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Abstract

In the two-dimensional positioning method of pulsars, the grid method is used to provide non-sensitive direction
and positional estimates. However, the grid method has a high computational load and low accuracy due to the
interval of the grid. To improve estimation accuracy and reduce the computational load, we propose a fast two-
dimensional positioning method for the crab pulsar based on multiple optimization algorithms (FTPCO). The
FTPCO uses the Levenberg—Marquardt (LM) algorithm, three-point orientation (TPO) method, particle swarm
optimization (PSO) and Newton—Raphson-based optimizer (NRBO) to substitute the grid method. First, to avoid
the influence of the non-sensitive direction on positioning, we take an orbital error and the distortion of the pulsar
profile as optimization objectives and combine the grid method with the LM algorithm or PSO to search for the
non-sensitive direction. Then, on the sensitive plane perpendicular to the non-sensitive direction, the TPO method
is proposed to fast search the sensitive direction and sub-sensitive direction. Finally, the NRBO is employed on the
sensitive and sub-sensitive directions to achieve two-dimensional positioning of the Crab pulsar. The simulation
results show that the computational load of the FTPCO is reduced by 89.4% and the positioning accuracy of the
FTPCO is improved by approximately 38% compared with the grid method. The FTPCO has the advantage of high
real-time accuracy and does not fall into the local optimum.
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1. Introduction

X-ray Pulsar Navigation (XPNAV) system is an autonomous
navigation system (Zhang et al. 2021). XPNAV use X-ray
pulsar to estimate the position and velocity of the spacecraft.
When the spacecraft receives pulsar signals from multiple
pulsars, the position and velocity of the spacecraft can be
estimated accurately (An et al. 2023; Sun et al. 2023; Wang
et al. 2023b).

In recent years, with the deepening of research in the field of
XPNAV (Wang et al. 2019; Qian & Pan 2021; Zhang et al.
2024), two main situations exist for pulsar period estimation:
one is transfer orbit or uniform linear motion, where the
velocity error within the pulsar observation period can be
considered constant (Liu et al. 2023a), the other is nonlinear
orbit, such as circular orbit, where the positional drift on the
pulsar Line Of Sight (LOS) caused by both position and
velocity can cause the distortion of the accumulative pulsar
profile (Liu et al. 2023b, 2024).

The degree of nonlinearity in spacecraft orbit affects pulsar
velocity estimation or period estimation based on the distortion
of the pulsar profile. For linear orbit, the chi-square method (Xu
et al. 2019), the fast Fourier transform (Zhang et al. 2019)
the frequency subdivision-based period search algorithms

(Shen et al. 2015) and a frequency domain method based on
the Fourier series (Song et al. 2022) can achieve good
performances in pulsar velocity estimation or period estima-
tion. Given limited star-borne computing resources, methods
such as the fast butterfly epoch folding (Zhang et al. 2015), fast
Fourier transform based on compressive sensing and period
estimation using compressed sensing (Liu et al. 2019), ultra-
fast estimation method of pulsar period based on empirical
mode decomposition-compressed sensing (Liu et al. 2020).
However, in these methods, the actual complex deep space
environment is not considered. To address the challenge of
phase evolution in nonlinear orbit, Liu proposed an innovative
nonlinear least squares joint estimation method (Liu et al.
2014). Wang introduced an approximate value of pulse phase
evolution and combined it with linear polynomial fitting to
optimize the accuracy of spacecraft orbit (Wang &
Zhang 2016). Based on this, Wang further established a phase
shift model. He successfully estimated the hyper-parameters in
the pulsar phase model (Wang et al. 2023a), which provided
important support for the performance improvement of
XPNAV systems. Besides, Wang proposed an absolute
navigation scheme for finial approach phase using relative
measurements of X-ray pulsar and orbiter (Wang et al. 2017).
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Through observability analysis, absolute navigation using
relative information is proved observable under the condition
of reasonable pulsar selection. Inspired by the observable
analysis, Liu applied an observable analysis method to
determine two vectors with good observability in two velocity
directions. The expansion of the two-dimensional search in
these directions and the reduction of computational complexity
using dictionary folding (Liu et al. 2023b), effectively
improved the efficiency of the navigation system. To accurately
estimate the period of X-ray pulsars and enhance navigation
performance, Ma proposed an energy-based pulsar period
estimation method using Hilbert curve and double CNNs (Ma
et al. 2024). For deep space navigation, the noise is time-
varying, and its statistics cannot be accurately determined. Gui
proposed a variational Bayesian implicit unscented Kalman
filter method (Gui et al. 2023), to solve this problem, it can
obtain high-accuracy navigation. All of the above methods
improve the accuracy of XPNAV.

In recent years, swarm intelligence optimization algorithms
(Muller et al. 2023) have gained significant attention and are
applied in various fields such as path planning (Li & Yu 2023)
and health monitoring (Achouri et al. 2023). Classical swarm
intelligence algorithms include genetic algorithm (Carpintero &
Melita 2018), Particle Swarm Optimization (PSO; Wang et al.
2018), and ant colony optimization (Li et al. 2022), new
optimization algorithms continue to emerge, which provide
more choices for problem-solving. Among them, the nutcracker
optimizer algorithm (Abdel-Basset et al. 2023a) is based on
simulating the behavior of nutcrackers in their natural
environment, which achieves efficient search and optimization
processes through simulates communication and cooperation
among individuals in the group. The nutcracker optimizer
algorithm demonstrates excellent performance in solving
complex problems. The spider wasp optimizer algorithm
(Abdel-Basset et al. 2023b) is inspired by the hunting, nest-
building and mating behaviors of female spider wasps, which
achieved effective solutions for multi-objective optimization
problems. The spider wasp optimizer algorithm exhibits high
search accuracy and robustness. The Newton—Raphson-based
optimizer (NRBO; Sowmya et al. 2024) is inspired by
Newton—Raphson’s approach. It explores the entire search
process using two rules: the Newton—Raphson search rule and
the trap avoidance operator and a few groups of matrices to
explore the best results further. The NRBO demonstrates
outstanding performance in mathematical modeling and
engineering optimization, which provides strong support for
solving complex problems. When faced with complex naviga-
tion problems, a single optimization algorithm is limited and
struggles to achieve efficient solutions. Therefore, the applica-
tion of multiple swarm intelligence optimization algorithms to
the navigation problem is expected to improve the performance
and stability of the XPNAV system.
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In nonlinear orbit, for fast positioning, we propose a Fast
Two-dimensional Positioning method for the Crab pulsar based
on multiple optimization algorithms (FTPCO) to reduce the
computational load. First, the Levenberg—Marquardt (LM)
algorithm or PSO significantly reduces the computational load
of the non-sensitive direction search compared to the grid
method. For the search for direction on the plane perpendicular
to the non-sensitive direction, the Three-Point Orientation
(TPO) method is employed to fast determine the two most
accurate directions, namely the sensitive direction and the sub-
sensitive direction. For the two directions, the NRBO is used
for two-dimensional positioning instead of the traditional grid
method. The NRBO efficiently solves the optimization problem
for multi-dimensional and complex functions, which signifi-
cantly saves time. In this way, the overall computational load is
greatly reduced with the optimization algorithm as compared to
the grid methods.

2. Theoretical Basis for Non-sensitive Direction

In this section, we theoretically prove the existence of the
non-sensitive direction using orbital dynamics models and
singular value decomposition. The singular value decomposi-
tion is performed according to the observability matrix. When
the singular values are smaller, the observability is smaller. We
prove the existence of the non-sensitive direction. Two
arbitrary directions perpendicular to the non-sensitive direction
are used to construct a chi-square model. Besides, we
demonstrate that the distortion of the pulsar profile exhibits a
ridge shape, with the approximate flat plane on both sides of
the ridge. Based on this, the TPO method can be used to
determine the sensitive direction.

2.1. Existence of Non-sensitive Direction

In this section, we prove the existence of non-sensitive
direction by using the singular values of the observability
matrix. First, we provide the error expressions at multiple time
instants are provided. Then the observability matrix is
constructed. Finally, the singular values of the observability
matrix are analyzed. A small singular value demonstrates the
presence of the non-sensitive direction. Namely, the error in the
non-sensitive direction does not cause significant distortion.

In the inertial J2000.0 coordinate system, the orbital
dynamics model can be shown as:

X =fX®0,n ey

Where, X is the state.
Equation (1) discretisation can be shown as:

Xi=®;; 1Xi | ()
where, ®;; | ~F;_| - AT + I, I is the identity matrix; AT is

the sampling period; F;_; is the Jacobian matrix of the state
transition equation at time #;_;. The effects of solar perturbation
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and atmospheric perturbation are ignored. Hence, F; | can be

expressed as:
O X, i) _ [03x3 I3x3] 3)
Si—1 03x3

F_ =
: OXT (1)

X0)=X(t;-1)

where S, ; is the component of the earth’s gravitational
acceleration in different directions.
Set X, be the initial state of the spacecraft. The spacecraft
state at time i, X; , can be shown as:
Xi=®i1 P12 Pio-Xo 4)
;=103 @1 P12 Pro-Xo (%)
where, n is the pulsar LOS direction; r/ is the projection of the
position at time i onto the LOS direction. Set the error at time i

be 6X;. Then the positional error on the LOS direction at this
time is &r/, which expression can be given as:

or/ =[n, 03] - ®ii1- ®i_1; 2 Pro- 0Xo. (6)
The specific expression at time #; is shown as:
or{ =[n, 01x3] - @10 6Xo
L. AT - Lixs
=[n, 0143] - [AT-13X3 So L ] - 6Xo
=n - ory @)
where érg is the initial positional error at time fg.

Similarly, the specific expressions positional error at time #,,
t; and #4 are obtained, as shown in Equations (8)—(10)

ory = n - (Lxs + AT*Sp) - rg (3)

or{ = n - [Bys + (280 + S1)AT?] - bro )

6ry = n - [Lys + AT2(3So + 281 + 82) + SoS2 AT - 6r.
(10)

According to Equations (7)—(10), we can obtain a system of
equations. The observability matrix, O, is expressed as follows:

n
n - (s + AT2S))
n - [Lys+ (280 + S)AT?]
| n - [Lys + AT2(3Sy + 2851 + S) + SoS, ATH]
[ n
n - AT?S,
n - AT%S,
| n - (AT?S, + SpS, AT?)

an

where the value of Sy, Sy, and S, are not strongly correlated.
The singular value decomposition of the observability is as
follows:

0=UxVv" (12)

where U and V represent the left and right singular matrices,
respectively. The orbital inclination relative to the LOS of a
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pulsar (OILOS) is defined as the angle between the orbital
plane and the pulsar LOS. Figure 1 shows the singular values.

The maximum and middle singular values are more
significant than the minimum singular value on the orbit. A
larger singular value indicates better observability of the
position on the corresponding singular direction, and
vice versa. Therefore, we estimate the position along the two
directions of maximum and middle singular values. In contrast,
the position along the direction of the minimum singular value
is discarded, which means giving up the positioning in the non-
sensitive direction.

2.2. TPO Method

As the grid method fitting the “ridge” model needs N
sampling points, its computational load is high. We establish a
chi-square increment model, sz, with respect to initial
positional error, dr, and based on this, propose a TPO method.
Next, to simplify the problem, we neglect noise interference
and consider only the distortion of the pulsar profile.

In the “ridge” model, as shown in Figure 2 , the sub-sensitive
direction divides the “ridge” model into two planes. When érg
is small, x*(&ro) — x*(0) = Ax?, where, (o) is the chi-square
value for zero distortion. Its directly proportional to &r.
Suppose that the sub-sensitive direction error be 6r,3, and the

error on the sensitive direction be éry. So éry = éry + or)
Ax2(6ro) = Ax2(6ry + 6rf) = Ax2(6r)). (13)

The line formed by 6ry + 6r) and 6r) is parallel to 6r.

Next, we propose the TPO method. The specific steps are as
follows:

We take three points from the right side of the plane. It is
required that the three points must be on the same side. Set
sz(érH), AX2(6rM), sz(érN) be the chi-square values of points
oy, by, Ory respectively. Assume that Ax*(6ry) < Ax*(6ry),
there exists ry that make Ax?(6ry) = Ax?(éry) holds. We
can get ng,y, is parallel to the direction of 6y, formed by 6ry; and
oryp. Its expression is shown in Equation (14)

6rMM’ //nsub' (14)

According to the bi-interpolation method, the position of a
point éry; can be estimated
bry — Oryy  Ax2(Ory) — Ax2(6ry,)

= . 15
|(5er AX2(6I‘N) — AX2(6I‘H) ( )

The direction of dryg, can be determined by éry; and oryy. Sy
is the sub-sensitive direction n,.

3. Acceleration Algorithm Based on Multiple
Optimization Algorithms

The computing resources of spacecraft are limited and the
computational load of the accumulative pulsar profile is high.
Therefore, the computational load of accumulative pulsar
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Figure 1. Singular values at different OILOS.

profiles must be reduced. The grid method requires a high
computational load. We use the LM algorithm, PSO, and
NRBO to reduce the computational load.

First, we use coarse search and the LM algorithm or PSO to
fast search for the non-sensitive direction. Then, we use the
TPO to search for sensitive and sub-sensitive directions on the
plane perpendicular to the non-sensitive direction. Finally, we
perform two-dimensional positioning in both directions with
NRBO. In this section, we introduce the FTPCO in the order of
the flow shown in Figure 3.

3.1. Fast Search Method for Non-sensitive Direction

Although sampling points in the grid method are further
reduced, there is still room for reduction. To further reduce
computational load, we initially establish an objective function
based on the positional error as the coarse search method.
Then, we utilize the chi-square value of the distortion of the
pulsar profile as the objective function. A fine search method is
required as the chi-square value serves as the objective
function. As the fine search method employs the grid method,
the computational load of the grid method is significant. Hence,
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Figure 2. Schematic diagram of the TPO method.

we employ the LM algorithm or PSO substitute to the grid
method for fine search. Since the chi-square surface is
single-peak or multi-peak problems, the LM algorithm and
PSO are employed for single-peak and multi-peak problems,
respectively.

3.1.1. Coarse Search for Non-sensitive Direction

The distortion of the accumulative pulsar profile is related to
the orbital error. We use the orbital error to make a prediction
for the accumulative pulsar profile. Due to the avoidance
of the accumulation of pulsar profile, the computational load
significantly decreases.

The specific steps are as follows:

Step 1: Establish the orbital error model.

Step 1.1: Establish the positional error model as follows:

Ar, (6;, ©;) = (cos 0; cos @; - n + cos 0; sin ®;
-ny + sind; - ny) - or. (16)

where i=0, 1, 2...01—1, j=0, 1, 2..J0—1. 0;=ix/I,
@;=2mj/J. or. is the search step for coarse search.

Step 1.2: Calculate the orbital recursive error. The difference
between the error-containing state and the predicted orbital
state is the orbital recursive error s(¢;, ¢, 1), whose expression
can be given as:

s, ¢, 1) = Fx + [Ar, (0, ), 0131, 1) = F(x, 1) (17)

where F is the orbital prediction model and x is the initial state.

Step 1.3: Design the objective function. The orbital error and
the accumulative pulsar profile have strong correlations.
Therefore, we can design the objective function according to
the orbital error. In the coarse method, the objective function
with respect to orbital error, f°(6;, ©;), is the integral value of
the absolute value of the orbital error. Its expression shown as
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Equation (18):

T
gy = [ s gy 0l di (18)

where T is the observation time.
Step 2: Grid search for 6;, ;. Find 0;, ¢; that minimizes the
objective function with respect to orbital error f°(6;, ©))

T
[0, 1 = argmin [ |s (0 3, 0 dr (19)
0,¢ 0
where 0°¢, ¢ is the solution of Equation (19).

3.1.2. LM-based Fine Search for Non-sensitive

The computational load of coarse search is low, but we
cannot obtain the optimal solution. Therefore, the LM
algorithm is introduced to further solve the optimal value
problem.

The specific steps are as follows:

Step 1: Initialize the parameters. 6, ¢ is the R.A. and decl. It
incorporated into the trust-region framework, which is as
follows:

T+ AD*PM = —JTfr(6;, @) (20)
AMA = [[PM) =0 @21

where ) is the damping parameter, A is the trust radius, A > 0,
and J is the Jacobian of f7(6;, ). f*(6;, ¢;) is the objective
function with respect to the distortion of the pulsar profile.
Step 2: Establish the objective function. Establishment of the
objective function based on the accumulative pulsar profile.
Step 2.1: Establish the positional error model as follows:

Ar,(6;, ©;) = (cos 0; cos @; -+ cos 0; sin ®;
-ny + sinf; - ny) - bry (22)

where, i=0, 1, 2...0—1, j=0, 1, 2...J—1. 6;=ir/
Lyp;=2mj/J. érsis the search step for fine search.

Step 2.2: Calculate the orbital recursive error. We refer to the
difference between the error-containing orbital state and the
predicted orbital state as the orbital recursive error s(6;, @, 1),
whose expression can be given as:

SO ¢ 1) = Fx + [An, (0, ), Oral. ) — Fx, 1) (23)

where F is the orbital prediction model and x is the initial state.

Step 2.3: Estimate phase shift. Divide the accumulation time
Tops Of the pulsar into M segments. Set the initial orbital error
be s(0;, ¢;, 0). Based on the orbital dynamics model, the orbital
error at time m Ty, /M(m =0, 1,2, ..., M — 1) can be estimated
to be s(6;, y;, m). The phase shift of the pulsar ¢, can be given
as Equation (24)

(6;, g5, m) =n - s0;, g, m)/(c - Tp). (24)

where, T is the pulsar intrinsic period.
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Step 2.4: Accumulate profile. Set the accumulative pulsar
sub-profile within the time interval m Tops/M ~ (m+1) Tops/M
to be h,,(¢), where m=0, 1, 2, ..., M — 1. The accumulative
pulsar profile A(Z, 6, ¢;) is the superposition of the above
accumulative sub-profiles. It can be represented as:

- | M=l
h(57 0,‘, SOJ) = M Z h(€ + 5(0,‘, QDJ’ m)) (25)
m=0
Step 2.5: Calculate the x* value of the accumulative pulsar
profile h(g, 6, <pj). The chi-square value is shown in
Equation (26):

fP (9i7 SDJ) = X2(9i7 QOJ)
(. - N
= fo (h(a, 0, @) — fo h(E, 6;, goj)de) dg (26)

Step 3: LM optimization. Finally, we can obtain the optimal
value
[67, ¢f] = argmax [f7 (0;, )] 7
.0
At this time, the non-sensitive direction value is the optimal
solution, which the non-sensitive direction n,,, can be
obtained.

3.1.3. PSO-based Fine Search for Non-sensitive

Due to the multi-peak problem in some orbits, the LM
algorithm cannot accurately search for the optimal value. It is
necessary to use the PSO to substitute the LM algorithm for
optimization. The PSO is a swarm intelligence algorithm,
which converges to the optimal solution faster than the genetic
algorithm for high-dimensional optimization problems. It has
excellent optimization performance for the objective function.

The specific steps are as follows:

Step 1: Set the initial population and number of iterations.

Step 2: Construct the objective function. The objective
function is the same as in Section 3.1.2.

Step 3: PSO optimization. Optimized with PSO, and ¢/, ¢’

obtained. The non-sensitive direction expression is:

Ryon = [cosOcosp - n + cosBsinp - ny + sinf - ny]. (28)

3.1.4. Coarse-to-fine Search

We combine coarse search and the LM algorithm or PSO,
which can greatly reduce the computational load. The specific
steps are as follows:

Step 1: Coarse search. According to the coarse search
method provided in Section 3.1.1, we can search for ¢, ©°.

Step 2: Use 6¢, ¢ obtained from the coarse search as the
initial value for the LM optimization algorithm or the PSO.

Step 3: According to Sections 3.1.2 or 3.1.3, the optimal
value, Hf, <pf , can be found through the optimization algorithm
without global search, which reduces the number of
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computations of the objective function. When the LM
algorithm or the PSO is combined with the coarse search
method, we can obtain non-sensitive directions with high
accuracy. Therefore, two-dimensional positioning can be
performed in two mutually perpendicular directions on the
plane where the non-sensitive direction, results in high-
precision positioning.

3.2. TPO Method

We carry out the positioning on the sensitive plane
perpendicular to the non-sensitive direction, which makes the
selection of direction particularly important. Random choice of
the search direction makes the optimal value not easily obtain.
Therefore, we use the TPO method to search the sensitive
direction and sub-sensitive direction.

The specific steps are as follows:

Step 1: Set the initial positional error for three points. On the
given plane, randomly select two perpendicular directions and
establish the initial positional error modelAr; ;

Ar = (k— N; 1)6r,~n1“°“ +(l— —N; 1)6r,-n2“°"

(29)
where 6r, is the search step for TPO method; N is the number of
sampling in the direction; k and [ is the variables, k=1, 2..., N,
=1, 2..., N. Only three points need to be sampled.

Step 2: Calculate the corresponding chi-square value.

Step 2.1: Generate the distortion model. The initial positional
error model Ary; is substituted into the orbital dynamics model
to obtain the radial displacement compensation Ar;, at different
times, m=0, 1, 2, ..., M — 1. A distortion model gk,l(Ar") is
built based on the probability density of the displacement
compensation.

Step 2.2: Accumulate the distortion of the pulsar profile. The

distortion of the pulsar profile A ;(¢) can be considered as the
cyclic cross-correlation of the pulsar standard profile and the
distortion template

hi(€) = h(e)*g (A7) (30)

Step 2.3: Calculate the chi-square value of the distortion of the
pulsar profile.

Step 3: Bi-interpolation method. Through the theoretical
analysis of Section 2.2, the sub-sensitive direction n,, can be
obtained.

Step 4: Estimate sensitive direction. The sensitive direction
N, can be calculated by the following formula:

Rgen = Rgup X RApon (31)

where X represents the cross product.
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3.3. Two-dimensional Positioning Method Based
on NRBO

In Section 3.2, two directions can be obtained through the TPO
method. The two-dimensional positioning in these two directions
can improve positioning accuracy. However, the computational
load of the two-dimensional grid positioning method is high, so
we use NRBO for two-dimensional positioning. The NRBO can
reduce the computational load while ensuring accuracy, which
greatly saves the computing resource of star-borne.

The specific steps are as follows:

Step 1: Set the initial population size and the number of
iterations.

Step 2: Establish the objective function.

Step 2.1: Two-dimensional initial positional error. The two
directions ng,, and ng., obtained by the TPO method are used
as the positional direction, then the initial positional error is:

, N4+ 1
Arf, = (k - T)(SrNRBO * Rgyp
N+ 1
+ (l — T)5YNRBO * Rgen (32)

where dryrpo is the search step for two-dimensional positioning;
N is the number of sampling in the direction; k and [ is
the variables, k=1, 2..., N, =1, 2..., N. The total sampling
points are determined by the initial population and the number of
iterations.

Step 2.2: Accumulate the pulsar profile. The phase shift
estimation is stored in the dictionary. Suppose the kth phase
shift vector ¢}', matches £}, in the kth group of the relative
phase shift dictionary. We choose the kth accumulative sub-
profiles from the kth group of the segmented complete
accumulative profile dictionary. Set 4 (e}’;) be the accumulative
pulsar sub-profile in the period m Tops/M ~ (m+1) T,p5/M,
where m=0, 1, 2, ..., M — 1. The accumulative pulsar profile
Iy (2) is the overlay of the above accumulative pulsar sub-
profile, which can be expressed as:

A ~ 1 = m
hii(®) = — > h(e + &) (33)
Mm*O

Step 2.3: Calculate the chi-square value. Calculate the chi-
square value of the accumulative pulsar profile 7 ;(€). Select
the largest chi-square value in the population

1( . 1 2
Xii = fo (hk,z(é) - fo hk,,(é)dz) dz. (34)

Step 3: NRBO optimization. With NRBO optimization, we are
able to obtain the optimal chi-square value

Xi+l,l+l = max(xiyl). (33)
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Step 4: Estimate two-dimensional positioning. Update the
iteration to get the optimal value. This enables the estimation of
two-dimensional positioning accuracy.

The NRBO greatly satisfies the computational load require-
ment and positioning accuracy. Therefore, the FTPCO can
satisfy star-borne needs.

4. Computational Complexity Analysis

For the search direction, we use both the LM algorithm and the
PSO. We mainly use the LM algorithm. Therefore, we only
discuss the computational complexity of the LM algorithm. As the
LM algorithm is a trust region method, it is distinct from our
traditional methods, thus we only consider each iteration number.
The computational load of the objective function mainly arises
from the accumulative profiles. The computational load for each
accumulative profile is D Multiplications and Accumulations
Computation (MAC). In the context of the fine search needs as
well as N* sampling points at an interval of 0.°1 the grid method.
The fine search reduces sampling points. When the compression
rate is 6, the computational load required for the accumulative
profile of the grid method is 6N*D MAC. The LM algorithm only
needs the computation of chi-square values of the accumulative
profile G time. Thus the computational load is GD MAC.
Typically, given an initial position by the coarse search, the LM
algorithm can fast iterate to find the optimal value, hence G < 6N*.
For the two-dimensional positioning, we use the NRBO. Thus we
analyze the computational complexity of the NRBO. The NRBO
is a swarm intelligence optimization algorithm. For simple
objective functions, it can iterate fast to find the optimal value.
However, the objective function in this context is more complex,
so we only need to consider the computational load of the
objective function. The computational load of the NRBO depends
on the initial population size and the number of iterations. Assume
that the initial population size is P and the number of iterations is
E. The computational load for the NRBO is PED MAC. The
computational load of the grid method can be expressed as
SN’>DMAC. Usually, PE < SN?. For instance, give 6=0.02,
N =210, and G = 16. The computational load for the accumula-
tive profile is 3.3 x 10’ MAC. The computational load of the LM
algorithm and the grid method is 5.3 x 10® MAC and 2.9 x 10"
MAC, respectively, which shows a computational load reduction
of 98%. For the two-dimensional positioning, we have 6=0.3,
N=21, P=10, and E=10. The computational load of the
NRBO and the grid method is 3.3 x 10° MAC and 4.4 x 10°
MAC respectively, which reduces the computational load by 25%.

We use FTPCO to decrease the computational load by
approximately 71%, which fully illustrates the feasibility of
employing multiple optimization algorithms in XPNAV.

5. Simulation Results and Analysis

In this section, we investigate the performance of the
FTPCO. First, we compare the optimization algorithm with the
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grid method to search the non-sensitive direction, which
illustrates the superiority of the LM algorithm and PSO in
searching for the non-sensitive direction. Then, we use the TPO
method on the plane perpendicular to the non-sensitive
direction to search for the sensitive and sub-sensitive direc-
tions. Finally, the feasibility of NRBO is verified.

5.1. Simulation Conditions

The navigation pulsar is the Crab pulsar PSR BO531+21,
and its basic parameters are shown in Table 1. The six elements
of the Earth satellite orbit are shown in Table 2. The initial
parameters of the algorithms used at each stage are shown in
Table 3. The simulation platform is an HP laptop with an Intel
Core 15-8300H @2.30 GHz processor and 8G memory.

5.2. Singular Values and Positioning Accuracy

In this subsection, we investigate the relationship between the
singular value and the positioning accuracy. From Table 4, we can
see that when the positioning in the sensitive direction, the sub-
sensitive direction and the non-sensitive direction, the positioning
accuracy of the three directions is directly proportional to the
singular value demonstrated in Figure 1, which satisfies the
theoretical derivation in Section 2.1. When the singular value
increases, the observability improves, which leads to improved
positioning accuracy. Therefore, we select to perform the two-
dimensional positioning in the sensitive and sub-sensitive
directions and abandon the non-sensitive directions.

5.3. Comparison of the Grid Method and LM or PSO

In this subsection, we compare the grid method and the LM
algorithm for OILOS. As shown in Figure 4, the differences in R.
A. and decl. obtained from the grid method and the LM algorithm
are presented. When the decl. is at 0° or 180°, the R.A. does not
affect the position. We can see from the figure, their difference is
approximately zero. When OILOS is 70° and 80°, the change in
R.A. does not affect the position. Figure 5 shows the chi-square
values corresponding to different OILOS, consistent with the
analysis results of singular values in theoretical Section 2.1. The
computational load of coarse search is very low and can be
ignored. Table 5 shows a comparison between the grid method
and the LM algorithm, from which we can see that the
computational time required for the LM algorithm is far shorter
than that for the grid method. The reason is that sampling points
for the LM algorithm are far less than those for the grid method.
Hence, the computational load is lower. When OILOS is at 40°,
50°, and 60°, the computational load is very low to use the LM
algorithm, but the error is large. The reason is the presence of too
many peak values, which is a multi-peak problem. It is easy to fall
into local optimization. Therefore we consider the PSO.
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Table 1
Simulation Parameters of the Pulsar Observation

Parameter Name Value
Pulsar period/(ms) 33
Photon flux of pulsar/(ph em 257! 1.54
Background noise flux density/(ph em s 0.005
Number of pulsar intervals 330,000
Detector area/ (m? 1
Time resolution/(us) 0.1
Observation time/s 2600
Number of observation time segments 100
Number of sampling at positions ng,, and ng, 21
positional sampling interval on ng,, and ng.,/m 300

Table 2

Orbital Parameters

Orbital Elements Value
Semimajor axis/(km) 6500
Eccentricity 0
Inclination/(°) 120
Argument of perigee/(°) 0
The R.A. of ascending node/(°) 0
True anomaly/(°) 0

Table 3

Initial Parameters of Three Optimization Algorithms

Maximum Number of

Algorithm  Number of Initial Populations Iterations
LM 1 100
PSO 25 10
NRBO 12 12
Table 4
Singular Values and Positioning Accuracy
Positioning Accuracy
Sensitive Sub-sensitive Non-sensitive

OILOS Direction Direction Direction

(m) (m) (m)
10° 232.926 244.203 289.404
40° 241.195 510.502 1253.748
90° 183.777 1396.271 1517.419

As shown in Table 6, compared with the LM algorithm, the
PSO has a high computational load and low error. Furthermore,
both of them compare to the grid method, with the difference
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Figure 4. Differences in R.A. and decl. under different OILOS.

between the two fluctuating within the range of 0.3°. The
computational load decreases by 71%—98%, which is consistent
with the analysis results of computational complexity in Section 4.

5.4. Comparison of the Grid Method and TPO

We search for sensitive and sub-sensitive directions on the
sensitive plane perpendicular to the non-sensitive direction. The
grid method requires 441 sampling points to identify the sensitive
and sub-sensitive directions, while the TPO method only needs
three points. Therefore, we utilize the latter. To highlight the
superiority of the TPO method, as shown in Table 7, we conduct a
comparison between the grid method and the TPO method. From
Table 7, it can be seen that as the OILOS increases, the
computational load of the grid method exhibits a clear upward
trend. We use the dictionary folding method when we use the grid
method to find the direction. When the OILOS is small, there are
repeated calculations in the phase shift dictionary. The dictionary
folding method works to eliminate these repeated calculations,
which results in a low computational load. As the OILOS
increases, the repeated counting in the phase-shifted dictionary
decreases, which makes dictionary folding ineffective and there-
fore the computational load is high. The grid method presents a
significant deficiency in the computational load, especially for
large OILOS, with the computational load vastly exceeding that of
the TPO method. The reason is that sampling points in the TPO
method remain at 3, far less than that of the grid method. As a
result, the computational load of the TPO method is reduced by
98% compared to the grid method. Moreover, the directional
difference between the sensitive directions obtained via the grid
method and the TPO method remains within 2.5°. Compared with
the grid method, the TPO method ensures accuracy and greatly
reduces the computational load.
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Figure 5. Chi-square values under different OILOS.

Table 5
LM Algorithm vs. Grid Method

Grid Method LM Algorithm
OILOS  Fine Sample Time Fine Sample Time Difference
(s) (s) )
10° 861 717.799 24 19.571 0.181
20° 861 728.047 24 38.405 0.535
30° 861 743.031 24 46.583 0.875
40° 861 738.201 22 38.641 7.072
50° 861 740.351 20 30.905 7.792
60° 861 735.305 20 26.461 5.846
70° 861 917.824 24 32.139 0.126
80° 861 1106.901 24 26.915 0.096
90° 861 1085.352 24 15.722 0.040
Table 6
PSO vs. Grid Method
Grid Method PSO
OILOS  Fine Sample Time Fine Sample Time Difference
() ) )
40° 861 738.201 250 210.754 0.153
50° 861 740.351 200 156.739 0.232
60° 861 735.305 200 167.248 0.694

5.5. Comparison of the Grid Method and NRBO

In this subsection, we investigate the impact of the key
parameter of the NRBO and the grid method. As the population
size and the number of iterations increase, the accuracy improves;
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Table 7

TPO vs. Grid Method

Time (s)
OILOS Grid Method TPO Directional Difference

©)

10° 602.743 13.625 1.775
20° 1168.026 29.799 1.495
30° 2245.466 40.626 2.364
40° 2555.887 50.361 2.304
50° 4006.691 51.812 1.107
60° 4226.576 69.446 1.196
70° 4524.115 98.824 0.558
80° 5018.303 105.999 0.421
90° 4368.096 109.921 0.370

however, this results in an increased computational load. There-
fore, it is crucial to select an appropriate number of populations
and iterations. As shown in Figure 6, when the number of
populations is 12, the computational load remains low, and the
computational load of the NRBO positioning is approximately
equal to that of the grid positioning method. Furthermore, the
accuracy can be effectively maintained under these conditions.

Then, we select OILOS of 10°, 40°, and 90° as simulation
orbits. As shown in Table 8, we compare the one-dimensional
grid positioning method, the two-dimensional grid positioning
method and the NRBO positioning method. As shown in
Table 8, although the one-dimensional positioning method
requires less time, its positioning accuracy is low. The reason is
that the positioning accuracy of the non-sensitive direction is
low. Consequently, we concentrate our comparison on the two-
dimensional grid positioning method and the NRBO position-
ing method. Within an acceptable range of positioning
accuracy, the NRBO positioning algorithm reduces the
computational time by 39-53 s. The reason is that the NRBO
significantly reduces sampling points compared to the two-
dimensional grid positioning method. Furthermore, since the
dictionary folding method can only be used in the grid method,
this method is dismissed in FTPCO. The NRBO makes
positioning simple and efficient. Consequently, NRBO can
substitute the grid method for two-dimensional positioning,
which thereby reduces the computational load.

5.6. Computational Load

In this section, the computational load is presented, as shown in
Table 9. The computational load of FTPCO is reduced by
1000-5000 s compared to the grid method. The above results
suggest that the FTPCO effectively enhances real-time perfor-
mance, due to the significant reduction in sampling points.
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6. Conclusion

We propose FTPCO to reduce the computational load. First,
we theoretically demonstrate the feasibility of optimization
algorithms in XPNAV. Then, we substitute the grid method
with three optimization algorithms, which offer non-sensitive,
sensitive, and sub-sensitive directions for positioning. Finally,
we employ the NRBO instead of the grid method for two-
dimensional positioning. The main reason for high positioning
accuracy is that it is not easy to fall into a local optimum.

FTPCO has the following advantages:

(1) Real-time performance. Simulation results demonstrate
that compared to the traditional grid method, the
computational load of the non-sensitive direction search,
the sensitive direction search and the two-dimensional
positioning, is reduced by 71%—-98%, 97.8%, and 24.2%,
respectively. To sum up, the computational load of
FTPCO has declined by 89.4%.

(2) High directional accuracy. The directional accuracies of
the non-sensitive directions obtained by the LM algo-
rithm and the PSO are 0.4°-0.9°. The directional
accuracies of sensitive and sub-sensitive directions
obtained by the TPO method are 0.3°-1.7°. Therefore,
the FTPCO reduces the computational load significantly
and maintains high directional accuracy.

(3) High positioning accuracy. The NRBO is not easy to fall
into the local optimal solution. Its two-dimensional
positioning error is approximately 200-1000 m, which
meets the requirements of navigation. Compared to the
traditional methods, the positioning accuracy of the NRBO
is improved by 38% due to high direction accuracy.
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Table 8
NRBO Positioning vs. Grid Method

Two-dimensional Positioning

One-dimensional Positioning Grid Positioning Method NRBO Positioning Algorithm

OILOS Time Difference
Positioning Accuracy Time Positioning Accuracy Time Positioning Accuracy Time (s)
(m) () (m) (s) (m) ()
10° 1891.022 43.530 278.933 164.107 278.783 124.469 39.638
40° 4424.226 46.229 641.112 188.370 601.791 134.619 53.752
90° 2705.880 50.081 1086.750 197.171 1110.614 153.806 43.365
Table 9
Computational Load
Time (s)
. Promotion
OILOS Grid Method FTPCO Rate
Non-sensitive Sensitive Two-dimensional NRBO
Direction Direction Positioning Total Time LM/PSO TPO Positioning Total Time (%)
10° 717.799 602.743 164.107 1484.649 19.571 13.625 124.469 157.665 0.894
40° 738.201 2555.887 188.370 3482.458 38.641 50.361 134.619 223.621 0.936
90° 1085.352 4368.096 197.171 5650.619 15.722 109.921 153.806 279.449 0.951

The FTPCO provides new ideas and references for the design
of future XPNAYV systems.
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