bpojs localization method, as described below:
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Figure 4. Test results for localization setting of energy channels integral and divided with Bpgjs (see Section 2.1.1). The upper panels show the comparisons of (a) the
statistical results, (b) the distribution of offset between location center and truth location, and (c) the distribution of 68.27% HPD error region for the medium bright
source as shown in Table 2. The channels integral results are the same as Figure 1(a). The lower panels show the comparisons of (d) the statistical results, (e) the
distribution of the offset between location center and truth location, and (f) the distribution of the 68.27% HPD error region for the source-dominating weak bursts.
The channels integral results are the same as Figure 3(i). The results indicate that the energy channels divided localization setting reduces the error region and offset
between location center and truth location on the premise that the error obeys the statistics for the medium bright source and the source-dominating weak bursts.

(Schwarz 1978). This iteration will terminate if the
observed counts are consistent with the expected counts
in 90% of the C-statistics confidence level (Kaastra 2017)
or if iterating more than several times. Here four times are
selected for simulated tests.

Step C: Based on the location obtained from Step B, a refined
spectral analysis is executed with a sample of good
detectors which are selected based on preset criteria,
including incident angle <60° and significance >50. With
the refined spectrum, the template spectrum will be
updated and the final localization result is obtained. The
terminated condition is the same as in Step B.

Step A: First, derive the initial localization result with preset
localization templates, which is similar to previous studies
(Connaughton et al. 2015; Goldstein et al. 2020), but
implemented by Bpgis (i.e., the Bayesian localization
method with fixed spectral template).

Step B: With the initial location from Step A, spectral analysis
of the burst is implemented with all detectors. Then redo
the localization with the updated location template which
is calculated based on the burst spectrum. Subsequently,
iterate the spectral fitting and localization. The purpose of
selecting all detectors for the spectral fitting here is to
account for a large deviation of the location. To achieve an
appropriate spectrum, four spectral models are employed
to fit independently: the Band function, the Comptonized,
power law, and power law + blackbody model. The best
model is selected by the Bayesian information criterion

To quantitatively estimate the performance of this location-
spectrum iteration localization strategy, an MC simulation has
been implemented. As shown in Figure 5, the localization
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Figure 5. Test results of the location-spectrum iteration localization. (a) Results for fixed templates method (blue) and location-spectrum iteration (red). (b) Evolution
of the location results given by the location-spectrum iteration localization for a simulated medium bright burst (see also Table 3). The blue[green][magenta] represents
the location center and the 68.27% credible region of Step A[B][C], respectively. Other captions are the same as Figure 1.

result of the iteration strategy is significantly improved
(compared to that of the fixed templates) and thus quite
consistent with the expectation. Taking a burst for example, we
traced the evolution of the spectral and location parameters
during the iteration, as shown in Table 3 and Figure 5(b). Both
the spectrum and location center tend to converge to the true
value as iteration goes. Although the final spectrum (derived in
Step C) is not exactly the same as the input one (which is not
surprising if think of the spectral fitting error), the final location
map given by this method is statistically reliable and correct
according to the statistical validation in the left panel of
Figure 5.

5. Discussions and Conclusions

In this paper, we propose a Bayesian localization method
that can not only give more accurate results but also can be
used for scenarios when the computational resource is
constrained or the calculation speed is preferred, such as the
in-flight localization or low-latency localization for rapid
follow-up observations.

Take the in-flight localization for example, the computing
resources and memory on board are very limited, and the in-
flight localization software (e.g., Fermi/GBM, GECAM)
usually employs x* minimization method with a coarser
HEALPix pixel (i.e., 5°0 apart which means 8112 HEALPix
pixels number) and only one localization template. If using our
Bayesian method as in-flight localization, it only takes ~20 s to
give location results, which is much more acceptable compared
to the MCMC-based localization algorithm developed for

Table 3

Parameter Evolution of the Location-spectrum Iteration for a Simulated
Medium Bright Burst (Table 2), which is also Shown in Figure 5(b)

Best Spectral Offset
Steps Model Index Epeac (keV) (deg)
Input Comptonized —1.50 200 e
Step A Comptonized —1.15 350 5.68
Step B Comptonized —1.15£0.27 230 £ 38 3.71
Step C ~ Comptonized —1.33£0.13 187 £ 21 2.00

GBM and GECAM which will take typical ~20 minutes (Liao
et al. 2020).

Comparison between our method and the y* minimization
method are studied in detail. This comparison was done with
dedicated simulations which eliminate bias and impacts
introduced by the inaccuracies in detector response, back-
ground estimation, and knowledge of burst spectrum. The
reliability and correctness of the location results are validated
by directly checking the confidence regions of the localization
probability map through comprehensive simulations.

We find that, for medium-bright bursts, all four kinds of
localization methods studied in this paper give similar and
reliable location results. But for source-dominant weak bursts,
only Bpos could give a correct localization probability map
which is useful for some short-duration bursts, i.e., TGFs. For
background-dominant weak bursts, Bpgrs and Bsg could give a
correct localization probability map at >90% HPD credible
region. Therefore, the Bayesian method with Poisson
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likelihood is recommended rather than the y? minimization
method. In real observations, the more sophisticated PGSTAT
statistic should be used instead of the simple Poisson likelihood
(Zhao et al. 2023).

We also find that compared to the original DoL. method
XéBM’ X12v11N and Bgg could improve the localization results by
the numerical solution during maximization and utilization of
the Bayesian inference. We demonstrate that the mismatch of
the burst spectrum and template spectrum will cause location
deviation, which may increase the systematic error of
localization.

We also proposed a Bayesian-based location-spectrum
iteration localization method to take advantage of and alleviate
the issues of the fixed spectral template method. Compared to
the existing methods for optimizing spectrum (i.e., fixed
templates and location-spectrum simultaneously fitting), our
location-spectrum iteration localization strategy features the
following advantages: (1) the mismatch between the spectrum
of fixed localization templates and burst spectrum could be
fairly eliminated, and (2) the calculation of localization process
is straightforward. Thus the location-spectrum iteration locali-
zation method which requires few computing resources has the
potential to deploy onboard as the in-flight localization
software. Indeed, the one-time location-spectrum iteration
localization has been used for GECAM (Huang et al. 2024,
in press; Zhao et al. 2023). However, it may still have
convergence problems during iteration in some cases. Besides,
we find that dividing the counts into several bins would
improve the localization results than treating these counts as a
single bin. However, these localization settings usually require
more memory and computing resource which means that they
may not be suitable for in-flight localization software.

Finally, we note that there are some open questions about
localization, e.g., how to get a reliable localization probability
map for background-dominant weak bursts. As mentioned in
Section 3, the current methods studied in this paper are not able
to give reliable location error regions <90% confidence level
for weak bursts. On the other hand, these weak bursts might be
very important as they could be associated with gravitational
waves or fast radio bursts, thus a joint time-delay localization
with multiple all-sky instruments is highly required to provide
reliable location results (Xiao et al. 2022).
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