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Abstract

X-ray observations play a crucial role in time-domain astronomy. The Einstein Probe (EP), a recently launched
X-ray astronomical satellite, emerges as a forefront player in the field of time-domain astronomy and high-energy
astrophysics. With a focus on systematic surveys in the soft X-ray band, EP aims to discover high-energy transients
and monitor variable sources in the universe. To achieve these objectives, a quick and reliable classification of
observed sources is essential. In this study, we developed a machine learning classifier for autonomous source
classification using data from the EP-WXT Pathfinder—Lobster Eye Imager for Astronomy (LEIA) and EP-WXT
simulations. The proposed Random Forest classifier, built on selected features derived from light curves, energy
spectra, and location information, achieves an accuracy of approximately 95% on EP simulation data and 98% on
LEIA observational data. The classifier is integrated into the LEIA data processing pipeline, serving as a tool for
manual validation and rapid classification during observations. This paper presents an efficient method for the
classification of X-ray sources based on single observations, along with implications of most effective features for
the task. This work facilitates rapid source classification for the EP mission and also provides valuable insights into
feature selection and classification techniques for enhancing the efficiency and accuracy of X-ray source
classification that can be adapted to other X-ray telescope data.
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1. Introduction

X-ray observations are important sources for the study of
time-domain astronomy. Transient sources within this field,
such as supernovae, gamma-ray bursts (GRBs), active galactic
nuclei (AGNs), and X-ray binaries (XRBs), undergo substantial
and sudden changes in radiation across the X-ray and gamma-
ray spectra. Within the contemporary landscape of multi-
wavelength and multi-messenger time-domain astronomy,
monitoring celestial events in the X-ray range holds great
scientific promise. Notably, numerous X-ray satellites, such as
Swift (Burrows et al. 2005), XMM-Newton (Jansen et al.
2001), and Chandra (Weisskopf et al. 2000), are actively
investigating the universe, producing a wealth of significant
scientific discoveries. Time-domain phenomena are mostly
characterized by their sporadic and transient nature. Rapid
detection and timely monitoring of time-domain astronomical
events are essential for their study and analysis. Efficient
processing of large data sets is crucial in time-domain
astronomy research, Furthermore, the integration of multi-
wavelength data to reveal complex patterns and comprehensive
understanding has resulted in a notable paradigm shift, with

machine learning techniques emerging as prominent and
influential tools.
Lobster Eye Micro-Pore Optics (MPO) is an innovative

X-ray focusing technology known for its wide field of view and
impressive imaging capabilities (Angel 1979; René 2010). The
Einstein Probe (EP), utilizing MPO technology, is a dedicated
astronomical satellite designed for time-domain astronomy and
high-energy astrophysics (Yuan et al. 2018b). Launched in
January 2024, EP is equipped to perform rapid, high-frequency,
and systematic surveys of the soft X-ray sky in the time-domain
(Yuan et al. 2015, 2018a). The EP mission will enable rapid
detection and precise localization of transient and variable
sources, as well as the acquisition of high-quality light curves
and spectral data. EP consists of 12 Wide-field X-ray
Telescopes (WXTs) covering the 0.5–4.0 keV range, accom-
panied by a Follow-up X-ray Telescope (FXT) that operates
from 0.3 to 10 keV (Zhang et al. 2022b). In 2022 July, the
Lobster Eye Imager for Astronomy (LEIA) was launched as the
pathfinder for the WXT component of EP to verify its on-orbit
performance and refine the operational parameters of the
instrument. LEIA, equipped with a full-fledged WXT that
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offers an extensive field of view measuring 18°.6× 18.°6,
successfully completed its orbital tests (Zhang et al. 2022a). It
has obtained large-field X-ray measurement data for numerous
celestial objects, revealing new transient sources (Sun et al.
2023; Yang et al. 2023), including the discovery of LXT
221107A (Li et al. 2022; Ling et al. 2022). The observational
data gathered by LEIA establish a solid foundation and
invaluable experience for the EP mission.

EP is positioned to collect a significant amount of time-domain
sky survey data, primarily consisting of light curves and energy
spectra. Employing artificial intelligence (AI) methodologies,
including machine learning, to analyze extensive data resources
provided by EP has the potential to uncover hidden insights in
transient and variable sources. Researchers have developed a
target detection framework using machine learning on the image
data obtained by the Lobster Eye Telescope. This framework has
been tested using EP-WXT simulation data, demonstrating
promising accuracy and efficiency (Jia et al. 2023).

Since then, machine learning has attracted significant attention
and achieved success in the automated classification of X-ray
transient sources. This is evident from its application to data
from XMM-Newton, Chandra, and other X-ray satellites.
McGlynn et al. (2004) pioneered the application of machine
learning techniques to classify X-ray sources, using oblique
decision trees (Murthy et al. 1994) to categorize approximately
80,000 sources from the ROSAT survey into six distinct
categories: stars, XRBs, AGNs, clusters, white dwarfs and
galaxies. However, the limited positional accuracy of ROSAT
data, ranging from approximately 10″–30″, led to significant
confusion in classification results. Lo et al. (2014) utilized a
supervised learning approach to automatically classify 2XMMi-
DR2 data obtained from the XMM-Newton mission. Tranin
et al. (2022) applied naive Bayesian methods to Swift X-Ray
Telescope (XRT) and XMM-Newton data. Additionally, Zhang
et al. (2021) cross-matched the 4XMM-DR9, SDSS-DR12, and
AIIWISE databases to extract multi-wavelength features for
effective classification. Yang et al. (2022) employed Random
Forest to classify Chandra Source Catalog version 2 (CSCv2)
data, and developed MUWCLASS, an automated multi-band
processing pipeline specifically designed for X-ray sources.

The application of AI technologies, particularly machine
learning, in astronomical data classification can significantly
reduce labor costs and improve classification efficiency. EP
data present unique challenges due to the short exposure times
and limited photon counts of single observations, making
source classification and identification extremely difficult.
Manual identification of the sources is labor-intensive and
time-consuming, and may result in the unfortunate conse-
quence of missing the optimal observational window for
conducting follow-up observations.

The EP mission primarily aims to detect transient and
variable sources. Due to the limited sampling points and
photons in LEIA and EP data, and differences from X-ray

telescopes such as Chandra, direct calculation of power-law
distribution and periodic features is impractical. Conse-
quently, the current X-ray source classification models and
features developed for Chandra, XMM-Newton, and other
data cannot be directly applied to EP data. EP is expected to
accumulate a substantial amount of data; therefore, it is
crucial to first conduct classification research on LEIA and
EP data. To support the requirements of the EP team for
single-observation classification and the discovery of new
celestial objects, there is an urgent need for a machine
learning classification algorithm capable of rapidly and
accurately identifying transient and variable sources in
real-time.
In this paper, we propose a machine learning model that

classifies target sources based on statistical characteristics of
light curves, energy distributions, and other relevant features
utilizing simulated EP data and LEIA observational data. The
classification model has been implemented as a pipeline and
deployed on the LEIA data processing server, enabling fast and
real-time source classification during observations. The model
can also be applied to EP in the future.
This paper is structured as follows. Section 2 introduces

the EP and LEIA data, presents the characteristics of
simulated data, and describes the methods used for data pre-
processing and data set construction. Section 3 describes the
feature extraction and selection for the classifier. Section 4
provides the details of the processing methods and model
optimization techniques used in this study. The performance
of the developed model is presented in Section 5. Section 6
discusses contentious issues in classification models, along
with their application in the pipeline. Finally, Section 7
provides a summary of the study, highlighting the key
findings and potential implications for the field of
astronomy.

2. Data

The data set utilized in this research comprises LEIA
observational data and simulated EP data. The data set is
accessible within the China-VO PaperData Repository.4 Both
the LEIA observational data and the simulated EP data
encompass a variety of file types, including the catalog,
spectrum, and light curve. The event file contains information
about photon arrival times, photon energies, and the positional
coordinates at which the photons intersect the detector plane.
The catalog file serves as a high level data product of EP-WXT,
containing information extracted from detected sources in a
CMOS detector. This information includes counts, pixel
positions, and celestial coordinates, and is stored in the catalog
file as an index-ordered list of rows within a binary table
extension. The light curve file is another high-level data

4 https://doi.org/10.12149/101460
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product of EP-WXT generated from the event file of the EP
pipeline. It provides the light curve for WXT, consisting of
photon counting rates with a time resolution of 1 s. The
spectrum files provide a record of the distribution of photon
counts within the energy range of 0.5–4.0 keV. Figure 1
displays the light curve and energy spectrum of a low mass
X-ray binary as observed by LEIA.

2.1. LEIA Data

LEIA, as the pathfinder of EP-WXT, was responsible for
carrying the complete WXT test module into orbit. LEIA has an
18.°6× 18.°6 field of view, an angular resolution of 3 8–7.′5,
four CMOS sensors, a bandpass of 0.5–4.0 keV, an effective
area of 2–3 cm2 per 1 keV, a pixel size of 15 μm, and a total of
4k× 4k pixels (Zhang et al. 2022a).

By 2023 August, LEIA had carried out 9063 observations,
with 8172 of them undergoing manual verification. The data
are obtained from the EP Time Domain Astronomical
Information Center (TDIC),5 which provides functionalities
for data querying and downloading. Artifacts were system-
atically removed from our data set, resulting in categories such
as AGNs, XRBs, stars, galaxy clusters, pulsars, supernova
remnants (SNRs), and others. The data obtained by LEIA are
derived from the certification conducted by the TA team after
the operational activities of LEIA. The currently known source
categories were cross-validated with source tables from other
satellites, allowing for the assignment of classification labels to
the observed sources. Figure 2 illustrates the histogram of
LEIA single observation durations, revealing that the data are
relatively short, spanning a few hundred seconds to over a

thousand seconds. Table 1 presents the quantity and proportion
of each class of LEIA data.

2.2. EP Simulation Data

The EP simulation data were generated using a data
simulator developed by the EP Science Application Team
(Pan 2024, in preparation). The simulator employs the Monte
Carlo method to generate data and introduces noise into the
data set. All target sources were selected from the ROSAT
Skylight target directory. The simulation data are generated
based on the pointing direction of EP, following the design
specifications of the EP-WXT instrument. These simulated data
closely replicate actual observational data and include event
files, catalog files, spectrum files, light curve files, and other
data types. The exposure times of simulated data range from
1100 to 1300 s, with a detector plane size of 4096× 4096
pixels. The energy distribution of X-ray photons ranges from
0.5 to 4.0 keV. Figure 3 shows the histogram of EP simulation
single observation durations, which primarily exceed one
thousand seconds.
The simulated data are categorized into 11 types: Active

Galactic Nucleus (AGN), High-Luminosity Gamma-Ray Burst
(HLGRB), Galactic Star, Galactic Compact Binary Black Hole,
Galactic Compact Binary Neutron Star, Galactic Compact
Binary Pulsar, Galactic Compact Binary White Dwarf, Galactic
Compact Binary Neutron Star and Black Hole, Short-duration
Gamma-Ray Burst (SGRB), Supernova Shock Breakout
(SN_SBO), and Tidal Disruption Event (TDE). To meet the
requirements of the EP science team, and through simplifica-
tion and consolidation, these categories were reclassified into
seven types: AGN, Star, XRB, SGRB, HLGRB, SN_SBO,
and TDE.

Figure 1. A quick view of an example of LEIA data, where the left panel displays the light curve and the right panel displays the energy spectrum.

5 https://ep.bao.ac.cn/leia/
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The labels for the simulated data are derived from those
assigned during the data generation process using the ROSAT
catalog (Voges et al. 1999). In 1996, the X-ray source table
from the ROSAT satellite sky survey was published,
documenting over 18,000 X-ray sources with a positional
accuracy of approximately 10″.

As a single observation in the simulated data can capture
multiple sources simultaneously or no source at all, we perform
source location cross-matching between the catalog file and the
simulated data directory. We use a matching radius of 0°.05 and
consider the matched data as a data set for classification in our
study. Due to the short exposure time during observations and
instrumental limitations, there are a limited number of data
points in the light curve. Therefore, light curve data with fewer

than 350 data points were initially excluded. The classes of the
simulated data are listed in Table 2.

2.3. Training and Test Data Set

Since the simulated data are generated based on the ROSAT
star catalog, the available data categories are relatively limited.
Consequently, categories such as cosmic rays and clusters of
galaxies observed in LEIA are not included. However, it is
important to note that LEIA has a relatively short operational
period and has not yet observed rare categories such as GRBs
and TDEs. These categories include rarely observed transient
sources and unknown sources that are not currently present in
the LEIA data but are the focus of EP’s future detection efforts.

Figure 2. Histogram of LEIA single observation durations.

Figure 3. Histogram of EP simulation single observation durations.
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We have developed three approaches for constructing
training sets for our model: using only EP simulated data,
using only actual LEIA observational data, and combining EP
simulated data with LEIA data. Section 5 provides a
comprehensive description of the comparison among these
three methods for constructing the data sets.

The final model was developed using a data set that
combines EP simulated data and LEIA observational data,
encompassing all categories. The training data set consists of
EP simulated data and 80% of the LEIA observational data,
comprising a total of 32,406 data points. The distribution of
classes in this merged data set is shown in Table 3.

The data were divided in a class-balanced manner, with 80%
of the combined data used for model training and the remaining
20% reserved as a mixed data test set to evaluate the model.
Subsequently, the trained model is applied to the LEIA data.
The remaining 20% of LEIA observational data are designated
as the LEIA data test set to assess the model’s performance on
the LEIA data. While the model was evaluated using both test

sets, particular emphasis was placed on assessing its effective-
ness on the LEIA data test set.
As indicated in Table 3, our training data set exhibits a

significant label imbalance. The distribution of celestial body
types across the celestial sphere is uneven, leading to a scarcity
of certain rare transient sources. For instance, there is an
overabundance of XRBs, while the number of rare sources such
as GRBs and TDEs is inadequate. The number of XRB sources
is approximately 300 times greater than that of HLGRBs.
These imbalances can significantly impact the performance of
machine learning algorithms. To address this issue, we utilized
the Synthetic Minority Oversampling Technique (SMOTE;
Chawla et al. 2002) to resample the data set. This technique
augmented the underrepresented categories and mitigated the
problem of class imbalance. SMOTE employs the K-nearest
neighbors (KNN) method to generate synthetic samples for the
minority class. This approach is commonly used to address
class imbalance and is recognized for its robustness.
We conducted experiments using various resampling

scenarios and observed that increasing the volume of data led
to improved outcomes. We attempted undersampling the
categories with sufficient data, such as XRB and AGN, while
resampling the remaining classes. The impact of different
sample sizes, ranging from 800 to 32,000, is illustrated in
Figure 4. We found that once the data quantity exceeded
16,000, there were diminishing returns in terms of accuracy and
Macro-F1 scores. Consequently, our final approach involved
applying SMOTE to resample all classes except for XRB. For
XRB, we performed random undersampling to obtain 16,000
samples. This resulted in a total of 16,000 samples for each
class.
Due to certain limitations in feature calculation, the value of

some feature may be null or infinite. In such cases, we assign a
uniform value of −100 to these features. Filling in missing
values in this manner does not impact the model’s
performance.

3. Feature Extraction

The short timescale of a single EP observation poses a
challenge in capturing the periodic behavior of the targets in the
time domain. Additionally, instrumental limitations constrain
the applicability of commonly used features, such as time
variability, periodicity, power law, and flare-related features, to
EP data. The extraction of features that uncover the underlying
physical significance of the data is a critical task. The process
of feature extraction necessitates meticulous consideration of
their underlying physical meanings. The design of the feature
extraction method refers to the studies conducted by Lo et al.
(2014) and Richards et al. (2011). Table 4 summarizes the key
characteristics of the different astronomical transients and
variables considered in this study, including their timescales,
light curve characteristics, and energy spectrum characteristics,

Table 2
Class Distribution and Proportion in EP Simulation Data

Class Number Percentage

Count
Total
Count

Galactic Compact Binary Neutron Star 10674 36803 60.74%
Galactic Compact Binary White Dwarf 9242
Galactic Compact Binary Pulsar 8435
Galactic Compact Binary Black Hole 5452
Galactic Compact Binary Neutron Star

and Black Hole
3000

Active Galactic Nucleus (AGN) 10662 17.60%
Galactic Star (Star) 5496 9.07%
Short-duration Gamma-Ray

Burst (SGRB)
1575 2.69%

Supernova Shock Breakout (SN_SBO) 5559 9.18%
Tidal Disruption Event (TDE) 376 0.62%
High-Luminosity Gamma-Ray Burst

(HLGRB)
117 0.19%

Table 1
Class Distribution and Proportion in LEIA Data

Class Number Proportion

X-Ray Binary (XRB) 4834 69.56%
Supernova Remnant (SNR) 949 13.66%
Cosmic ray 351 5.05%
Active Galactic Nucleus (AGN) 311 4.48%
Star 227 3.27%
Pulsar 159 2.29%
Cluster of Galaxies 118 1.70%
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while the energy spectrum for each class can be found in
Appendix A and the light curves in Appendix B. Table 5
presents a list of the 23 features derived from the data, along
with their detailed descriptions. The final selection includes the
top nine features. This section delves into the design and
extraction of features.

3.1. Spectral Features

The energy spectrum range detected by EP spans from 0.5 to
4.0 keV. The hardness ratio is a widely employed feature in
X-ray astronomy for characterizing the spectral morphology of
X-ray sources. This method involves comparing the photon
counts detected in two or more distinct energy bands, typically

Table 3
Quantity of Data on Each Class in Different Sets

Class Training Set Mixed Data Test Set LEIA Data Test Set

X-Ray Binary (XRB) 16,000 8141 985
Active Galactic Nucleus (AGN) 8735 2182 56
Star 4534 1140 49
Short-duration Gamma-Ray Burst (SGRB) 1269 306 0
Supernova Shock Breakout (SN_SBO) 455 104 0
Tidal Disruption Event (TDE) 295 81 0
Supernova Remnant (SNR) 604 154 191
High-Luminosity Gamma-Ray Burst (HLGRB) 92 25 0
Cosmic Ray 237 51 63
Cluster of Galaxies 74 21 23
Pulsar 111 25 23
Total 32,406 12,230 1390

Figure 4. Accuracy and Macro-F1 under different sampling conditions of the data.

Table 4
Characteristics of Sources and Phenomena in X-Ray Band

Class Timescale Light Curve Characteristics Energy Spectrum Characteristics

AGN Minutes to years Aperiodic variability Low flux density
XRB Milliseconds to years Strong aperiodic variability High flux density
Cluster of Galaxies L No variability Low flux density
Cosmic Ray Milliseconds Photons concentrated in a single readout frame Very low flux density
Pulsar Milliseconds to years Periodic and aperiodic variability High flux density
SNR L No variability High flux density
Star Kiloseconds to years Weak variability; occasionally exhibiting a stellar flare Low flux density
TDE Minutes to years Weak variability Low flux density, Soft spectrum
SN_SBO Minutes to hours Transient flare Low flux density, Soft spectrum
GRB Seconds to minutes Transient short-term flare High flux density, Hard spectrum
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categorizing them into high-energy (hard X-rays) and low-
energy (soft X-rays) bands. Although the hardness ratio is a
fundamental and effective technique, it may not fully capture
the complexities of an X-ray spectrum.

Hardness ratios are determined by analyzing the counts in
selected energy bands, which are chosen based on the specific
instrument and the scientific questions under investigation. In
this study, we have delineated the following energy bands:
0–0.5 keV, 0.5–1.0 keV, 1.0–2.0 keV, and above 2.0 keV.
Experimental comparisons indicate that utilizing energy band
counting yields superior results.

Energy band counting involves partitioning the X-ray data
into distinct energy ranges and enumerating the photon counts
detected in each band. This approach provides more granular
information, allowing for a more comprehensive understanding
of the characteristics of X-ray sources. Consequently, energy
band counting enhances the robustness of the analytical
algorithms employed. The energy spectrum for each class can
be seen in Appendix A.

3.2. Light Curve Feature

The power-law characteristics cannot be investigated due to
the brevity of the light curve. However, specific statistical
features can be extracted from the available data. Below are
some of the features that are essential for model training. The
light curve for each class can be seen in Appendix B.

3.2.1. Kurt

Kurtosis is a statistical feature used to describe the
distribution of a light curve. It quantifies the sharpness or
flatness of a probability distribution curve relative to its mean.
More specifically, kurtosis characterizes the steepness of the
data distribution curve relative to the standard normal
distribution. For our calculations, we utilize the scipy.stats.
kurtosis function from the SciPy package (Virtanen et al.
2020).
Kurt is defined by the following equation

= ( )
m

m
kurt . 14

2
2

m2 represents the second-order central moment (variance) of
the data set, and m4 represents the fourth-order central moment
of the data set.

3.2.2. Skew

Skewness is a statistical measure used to quantify the
asymmetry of a probability distribution. In light curves,
skewness indicates the degree of asymmetry in the temporal
changes of luminosity. A positive skewness value suggests a
longer right tail in the distribution, while a negative skewness
value implies a longer left tail. In astronomy, various celestial
objects exhibit diverse patterns of luminosity changes.
Quantifying the skewness of a light curve enables us to

Table 5
List of Time Series Features Used for Classification

Feature Description References

galactic longitude Galactic longitude of source
galactic latitude Galactic latitude of source
a_hard The count rates in the 0.2–0.5 keV
b_hard The count rates in the 0.5–1.0 keV
c_hard The count rates in the 1.0–2.0 keV
de_hard The count rates above 2.0 keV
kurt Kurtosis of the distribution of count rates; calculated using scipy.stats.kurtosis
skew Skewness of the distribution of count rates; calculated using scipy.stats.skew Richards et al. (2011); Lo et al. (2014)
modulation index Variance / mean Improvement from (Lo et al. 2014)
var Variance of the counts
beyond1Std Percentage of observations that lie beyond one standard deviation from the mean Richards et al. (2011); Lo et al. (2014)
energy_ratio The ratio between peak energy and background energy
mean Mean of the counts
median Median of the counts
percentile_diff Count rate at the 98th percentile minus the count rate at the 2nd percentile Richards et al. (2011); Lo et al. (2014)
maximum slope Maximum slope of adjacent observation points Richards et al. (2011); Lo et al. (2014)
median_abs_deviation Median of the absolute value of the deviation from the median Richards et al. (2011); Lo et al. (2014)
percentage_within_threshold Percentage of measurements within 20% of the median Richards et al. (2011); Lo et al. (2014)
t50 50% energy width on the sides of the peak position of the energy spectrum
t20 20% energy width on the sides of the peak position of the energy spectrum
t10 10% energy width on the sides of the peak position of the energy spectrum
t50_t20 t50 / t20
t50_t10 t50 / t10

Note. The top nine features are selected features.
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understand the probability distribution characteristics of
observed luminosity changes, thereby enhancing our compre-
hension of the underlying physical processes. For calculations,
we employ the scipy.stats.skew function from the SciPy
package (Virtanen et al. 2020).

Skewness is defined as follows

å=
-

=

( ¯)
( )

n

x x

s
Skew

1
. 2

i

n
i

1

3

3

n is the number of data points and s is the standard deviation.

3.2.3. Modulation Index

The relative volatility index can be obtained by dividing the
variance of the light curve by its mean. This characteristic is
referred to as the “modulation index.” The relative volatility
allows for the comparison of volatility among different light
curves. A large relative volatility indicates significant changes
in the photometric data, while a small relative volatility
suggests relatively stable changes. A higher relative volatility
value indicates a more active and unstable light variation
phenomenon.

We randomly selected 500 data points from each class to
examine their distribution in the feature space using different
features, as depicted in Figures 5 and 6. It is evident that these
features effectively distinguish between the classes. Figure 5
illustrates the distribution of data from different classes in three
hardness ratio spaces: 0.5–1.0 keV, 1.0–2.0 keV, and above
2.0 keV. Figure 6 presents the distribution of data from

different classes based on skewness and the 0.5–1.0 keV
hardness ratio.

3.3. The Distribution of the Data on the Sky Map

The types of X-ray sources can be partially distinguished by
considering Galactic longitude and Galactic latitude. Previous
studies have utilized Galactic latitude as a classification feature
(McGlynn et al. 2004; Lo et al. 2014; Tranin et al. 2022). The
distribution of Galactic longitude and Galactic latitude is also
influenced by the telescope’s survey design. In our study, we
consider the use of Galactic longitude and Galactic latitude as
effective features for classifying sources in the EP data.
Machine learning algorithms that incorporate Galactic long-

itude and Galactic latitude as features of position information
can achieve higher accuracy rates due to the distinct position
distributions of various celestial objects. By combining
Galactic longitude and Galactic latitude as location information
features with other attributes of celestial objects, more complex
feature vectors can be constructed. Currently, the manual
determination of the EP observation source also takes into
account the location information for assessment. EP observa-
tions yield a relatively large number of high-energy celestial
objects, including XRBs, which tend to cluster near the
Galactic center. Figure 7 illustrates the spatial distribution of
the data in the observed sky area.

4. Classification Methods and Procedures

All sources are labeled. We extract above described features
from the data of observation sources with labels for supervised
learning. This section will introduce the process of data
processing, feature extraction, and machine learning in detail.

4.1. Algorithm

In this work, our primary algorithm of choice is Random
Forest, an ensemble learning technique that harnesses the
collective power of multiple decision trees (Breiman 2001).
The core principle underlying Random Forest revolves around
its combination of bootstrap aggregating and random feature
selection. By employing these strategies, the algorithm aims to
introduce increased randomness and diversity into the model,
thereby enhancing its overall performance.
The strength of Random Forest lies in its ability to generate

an ensemble prediction by aggregating the outputs of all the
individual trees through either majority voting for classification
tasks or averaging for regression tasks. The collective decision-
making process of Random Forest leads to robust predictions
that exhibit high accuracy and stability.
Random Forests are particularly well-suited for handling

data sets with a large number of input features and samples.
The algorithm’s inherent randomness and the aggregation
of multiple trees allow it to effectively capture complex

Figure 5. The distribution of each class of data in the three features b_hard,
c_hard and de_hard.
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relationships and patterns within the data. Furthermore,
Random Forests offer the advantage of assessing feature
importance. By analyzing the contribution of each feature to
the model’s performance, we gain valuable insights into the
key factors driving the observed patterns and outcomes.

We employed the Random Forest algorithm to learn and
harness the light curve variability features and spectral features
of the data, achieving remarkable results. By leveraging the
power of ensemble learning, Random Forest effectively
captured the intricate patterns and relationships within the
data. The fusion of the data’s temporal dynamics and spectral
attributes within the Random Forest framework proved highly
effective, with the algorithm’s ability to combine the predictive
strengths of multiple decision trees through voting yielding
impressive outcomes.

4.2. Feature Selection

Feature importance quantifies the impact of individual
features on the performance of a machine learning model.
This analysis aids in identifying the most influential features,
thereby enhancing model efficiency, interpretability, and our
understanding of the factors driving the predictions.
In order to identify the most essential features, we initially

incorporated 23 features for training the classifier. Table 5
provides a comprehensive list of these features along with their
descriptions. We evaluated the contributions of features across
various samples, analyzing both their individual and cumula-
tive significance.
Due to the characteristics of the data, not all features provide

equal informativeness when applied to EP data. Features with
lower importance are deemed to have limited significance. To

Figure 7. The distribution of the data on the sky map.

Figure 6. The distribution of data on the two features of skew and b_hard.
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select the most informative features, we applied a threshold
based on the cumulative importance score. Figure 8 displays
the cumulative importance ranking of all features, and we
selected features with a cumulative importance score
below 0.73.

When utilizing all 23 features, the classification performance
was good, but after performing feature selection and reducing
the feature set to 9, the classifier’s performance improved
significantly in both the mixed data test set and LEIA data test
set. The classification accuracy and Macro-F1 score increased
notably in both test sets. Table 6 presents the results of the
feature selection comparison, highlighting the improved
performance achieved by utilizing the selected subset of
features.

4.3. Cross-validation

Cross-validation is a statistical technique used to assess the
performance and generalization ability of machine learning
models. It involves dividing the data set into multiple subsets,
iteratively training the model on a portion of the data, and
validating it on the remaining subsets. This process is repeated

multiple times, with different subsets used for training and
validation in each iteration.
By employing cross-validation, we can obtain more robust

and reliable performance evaluation results, as the model is
tested on multiple subsets of the data rather than relying on a
single train-test split. This approach helps to mitigate over-
fitting and provides a more accurate estimate of the model’s
performance on unseen data. The results of the cross-validation
are presented in Table 7.

4.4. Hyperparameter Selection

We use a cross-validated grid search to select the best
hyperparameters. Grid search evaluates the performance of
each parameter combination by searching for the best
parameter combination in the parameter space and using cross
validation. In the cross validation process, the data set is
divided into 5 folds, with 1 fold used as the validation set and
the other 4 folds used as the training set each time. This can
comprehensively evaluate the performance of the model and
reduce the impact caused by the randomness of data set
partitioning.
The Random Forest algorithm consists of three main

adjustable hyperparameters: the total number of trees

Figure 8. The cumulative importance of features. The red line is a threshold of 0.8.

Table 6
Comparison of the Effect of Feature Selection

LEIA Data Test Set Mixed Data Test Set

Accuracy Macro-F1 Accuracy Macro-F1

23 features 96.8% 92.3% 88.0% 83.2%
9 selected features 97.8% 94.4% 95.0% 85.4%

Table 7
Cross Validation Results

Average Variance

Accuracy 98.5% 6.199e-07
Macro-F1 87.0% 7.824e-05
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(n_estimators), the maximum depth of each decision tree
(max_depth), and the maximum number of features used by
each tree node (max_features). We choose the default ¢ ¢auto
value for max_features. Using cross-validated grid search, we
evaluated the hyperparameters n_estimators and max_depth
while keeping the other hyperparameters fixed in their
default settings. The results of the hyperparameter selection
are illustrated in Figure 9. Our findings indicate that the
model performs best when hyperparameters are set to
n_estimators= 150 and =max depth_ 25.

5. Results

5.1. Evaluation Indicators

In this study, we employ five evaluation metrics to assess the
effectiveness of the classification models. These metrics serve
as robust indicators of model performance, including accuracy,
balanced accuracy, Macro-F1 score, Matthews Correlation
Coefficient (MCC), and run time.

Accuracy is calculated by dividing the number of correctly
classified samples by the total number of samples.

Balanced Accuracy is calculated by averaging the accuracies
of each class, resulting in a balanced accuracy indicator that
effectively addresses the bias caused by data imbalance. The
formula for calculating Balanced Accuracy is

å=
=

( )
N

TP

P
BalancedAccuracy

1
. 3

i

N
i

i1

Among them, N is the number of classes, TPi is the true number
of samples in the ith class, and Pi is the total number of samples
in the ith class.

The Macro-F1 score is an evaluation metric that considers
both accuracy and recall. It is calculated by averaging the
precision and recall values across all categories, resulting in the
Macro-F1 value. This metric treats each class equally, making
it robust to data imbalance.

The MCC is an evaluation indicator that provides a
comprehensive measure of the relationship between true
positive, true negative, false positive, and false negative
predictions. It is particularly suitable for data sets with
imbalanced categories. The MCC value ranges from −1 to 1,
where 1 indicates perfect prediction, 0 represents random
prediction, and −1 indicates completely inconsistent
prediction.

=
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Run time is a practical metric that measures the time required
for model training. It reflects the efficiency and speed of the
model, making it particularly valuable when dealing with large
data sets.

5.2. Algorithm Comparison

In this research paper, we attempted several popular machine
learning algorithms.
XGBoost (Chen & Guestrin 2016) is a gradient boosting

framework that integrates regularization and parallel proces-
sing. Compared to Random Forests, XGBoost’s strategy is
more focused and sequential. For our comparative study, we
implemented XGBoost using the Python library xgboost,
aligning hyperparameters with those of the Random Forest
model to ensure a fair comparison. The results showed that
XGBoost’s performance was competitive, nearly matching the
robustness of Random Forest predictions.
The KNN algorithm (Cover & Hart 1967) classifies data

through the majority vote of its k nearest neighbors in the
feature space. For our analysis, we used the KNeighborsClas-
sifier from the sklearn library (Pedregosa et al. 2011), setting
n_neighbors= 5 as the default. The algorithm uses the
Minkowski distance metric and a leaf node size of 30 to

Figure 9. Figure of hyperparameter selection. The left figure displays accuracy and Macro-F1 scores for different n_estimators values, while the right figure illustrates
accuracy and Macro-F1 scores for different max_depth values.
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balance efficiency and accuracy. The uniform weighting
scheme ensures equal contribution from all neighbors.

The Naive Bayes classifier is a probabilistic model that
applies Bayes’ theorem while assuming feature independence.
We implemented the GaussianNB from Sklearn. Despite the
model’s simplicity, its assumptions of feature independence
and Gaussian distribution can be restrictive, potentially
affecting its performance in complex data sets where these
conditions are not met. However, its effectiveness in the
probabilistic classification of X-ray sources, as studied by
Tranin et al. (2022), highlights its utility in specific
applications.

Support Vector Machines (SVMs) (Cortes & Vapnik 1995)
are a class of powerful supervised learning models known for
their ability to find an optimal hyperplane that separates
different classes with the maximum margin. In our predictive
model, we employed the sklearn.svm library, opting for the
RBF kernel. This approach, while effective, comes with
challenges such as increased sparsity in high-dimensional
spaces and sensitivity to feature selection. The computational
demands of SVMs grow with the number of features, leading to
longer training times and higher memory consumption.

We employed various machine learning algorithms for data
classification. The evaluation metrics for assessing the model
include accuracy, balanced accuracy, Macro-F1, MCC, and
training time. Through comprehensive comparison and evalua-
tion, we determined that Random Forests exhibit superior
performance. The performance comparison among different
algorithms is presented in Table 8.

5.3. The Final Pipeline Performance Evaluation

Finally, we conducted experiments using the Random Forest
algorithm with the hyperparameters n_estimators= 150 and
max_depth= 25, while utilizing nine feature parameters for
classification. The mixed data were employed as the final
training set. The accuracy achieved on the mixed data test set is
95.0%, while the accuracy on the LEIA test set is 97.8%. The
specific details of the final test results are presented in Table 9.
Figures 10 and 11 display the confusion matrices for the LEIA
test set and the mixed data test set.

In the mixed data test set, the classification results remain
unsatisfactory for certain classes, such as HLGRB, SN_SBO,

and others, which comprise a small number of rare time-
domain targets. This is primarily due to the limited number of
objects in these classes. The LEIA survey has not yet identified
these rare time-domain objects, and the data used continue to
be simulated data from the ROSAT star catalog. In contrast,
cosmic ray targets lack a light curve, allowing for their
successful identification based on other characteristic features.
The accuracy rate for identifying cosmic ray targets
reaches 100%.

6. Discussion and Application

Random Forests construct each decision tree by randomly
selecting a subset of features, which effectively mitigates the
risk of overfitting in high-dimensional spaces. Each tree is
trained on a distinct subset of features, thereby reducing the
model’s dependence on any individual feature. Such diversity
significantly enhances the model’s generalization ability.
Selecting appropriate features for modeling in high-dimen-
sional spaces can be challenging, but Random Forests excel at
handling numerous features without requiring explicit feature
selection. The model can automatically identify significant
features from the entire set and maintain relatively high
performance, even in the presence of irrelevant features.
Figure 12 illustrates the ranking of feature importance,
highlighting the top nine features of significant importance.

6.1. Interpretability and Feature Importance

Figure 5 demonstrates the innovative aspects of our feature
design. Extracting features from the light curve data in previous
studies, such as power-law fitting and Lomb–Scargle period-
ogram, has proven highly challenging. Three distinct features
within the light curve—“kurt,” “skew,” and “modulation
index”–were identified as significant features. These three

Table 8
Performance Comparison of Different Algorithms

Random Forest XGBOOST KNN GaussianNB SVM

Accuracy 97.8% 96.5% 91.4% 28.1% 39.2%
Balanced accuracy 95.5% 95.2% 91.5% 51.9% 60.0%
Macro-F1 94.3% 81.5% 64.2% 30.5% 30.1%
MCC 95.5% 93.2% 84.6% 18.1% 36.9%
Training Time 84.902 127.022 0.283 0.048 1087.391

Table 9
Performance Evaluation of the Final Pipeline

Data Accuracy
Balanced
Accuracy Macro-F1 MCC

Mixed data test set 95.0% 89.2% 85.4% 92.6%
LEIA data test set 97.8% 95.5% 94.3% 95.5%
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attributes capture the sharpness, skewness, and oscillatory
behavior manifested in the light curve, respectively. The
classification of cosmic rays and stars relies significantly on
these light curve features. Cosmic rays have almost no light
curve characteristics, only photons concentrated in a single
readout frame. Stars have weak variability, occasionally
exhibiting a stellar flare.

Regarding spectral features, we opted not to utilize the
hardness ratio method, which may not capture all the
characteristics of the X-ray spectrum. Instead, we enhanced
previous research by replacing the hardness ratio with energy
band counting, leading to improved outcomes. Our study
revealed that features associated with energy spectra distribu-
tion, specifically “b_hard” and “c_hard,” exhibited remarkable
significance in the model. This can be attributed to the primary
role of EP as an X-ray telescope, specializing in the study of
high-energy celestial objects. Three distinct features are
capable of capturing the energy spectral distribution across
the soft to hard X-ray energy bands for different classes.
Therefore, incorporating energy spectral distributions as
features provides substantial advantages in this specific context.
These features make significant contributions by providing
valuable information and aiding in the classification process.

For instance, “b_hard” and “de_hard” made valuable contribu-
tions to classifying SNR, XRB, and cluster of galaxies,
effectively distinguishing or excluding these classes and
thereby improving the screening of AGNs, among others.
Additionally, utilizing “galactic longitude” and “galactic

latitude” provides an efficient means of classifying galactic
sources, including XRBs and pulsars. Table 10 describes the
high contribution features for different classes in LEIA data.
Simulated data frequently include repeated observations of

the same celestial sources, resulting in the presence of multiple
observations for individual sources. We recognized that
directly utilizing spatial information could lead to excessive
overfitting of sources with multiple observations within the
spatial feature space. To address this concern, we employed a
resampling technique, specifically SMOTE, on the “galactic
longitude” and “galactic latitude.” Consequently, the spatial
positions of the sources displayed a randomized distribution
across the sky map, as illustrated in Figure 13.

6.2. Comparison of Different Methods for Constructing
the Training Set

We assessed the effectiveness of three data set construction
methods: utilizing only EP simulation data, only LEIA data,

Figure 10. Confusion Matrix on Mixed Data Test Set.
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and merging both EP and LEIA data. The evaluation was
conducted using a consistent set of features. Given the model’s
intended use as a pipeline for classification tasks in both LEIA
and EP, we measured the efficacy of these three training set
construction methods using untrained LEIA data as the test set.

In the instance where simulated data served as the direct
training set, SMOTE resampling was applied uniformly to each
class to achieve 16,000 data points per class and a Random
Forest classifier was utilized. Notably, the simulated data
lacked certain categories detected by LEIA, such as SNR,
cosmic rays, and clusters of galaxies. Consequently, the
categories common to both data sets were restricted to XRB,
AGN, and stars, exclusively reserved for testing in the LEIA
test set.

When employing actual LEIA observational data as the
training set, the SMOTE resampling strategy was adjusted to
accommodate the smaller data set size, resulting in 3387
samples per class. However, the test set featured fewer
categories due to the unique presence of classes in the
simulated data not observed by LEIA. Classification testing
was carried out using a consistent approach. It is essential to
highlight that in scenarios with limited data volume, there is a

risk of overfitting post-resampling. Detailed outcomes for these
three scenarios are outlined in Table 11.
Given the current operational timeframe, data scarcity, and

observation region constraints, it is crucial to acknowledge
these limitations despite the promising results derived from
utilizing LEIA data for training. Additionally, LEIA data cover
a narrower spectrum of source categories. Notably, anticipated
future surveys by both LEIA and EP are projected to detect
specific time-domain targets like SGRB and SN_SBO, present
in simulated data but not yet observed. Classifying these targets
will aid in identifying novel celestial objects. Thus, we have
opted to continue incorporating EP simulated data alongside
LEIA data in our training model.

6.3. Pipeline Application

The trained classification model has been encapsulated in a
Docker container and integrated into the data processing
pipeline. The classification model delivers AI-based classifica-
tion outcomes for each observation, along with the corresp-
onding probability of the predicted class. The processing time
for a single observation within the pipeline is approximately
0.19 s, while an observation may encompass multiple sources.

Figure 11. Confusion Matrix on the LEIA Data Test Set.
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This capability significantly aids the Transient Advocate team
in validating observed sources. Figure 14 showcases the
automated classification of observation sources within the EP
data processing interface. Actual observation data from LEIA
in October and November were selected to evaluate the
classification results of the application model. After filtering
out interference items like arm and fake sources from this data
set, a total of 596 instances were analyzed. The classification
accuracy for these data stands at 86.7%, with the classification
confusion matrix depicted in Figure 15.

Figure 12. Feature Importance ranking.

Table 10
High Contribution Features for Different Classes in LEIA Data

Class High Contribution Features

AGN a_hard, kurt, galactic longitude, galactic latitude
XRB galactic longitude, galactic latitude, de_hard, c_hard
Cluster of Galaxies galactic longitude, galactic latitude, a_hard, b_hard
Cosmic Ray kurt, skew, modulation index
Pulsar galactic longitude, galactic latitude, b_hard, c_hard
SNR galactic longitude, galactic latitude, b_hard
Star kurt, skew, galactic latitude, c_hard
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Upon examination, it was noted that misclassifications
within the AGN category were prevalent across multiple
observations from three sources, primarily being classified as
stars. AGNs and stars share similar physical characteristics,
leading to potential confusion. In the case of pulsars,
misclassifications were observed in multiple observations from
two sources. One of them, the magnetar, was misclassified as a
star or an SNR, largely due to physical resemblance. The other
source, a pulsar, was classified as an XRB, primarily influenced
by its proximity to the Galactic center. The galactic location
erroneously attributed to XRB was based on feature

contributions. Lastly, the classification performance for clusters
of galaxies is suboptimal due to the limited representation of
galaxy clusters in the training set, impacting the model’s
overall performance.

6.4. Limitation

The data set includes a limited number of instances
belonging to the cluster of galaxies and HLGRB. Conse-
quently, these minority class instances may face challenges
during SMOTE resampling, increasing the risk of overfitting.
This risk arises from the potential generation of synthetic
samples that closely mimic the minority class instances,
potentially exacerbating overfitting concerns. Additionally,
the application of SMOTE can lead to increased class overlap,
blurring the distinctions between classes and impacting the
model’s decision boundary. This could make it more difficult to
differentiate between different categories. For example, the
resampling process had a notable impact on the positional
distribution of the cluster of galaxies, as illustrated in

Figure 13. The distribution of the data on the sky map after SMOTE resampling.

Table 11
Comparison of the Effects of Three Methods of Constructing Training Sets

Training Set Accuracy
Balanced
Accuracy Macro-f1 MCC

Only Simulate data 90.8% 28.5% 47.4% 36.3%
Only LEIA data 98.2% 97.0% 96.0% 96.4%
Mixed data 97.8% 95.5% 94.3% 95.5%

Figure 14. Automatic classification of observation sources in the EP data processing interface.

16

Research in Astronomy and Astrophysics, 24:085016 (21pp), 2024 August Zuo et al.



Figure 13. The availability of more extensive data in the future
is expected to alleviate this limitation.

The features of “galactic longitude” and “galactic latitude”
are indicative of the distribution of sources on the sky map.
They are particularly effective in classifying sources that are in
the Galactic center. However, when dealing with sources that
are situated at significant distances from the galactic center and
possess high galactic latitudes, such as high-latitude XRBs and
SNRs, these features may exert an inverse effect within the
classifier, potentially leading to misclassification.

The subpar classification performance also can be attributed
to frequent observations from diverse sources, leading to
inadvertent classification errors. Notably, a significant portion
of misclassifications exhibit a classification probability below
0.5, typically hovering around 0.3 or 0.4. To mitigate this issue,
we plan to introduce a probability threshold as a filter in our
forthcoming work to enhance the classification accuracy.

7. Conclusion

The paper primarily delves into investigating a time-domain
target classification algorithm tailored for X-ray telescopes.
This research is executed through empirical analysis utilizing
simulated data from EP and observational data from LEIA. A

data set is curated by combining EP simulation data with LEIA
measurements, and a distinct set of classification features
tailored for X-ray telescope data is proposed. This approach
showcases promising performance in scenarios characterized
by limited data points and shorter observation durations.
Following a comparative analysis of various machine learning
algorithms, Random Forest is selected as the classification
algorithm, achieving an accuracy rate of 97.8%. Moreover, this
study integrates classification models into data processing
pipelines, facilitating classification predictions for newly
detected sources. The implications of this research are notably
significant for the data processing tasks associated with EP
missions. Upon EP’s acquisition of fresh data, the classification
model will be leveraged to classify categories not previously
observed by LEIA. The findings presented in this paper can
serve as a valuable resource for data analysis in high-energy
space satellite missions and time-domain astronomy.
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Appendix A
The Energy Spectrum for Each Class

This appendix presents figures of energy spectrum for each
class described in Section 3. These classes include AGNs A1,
XRBs A2, clusters of galaxies A3, cosmic rays A4, pulsars A5,
SNRs A6, and stars A7 from LEIA data, as well as TDEs A8,
SN_SBOs A9, and HLGRB A10 from EP simulation data.

Figure A1. Energy spectrum of AGN.

Figure A2. Energy spectrum of XRB.

Figure A3. Energy spectrum of cluster of galaxies.

Figure A4. Energy spectrum of cosmic ray.

Figure A5. Energy spectrum of pulsar.
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Appendix B
The Light Curve for Each Class

This appendix presents figures of light curve for each class
described in Section 3. These classes include AGNs B1, XRBs
B2, clusters of galaxies B3, cosmic rays B4, pulsars B5, SNRs

Figure A6. Energy spectrum of SNR.

Figure A7. Energy spectrum of star.

Figure A8. Energy spectrum of TDE.

Figure A9. Energy spectrum of SN_SBO.

Figure A10. Energy spectrum of HLGRB.

Figure B1. Light curve of AGN.
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Figure B3. Light curve of cluster of galaxies.

Figure B4. Light curve of cosmic ray.

Figure B5. Light curve of pulsar.

Figure B6. Light curve of SNR.

Figure B7. Light curve of star.

Figure B2. Light curve of XRB.
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B6, and stars B7 from LEIA data, as well as TDEs B8,
SN_SBOs B9, and HLGRBs B10 from EP simulation data.
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