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Abstract

The Free Core Nutation (FCN) is a rotational mode caused by non-alignment of the rotation axis of the core and of
the mantle. Its period observed by VLBI and superconducting gravimetry is around 430 sidereal days (Sd) with
precision of better than 1 Sd, while its “theoretical” period calculated by traditional approaches and a given Earth
model ranges from 450 to 470 Sd. Their gap of about 30 Sd is significant compared with its observation precision.
We propose a spectral element method to compute the period of FCN and obtain a period of 434 Sd which is very
close to the observed value.
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1. Introduction

The free motions, in the absence of the external torques
produced by the gravitational forces exerted on the Earth by the
Moon and Sun, conserve the Earth’s total angular momentum.
For a three-layer Earth without ocean that rotates and has
nonzero ellipticity, there are four rotational modes: the
Chandler wobble (CW) with predicted period from 306 to
435 sidereal days (Sd) due to the combined effects of the
mantle elasticity and the presence of the outer core and oceans;
the Free Core Nutation (FCN) with a period of about 430 Sd in
the celestial frame (Zhou et al. 2016; Malkin 2017; Cui et al.
2018); the free inner-core nutation with a supposed long period
about 1000 Sd (Mathews et al. 2002) in the celestial frame; and
the inner-core wobble with a longer period in the terrestrial
frame. The frequency of the FCN resonates with the forced
annual nutation that plays an important role in the nutational
responses of the Earth.

FCN is a normal or eigenmode of the rotating Earth, if only
there is a fluid core which is elliptical rather than spherical, and
it is related to slight misalignment of the rotation axes of the
Earth’s fluid core and mantle. By solving the dynamic
Equations (3) and (6) (with a set of boundary conditions)
describing the motion of the mantle and the fluid core in which
the self-gravitation (including the gravitational coupling
between the mantle and the core) and Coriolis force play
important roles in the dynamics, one can obtain a series of
eigen solutions, and FCN should be one of these eigenmodes.
If following traditional representation of the displacement
vector field u by a coupled chain of spheroidal and toroidal
components, among of which the toroidal component of

spherical harmonics degree 1 and order 1, T1
1


, represents a

rigid rotation around an axis in the equatorial plane, one can see

that, additional to this rigid rotation component T1

1
, there are

also many other components in the displacement/velocity field,

and that FCN is only one (of T1

1
) of the many solutions of the

whole dynamical system.
From processing the observed VLBI data of Earth’s rotation

and superconducting gravimeter data of Earth’s tides, its period
is about 430 Sd with precision better than 1 Sd (Zhou et al.
2016; Malkin 2017; Cui et al. 2018) seen from a celestial
reference frame and is a retrograde mode; this mode is also
known as the Nearly Diurnal Free Wobble (NDFW) because it
has a period close to one day seen from a terrestrial reference
frame (Seyed-Mahmoud & Rogister 2021). Its period depends
on (therefore reflects on) the physics and dynamics of the core
and the mantle, especially near the core–mantle boundary
(CMB). Hence, FCN connects Earth’s deep interior and the
celestial observation of Earth’s rotation and it is a very
important “telescope” for the study of the Earth’s deep interior.
However, the “theoretical” FCN period calculated by tradi-
tional approaches and a given Earth model ranges from 450 to
470 Sd. Their gap of about 30 Sd is significant compared with
its observation precision.
There are four approaches for theoretical computation of

FCN period. The first is based on the conservation of the
angular momentum which was originally proposed by Hough
(1895), who used an Earth model composed of a homogeneous
rigid shell and an incompressible homogeneous fluid core. This
model is transformed into an oblate by Earth’s rotation, and is
called Hough–Poincaré model. From angular momentum
conservation law, FCN frequency can be written as (Rochester
et al. 1974)
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where e1 is the flattening of CMB, Ω is the rotation speed of
Earth, A and A0 are the equatorial moments of inertia of the
Earth and the mantle respectively. Hough computed the period
of NDFW in a rotating frame. He pointed out that there would
be a nutation associated with this mode with frequency

( )Ae

A
. 21

0
l = -W

This mode became known as FCN in the 1980s (Seyed-
Mahmoud & Rogister 2021).

This approach has the virtue of simplicity, but its FCN result
deviates much from the real one due to the simple model. The
350 days period (Rochester et al. 1974) is for an Earth model
with rigid mantle. That is the same as Poincare and Hough’s
results. Mathews et al. (1991) also used the angular momentum
approach and found a period of 468 Sd for an Earth model with
elastic mantle and inner core.

The second approach is based on the Runge–Kutta
integration on the linear momentum description of the
dynamical equations. Smith (1974) applied this method to
solve for the Earth’s normal modes including FCN. He
extended and applied the Generalized Spherical Harmonics
based on previous studies, e.g., Phinney & Burridge (1973)
(see Huang & Liao 2003 for corrections and comment), to
transform vectors and tensors in the governing equations for the
small periodic oscillations of an oblate spheroidal rotating
elastic isotropic Earth model from an ellipsoidal domain to an
equivalent spherical domain (ESD). Application of this
approach yields periods for FCN ranging from 450 Sd to 460
Sd (Wahr 1981; Dehant 1990; Huang et al. 2001; Rogis-
ter 2001) for the Preliminary Reference Earth Model
(Dziewonski & Anderson 1981). There is still a gap between
these results and the observed period of FCN.

The third approach is based on the variational principle
(Johnson & Smylie 1977; Moon 1982; Smylie et al. 1992).
This variational principle is numerically implemented by a
finite element approach. Jiang & Smylie (1996) computed FCN
mode based upon a variational principle of the dynamics of the
liquid outer core and found a period of 450 Sd.

There are many publications trying to interpret this large gap
of the FCN period by various assumptions. Gwinn et al. (1986),
and Dehant & Defraigne (1997) explained this discrepancy by
non-hydrostatic ellipticity of the CMB. Huang et al. (2001)
showed that the calculated FCN period would agree with the
observed by modifying òCMB from 0.002547 to 0.002666 (a
4.7% increase). The excess over the hydrostatic equilibrium
value for òCMB estimated by Mathews et al. (2002) was
between 3.7% and 3.9%. Buffett et al. (2002) tried to interpret
this gap by the geomagnetic torque on the CMB, But Huang
et al. (2011) showed that the assumed contribution of the
coupling between geomagnetic field and nutation is about one
order of magnitude smaller than the required to fill the gap (i.e.,
about 30 Sd), even using the same values of related parameters

(e.g., the electric conductivity, the thickness of the skin layer
near the CMB, etc.) as adopted in Buffett et al. (2002).
However, these explanations are not proved: the real

ellipticity of CMB and the geomagnetic torque on CMB are
not known. There are also other possible explanations. The first
is the inner core’s differential rotation which proved by the
seismic data (Song & Richards 1996; Song 2011). The second
is the topography of the coremantle boundary. As the ellipticity
of the CMB is a kind of topography, How do other kinds of
topography (e.g., Y2

1, Y3
2, Y4

0) affect FCN? However, the above
three approaches cannot test these two hypotheses. So we
developed the fourth approach.
The fourth approach is based on the Galerkin method. This

Galerkin method was first used in studying the inertial modes
of a compressible and stratified fluid core with rigid boundaries
(Seyed-Mahmoud 1994; Seyed-Mahmoud et al. 2007, 2015)
with the 3-Potential description, the free wobble/nutation
modes of a simple Earth model with a rotating, inviscid,
homogeneous and incompressible fluid core contained in a
spherical shell with rigid boundaries (Seyed-Mahmoud et al.
2017). Zhang & Huang (2014) tried first to apply the stratified
Galerkin method which is also called as the spectral element
method (Karniadakis & Sherwin 2013), to study FCN period
for a more real Earth model (PREM), and their calculated FCN
period is 435 Sd, neither increasing the CMB ellipticity from its
hydrostatic values as mentioned above, nor assuming of the
geomagnetic contribution. Zhang & Huang (2019) used this
approach to study the effect of the Earthʼs differential rotation
of the inner core on the period of the FCN, and proved that the
inner core’s differential rotation cannot interpret this gap. But
Zhang & Huang (2019) simply gave a very briefly introduction
of this method, and did not give details. Kamruzzaman (2021)
applied the Galerkin method to solve the dynamical equations
with boundary conditions to include the first order ellipticity using
the Clairaut coordinate system and the spherical harmonics, and
found a period of 432 Sd. In this paper, we give details of this

method, and extend truncation from ( )T R S T1
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2. Dynamical Equations and Boundary Conditions

In solid mantle and inner core, we take

( · )

( · ) · ( )

u i u V u g

g u S

2

0 3

0
2

0 0 1 0 0

0 0

r w r w r r

r

 - W


´  +  +   ¾

- ¾   + 
«

=

as the equation governing the small periodic oscillations of a
rotating self-gravitational elastic isotropic Earth model, dis-
turbed from hydrostatic equilibrium (Dahlen 1972). In
Equation (3), ρ0, V1 and g0

¾ are density, incremental
gravitational potential, and the initial gravity in an equilibrium
configuration respectively; 86164.1 s is the length of a sidereal
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day, which is the Earthʼs rotation period. W


is the Earthʼs
angular velocity, its value is

∣ ∣
( )

2 sidereal day 2 86164.1 s

7.292115 10 s . 45 1

p pW = =
» ´ - -

And the mass element dm in an equilibrium configuration
experiences a small displacement u with an oscillation’s

angular frequency ω. In Equation (3), S
«

is the Lagrangian
variation of the Cauchy stress tensor due to the deformation
and is given by the following equation for elastic isotropic
body

( · ) [ ( ) ] ( )u u uS I , 5Tl m
«

= 
«

+  + 

where λ, μ are Lamé parameters.
In fluid core,

( )u i u p V g2 0 60
2

0 1 0 1 1 0r w r w r r - W


´  -  +  + ¾ =

is the equation governing the isentropic small oscillations of a
liquid core by the conservation laws for mass, momentum,
gravitational flux and entropy (Rochester et al.1989); see also
Huang et al. (2004) for detail derivation and numerical
integration method for the governing dynamical equation in
fluid core.

Incremental density ρ1 and pressure p1 are defined as

· ( ) ( )u , 71 0r r= -

and

· · ( )u up p , 81 0
2

1
2

0a r a r= -  + + 

where p0 is the pressure in an equilibrium configuration, and α

is compressional wave speed. In the liquid core, the stress
tensor takes the form

( · ) ( )uS p p I . 91 0
«

= - + 
«

The incremental gravitational potential V1 also satisfies the
same format of Poisson’s equation for the total potential V or
the initial potential V0 in hydrostatic equilibrium, i.e.,

· ( ) ( )uV G4 , 102
1 0p r = 

in both fluid and solid layers.
Boundary conditions at the solid-liquid interfaces require

continuity in

{ ˆ · } ( )n u 0 11 =-
+

{ ˆ · } ( )n S 0 12
«

=-
+

{ } ( )V 0 131 =-
+

{ ˆ · [ ]} ( )n V G u4 0. 141 0p r -  =-
+

Similarly, at the welded boundaries, i.e., solid–solid interfaces,
boundary conditions require continuity in

{ } ( )u 0 15 =-
+

{ ˆ · } ( )n S 0 16
«

=-
+

{ } ( )V 0 171 =-
+

{ ˆ · [ ]} ( )n V G u4 0. 181 0p r -  =-
+

The boundary conditions on the Earth’s free surface require

{ ˆ · [ ]} ( )n V G u4 0 191 0p r -  =-
+

{ ˆ · } ( )n S 0 20
«

=-
+

{ } ( )V 0, 211 =-
+

where the corresponding parameters at the outer side ( 0r
+, S

«+
,

etc.) can be adjusted according to various situations and
assumptions.

3. Multiple Subdomains Spectral Method

In this work we show that the spectral method is an effective
technique to solve the above equations. Suppose that an
unknown function u(x) satisfies a differential equation:

[ ( )] ( )L u x D, 22=

where L is a linear differential operator. Spectral method
represents u(x) as a truncated series:

( ) ( ) ( ) ( )u x u x c x , 23N
n

N

n n
0

å h» =
=

where ηn(x) are basis functions and cn are their coefficients.
This series is then put into differential Equation (22):

⎡
⎣⎢

⎤
⎦⎥

( ) ( )L c x D. 24
n

N

n n
0

å h =
=

By the Galerkin method, which can be regarded as one kind of
the spectral methods, the above equation turns into a group of
equations:

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( )x L c x dx x D dx, 25j
n

N

n n j
0

ò òåi h i=
=

where ιj(x) are trial functions. By solving Equation (25) as well
as the boundary conditions, we can obtain an approximate
solution of the unknown function u(x), which is uN(x).
For a complex Earth model, only one global domain is not

enough to represent some characteristics, such as the densities
and the toroidal displacement fields in fluid core and solid
mantle. Instead, the whole global domain is partitioned into K
disjoint subdomains. In the kth subdomain, an unknown
function u( k)(x) is expressed as

( ) ( ) ( )( ) ( ) ( )u x c x , 26k

n

N

n
k

n
k

0
å h»
=

where ( )( ) xn
kh are basis functions of kth subdomain and ( )cn

k are
their coefficients. So Equation (25) turns into K groups of
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equations:

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

( )

( ) ( ) ( ) ( )

( )

( )

( )

x L c x dx

D dx, 27

V j
k k

n

N

n
k

n
k

V
k

0
k

k

åò

ò

i h

=
=

where ( )( ) xj
ki are trial functions in the kth subdomain and L( k)

are their linear operators. Equation (27) will create a K
(N+ 1)×K(N+ 1) matrix. Suppose that there are M boundary
conditions:

⎡
⎣⎢

⎤
⎦⎥

( ) ( )( )B u x E i M, 1, , . 28i
k

K
k

i
1

å = =
=



We use the Tau method (Karniadakis & Sherwin 2013) to
combine these boundary conditions with Equation (27). The
Tau method replaces M equations in Equation (27) with M
boundary conditions in Equation (28). For instance, there are
N+ 1 equations, then the Tau method usually replaces the last
M equations with M boundary conditions. The unknown
functions u( k)(x) in all K subdomains can be obtained by
solving the new K(N+ 1)×K(N+ 1) matrix. The global u(x)
is the union of u( k)(x): ( )( )u xk

K k
1È = , which is like a sheaf in

category theory. This spectral method on multiple subdomains
is a kind of spectral element method (Boyd 2001; Karniadakis
& Sherwin 2013), and we name it as the stratified Galerkin
method here, as Galerkin’s method is chosen to convert the
continuous operator problem to the discrete problem.

4. Integration in Volumes

To solve the governing equations, these equations are
usually transformed (Smith 1974) into a group of partial
differential equations (PDEs), and the vectors of variables are
integrated from Earth’s center to surface with some certain
initial values by Runge–Kutta method. Compared to this direct
numerical integration of these variables, our approach is to
directly integrate these governing equations containing vari-
ables that have no given value, which are manipulated as
symbols.

Although the hydrostatic equilibrium figure is an ellipsoid,
we still solve these equations in spherical coordinates, which
makes symbolic operations of vector spherical harmonics and
tensors more complex and tedious. We adopt a linear operator
method similar to Rogister & Rochester (2004)ʼs. However,
Kopal (1980) recommended a non-orthogonal coordinate
system named “Clairaut” coordinates for the astrophysical
research. The coordinate surfaces of this non-orthogonal
coordinate system consist with the equilibrium surfaces of an
equipotential ellipsoid. Wu (1993) and Seyed-Mahmoud &
Moradi (2014) used Clairaut coordinates to study the dynamics
of the fluid core. Rogister & Rochester (2004), Rochester et al.
(2014), and Crossley & Rochester (2014) applied Clairaut
coordinates to the linear momentum approach accurate to

second order in the ellipticity. Smith (1974) proposed a concept
of ESD to deal with integration in the first-order approximated
ellipsoid. ESD transforms an ellipsoid into a sphere, then
parameters are modified with ellipticity. As a result, the final
PDEs do not have θ or f explicitly, and the vectors of variables
are integrated only along the radius rʼs direction. However,
ESD approach is difficult to deal with asymmetric models, for
instance, it is difficult and complex to transform a surface with
a Y3

0 component or a Y2
2 component to a spherical surface.

Therefore, we do not follow the ESD, instead, we integrate the
governing equations in shells of any figure (i.e., without
assumption of any symmetricity) directly. Suppose that an
asymmetric shell has an inner boundary:

( ) ( )r R Y , , 29
n m

n
m

n
m

in
,
å x q f= +

and an outer boundary:

( ) ( )r R Y , , 30
n m

n
m

n
m

out
,
å q f= + X

where Rin, Rout, n
mx , n

mX are all constants, and ( )Y ,n
m q f are

spherical harmonics. If 0n
mx = and 0n

mX = , then this shell is a

spheric shell; if only 2
0x and 2

0X are not equal to 0, then this shell
is a first-order ellipsoidal shell.
The volume between the inner and the outer boundaries is

∯ ( )
( )
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dV r drd dsin . 31

R Y
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,
2

n
m

n
m

n
m

n
m

n
m

n
m

in

out
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å

å
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p

f

p

x q f

q f

= = +

+ X

The integral of a vector equation Lχ in this volume with a

trial function vector ( )i j k, ,L


is

*

*

∯ · ( )

·( ) ( )

( )

( )

( )
( )

L dV

L r drd dsin , 32

i j k

R Y

R Y

i j k

, ,

0 0

2

,

,

, ,

2
n

m

n
m

n
m

n

m

n
m

n
m

in

out

ò

ò ò ò

c

c q f q

L


= L


å

å
q

p

f

p

x q f

q f

= = +

+ X

where the asterisk symbol (*) in superscript is the complex

conjugate operator. For governing Equations (3) and (6), ( )i j k, ,L


can be ( ) ( )r R ,i j
kh q f

¾
, ( ) ( )r S ,i j

kh q f
¾

, and ( ) ( )r T ,i j
kh q f

¾
,

where ( )R ,j
k q f

¾
, ( )S ,j

k q f
¾

and ( )T ,j
k q f

¾
are radial, consoidal,

and toroidal vector spherical harmonics of the displacement
field u respectively (Dahlen & Tromp 1998).
The integral of a scalar equation Lχ with a trial function

σ(i,j,k) is

∯ · ( )

· ( ) ( )

( )

( )

( )
( )

L dV

L r drd dsin . 33
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For Poisson’s equation, the trial function σ(i,j,k)
is ( ) ( )r Y ,i j

kh q f .

5. Integration on Surfaces

Now we will discuss how to solve boundary conditions on
an asymmetric boundary. Suppose a boundary surface is
described by

( ) ( ) ( )r r Y, , , 34
n m

n
m

n
m

0
,
åq f k q f= +

then the radius vector of a point at (r, θ, f) in this surface is

( ) ˆ ( )r r r, , 35q f =

where r0, θ and f are the mean radius of the sphere with same
volume at this boundary surface, co-latitude and longitude,
respectively. and the normalized normal vector n̂ of this surface
at the location r is

ˆ ( )n . 36

r r

r r
=

´

´

q f

q f

¶

¶
¶

¶

¶

¶
¶

¶

The area of this boundary surface is

∯ ( )dS
r r

d d . 37
0 0

2

ò ò q f
f q=

¶

¶
´

¶

¶q

p

f

p

= =

The surface integral of a boundary condition is





⎜ ⎟
⎛
⎝

⎞
⎠

∯ ˆ ·

( ˆ · )

· ( )

n dS

n
r r

d d

r r
d d , 38

0 0

2

0 0

2

ò ò

ò ò

q f
f q

q f
f q

=
¶

¶
´

¶

¶

=
¶

¶
´

¶

¶

q

p

f

p

q

p

f

p

= =

= =

where , is a vector or a tensor expression of the boundary
conditions. As

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

ˆ ˆ ˆ

ˆ ˆ ˆ

[ ( )] [ ˆ ( )] ( )
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q f q q f
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¶
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= - +

= - 

q f

q
f

warning that the last step in above equation, i.e., the expression
by ∇r, is valid only at the boundary and in the related surface
integrals in this section, then Equation (38) becomes





∯ ˆ ·

{[ ˆ ( )] · }[ ( )]

( )

n dS

r r r d d, , sin .

40
0 0
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If the box symbol , is a vector continuation boundary
condition: ,=Δu= u+− u− . Then multiply a trial function

σ(i,j,k):

∯ ˆ ·

{[ ˆ ( )] · }

[ ( )] ( )
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( )
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u
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r r

r d d
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where ( ) ( )( ) Y r,i j k j
k

i, ,s q f h= .
Now suppose , is a tensor continuation boundary condition:

 T T Td=
«

=
«

-
«+ -

, then Equation (40) turns into

∯ · [ ˆ · ]
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For a scalar continuation condition:

( )a a a 0, 43d = - =+ -

it is slightly tricky, for it is impossible to get a linear form of its

surface integral in explicit formula, as there is a ∣ ∣r r´
q f

¶

¶
¶

¶
in

the denominator in Equation (36). So multiply Equation (43)
by ∣ ∣ sinr r q´

q f
¶

¶
¶

¶
:

* ( )r r
asin 0, 44

q f
q d

¶

¶
´

¶

¶
=

then the boundary condition (43) turns into

* *

* * *

⎜ ⎟
⎛
⎝

⎞
⎠

∯

( )

( )

( )

45

r r
a

r r
d d

r r
a d d

0 sin

sin ,

i j k

i j k

, ,

0 0

2
, ,

2

ò ò

s
q f

q d
q f

f q

s
q f

d q f q

=
¶

¶
´

¶

¶
¶

¶
´

¶

¶

=
¶

¶
´

¶

¶q

p

f

p

= =

where

[ ]

( ) [ ] ( )

r r

r r r r r

r r r r r

sin sin

1 cos sin . 46

2

4 2 2 2 2 2

4 2 2 2 2 2

q f

q q

q q

¶

¶
´

¶

¶

= + +

= - + +

q f

q f

6. Earth Model

PREM is adopted here excluding the ocean. We divide this
model into 12 layers according to PREM to describe the
parameters such as density and Lamé parameters; and three
layers to describe the variables such as the displacement vector
field and the incremental potential scalar. The three layers are
the inner core, the outer core and the mantle (with crust). Then
the Earth model is modified by one order ellipticity by rotation.
We solve the hydrostatic equilibrium figure by a more
prototypic equation instead of Clairaut’s equation in differential
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form, which is (Moritz 1990; Huang et al. 2019)






⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ( )

r

d

dr

n

r
q dq

d

dq q
dq

G

1

5

12
0. 47

n
n
m

n n
m r

r

R n
m

n n m

0 0 0
1 0

2

2

2

if 2, 0

0

0

ò

ò

r

r
p

+

- +
W

=

+

- = =

This integro-differential equation is to be solved to get the
ellipticity profiles  ( )rn

m
0 interior the Earth by our spectral

element method. For a first-order approximated ellipsoid, an
equipotential surface in the equilibrium figure is

[ ( )] ( )r r P1 cos , 48S 0 2
0

2 q= +

where r0 is the mean radius of the sphere with same volume
surrounded by this boundary surface. The flattening f is

( )a b

a
, 49f =

-

where a, b are the equatorial radius and the polar radius
respectively, and it can be proven that in first-order approx-
imation (Moritz 1990)

 ( )2

3
. 502

0 f= -

Figure 1 shows the calculated profile of the flattening with
respect to r. The flattening at the Earth’s surface is

1 299.98f = and that at CMB is 1 392.70f = .
After deformation, the density ρ, the Lamé parameters λ and

μ, and the gravitational potential ψ are decomposed into
spherical parts and non-spherical parts:

( ) ( ) ( ) ( )r r r 51S S S0r r dr= +

( ) ( ) ( ) ( )r r r 52S S S0l l dl= +

( ) ( ) ( ) ( )r r r 53S S S0m m dm= +

( ) ( ) ( ) ( )r r r , 54S S S0y y dy= +

where ρ0(rS), λ0(rS), μ0(rS), and ψ0(rS) are the parameters
before deformation. Dahlen (1968) gave the non-spherical parts
as

( )
( )

( ) ( )r r
r

r
P cos 55S S

S

S
2
0 0

2dr
r

q=
¶
¶

( ) ( ) ( ) ( )r r
r

r
P cos 56S S

S

S
2
0 0

2dl
l

q=
¶
¶

( )
( )

( ) ( )r r
r

r
P cos 57S S

S

S
2
0 0

2dm
m

q=
¶
¶

( ) ( ) ( ) ( )r r
r

r
P cos . 58S S

S

S
2
0 0

2dy
y

q=
¶
¶

Then the gravity g in the new equilibrium configuration is

{ [ ( )]} ( )g r P
1

3
1 cos . 59S

2 2
2y q=  + W -

7. Boundary Conditions at the Geocenter

For this FCN computation, the displacement field u is

truncated as ( )T R S T1

1

2

1

2

1

3

1
+


+


+


in its coupling chain of

spheroidal and toroidal expansion. Vector spherical harmonics
are expanded in power series in each subdomain, for instance,

the terms with S 2

1
are expanded as

( )a r S , 60
i

r

i
i

0
2

1max

å


=

where rmax is the max power order, and ai are unknown

coefficients. S 2

1
has the same expansion forms in the inner

core, the fluid core, and the mantle, but the coefficients are
different, for instance, ai can be written as ( )ai

IC , ( )ai
OC and

( )ai
MT respectively. Similarly, we can obtain the expansions of

T1

1
, R2

1
, T 3

1
and V1.

The boundary condition at the geocenter is required to be
regular. This is a vague statement. For the free-oscillation
equations, Crossley (1975) expanded the variables as power
series,

( )

( )

y r r A r

i

,

1, 2, ,8, 61

i i
0

,å=

=

a

n
n

n

=

¥



where {y1, y2, L ,y8} represented the three vector spherical
harmonics components of the displacement field u, the three

components of ˆ ·n S
«

, and the other two spherical harmonics
coefficients of the incremental gravitational potential V1 and a
combination with its gradient. Then the power series were
substituted into the PDEs, and one independent initial solution
was obtained by picking α and a set of Ai,ν making PDEs finite

Figure 1. Profile of the flattening .f
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at the geocenter. Then three independent solutions combined
into one general solution.

The approach in this work which is to establish several
algebraic equations of the coefficients is different from that
taken by Zhang & Huang (2019), For instance, Equation (3)
has four set of algebraic equations for the vector spherical

harmonics: T1

1
, R2

1
, S 2

1
, and T 3

1
. There are two algebraic

equations in each set, for example, there are two equations

corresponding with S
r

1
2

1
and S

r

1
2

1

2


respectively in S 2

1
set. The

equation for S
r

1
2

1
takes the form:

( )z z z 0. 62i i iN1 2+ + + =

This equation comes from putting the expansions of the
displacement field u

( )

u a r T b r R

c r S d r T 63

i

r

i
i

i

r

i
i

i

r

i
i

i

r

i
i

0
1

1

0
2

1

0
2

1

0
3

1

max max

max max

å å

å å

»


+


+


+


= =

= =

and the expansion of the incremental gravitational potential V1

( )V e r Y 64
i

r

i
i

1
0

2
1

max

å=
=

into Equation (3) and filtering the terms with S
r

1
2

1
. We use this

approach in this paper.

8. Matrix

It is very complex and difficult to expand massive
mathematical expressions and to integrate them in an
asymmetric Earth model. So we write a computer algebra
system in Common Lisp to implement these functions. After
tedious symbol computations, we can get a large matrix. Each
row corresponds a trial function, and each column corresponds
an unknown coefficient. Finally there is still an unknown
quantity ω in the matrix. ω is one of eigenfrequencies to be
searched so that the determinant of the matrix must be zero. It
is difficult to compute the determinant of a large matrix, so we
use Singular Value Decomposition (SVD) algorithm to obtain
an equivalent determinant. We use the reliable SVD routine of
Linear Algebra PACKage (LAPACK).

For instance, suppose r 5max = , we will obtain three
124× 124 matrices 0 , 1 and 2 , then the final matrix is

( ), 650 1
2

2w w= + +   
and  satisfies

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

· ( )

T R S T Y

T R S T Y

T R S T Y

, , , , terms in IC

, , , , terms in OC

, , , , terms in MT

0. 66

1

1

2

1

2

1

3

1

2
1

1

1

2

1

2

1

3

1

2
1

1

1

2

1

2

1

3

1

2
1

   

   

   

=

To find a normal mode of the Earth is equivalent to search an ω

that satisfies the following equation:

( )0. 670 1
2

2w w+ + =  
If ω* is a solution of Equation (67), then the determinant of its
coefficient matrix:

* * ( )680 1
2

2w w= + +   
must be zero. However, it is virtually impossible to compute
the determinant of a 124× 124 matrix. An alternative way is to
compute its condition number, and search for its maxima. The
matrix  is decomposed by SVD into

* ( ), 69= 
where  and  are unitary, and  is a diagonal matrix with
non-negative real numbers on the diagonal. Suppose maxs is the
largest diagonal entry and mins is the smallest, then define the
condition number c as

≔ ( )log log . 70max minc s s-

To search for the normal modes or eigen-periods (ω) of the
dynamical system is transferred to search the zero-points of the
determinant of the , also equivalent to search the maxima
of c.
Figure 2 shows this condition number c with respect to

angular frequency ω ranging from 7.29e− 5 to 7.31e− 5
where r 5max = . There are two peaks in this range, which
means there are two possible zero determinants, in other words,
two possible normal modes.

9. Results

Tilt-over Mode (TOM) has the same period with the rigid
Earth, which in theory should be exact 1 Sd. We can use TOM
to evaluate the accuracy of our numerical solutions. Table 1

Figure 2. Condition number c respect to period T, where r 5.max =
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shows the period of TOM with respect to the truncation order
rmax. All the terms in the equations and the boundary
conditions are accurate to the second order of ellipticity ( )2

0 2

in our computation. When r3 7max  , the absolute value of
the deviation between our calculated and the theoretical value (
i.e., 1.0 Sd) is less than 0.004% which means the accuracy and
precision of our calculation is at the level of ( )2

0 2. When
r 8max  , we cannot find an extremum of the equivalent
determinant, because the power series has a disadvantage
which is not normalized.

As the accuracy of calculated TOM is about −0.003%, we
keep five digits explicitly in FCN results. Table 2 shows the
results of FCN. When r 3max = , the result does not seem to be
good, because the basis functions are not enough. Increasing
rmax from 4 to 7, the angular frequency of FCN converges to
7.3088e− 5 and the corresponding period in the celestial
reference frame is −437 Sd.

If the displacement field u is truncated as

( ) ( )T R S T R S T1

1

2

1

2

1

3

1

4

1

4

1

5

1
+


+


+


+


+


+


, we will obtain

the period of FCN: −437, −434, and −434 Sd for r 4max = ,
r 5max = , and r 6max = respectively. Table 3 shows these
results. It shows that increasing the truncation order of the
coupling chain among the spheroidal and toroidal components
can improve the results significantly and that the results can be
also converged very well when taking r 5max = .

10. Discussion

There are some possible reasons for the good results. First,
the Galerkin method avoids using the derivatives of density and
Lamé parameters, which may be not accurate enough in PREM
comparing with the values of density and elastic Lamé
parameters themselves. Huang & Zhang (2014) reported their
numerical test, by the second approach (i.e., direct Runge–
Kutta integration of the linear dynamical equations in which the
derivatives of density and elastic Lamé parameters through the
whole Earth are used) mentioned in Section 1, and showed that
the calculated FCN period can be changed significantly if given
some changes only in the input of the derivatives of density
near CMB. For Lamé parameters, their derivatives are in the

term · S


in the governing Equation (3), the Galerkin

method multiplies a vector trial function X


on the both sides of

Equation (3). It is easy to prove that (Dahlen & Tromp 1998)

· ( · ) · ( · )

ˆ · ( · )

( · ˆ · )

( )

X S dV X S dV X S dV

n X S dS X S dV

X n S dS X S dV

:

:

: .

71

V V V

S V

S V

ò ò ò

ò ò

ò ò




«
= 

 «
- 

 «

=
 «

- 
 «

=
 «

- 
 «

From above equivalence, the integral of · S


turns into the

integral of S


, so the derivatives of Lamé parameters are
eliminated. For density, its derivative appears in the term
4πG∇ · (ρ0u) in Poisson’s Equation (10) and in the term ρ1 in
Equations (6) and (7); the Galerkin method multiplies a trial
scalar function f on the both sides of Equation (10). It is easy to
prove that

* *· ( ) ˆ ·

· ( )

u u

u

f G dV f G n dS

G f dV

4 4

4 . 72
V S

V

0 0

0

ò ò

ò

p r p r

p r

 =

- 

So the derivative of the density in the term∇ · (ρ0u) is eliminated.
The boundary conditions (12), (11) can substitute the surface

integrals ( · ˆ · )X n S dS
Sò
 «

and * ˆ · uf G n dS4
S 0ò p r , which

become the natural boundary conditions. Seyed-Mahmoud
(1994) used the natural boundary conditions to deal with the
rotational modes in fluid core.
For PREM (Dziewonski & Anderson 1981), by inversion of

seismology data and normal modes, the layered structure and
the crude initial profiles of density and Lamé parameters were
reconstructed. Then these parameters were modified by the data
of normal modes. Dziewonski & Anderson (1981) applied the
Rayleigh’s principle and the perturbation theory on normal
modes, and his approach was only like the Galerkin method
which replaced trial functions with the original displacement

Table 1

Periods of TOM with Truncation of ( )T R S T1

1

2

1

2

1

3

1
+


+


+



rmax Angular Frequency (rad s−1) Period (Sd) Deviation

3 7.29232e-5 0.99997 −0.003%
4 7.29231e-5 0.99997 −0.003%
5 7.29231e-5 0.99997 −0.003%
6 7.29232e-5 0.99997 −0.003%
7 7.29240e-5 0.99996 −0.004%

Table 2

Periods of FCN with Truncation of ( )T R S T1

1

2

1

2

1

3

1
+


+


+



rmax Angular Frequency (rad s−1) Period (Sd)

3 7.3098e-5 −412
4 7.3088e-5 −437
5 7.3088e-5 −437
6 7.3088e-5 −437
7 7.3088e-5 −437

Table 3
Periods of FCN with Truncation

of ( ) ( )T R S T R S T1

1

2

1

2

1

3

1

4

1

4

1

5

1
+


+


+


+


+


+



rmax Angular Frequency (rad s−1) Period (Sd)

4 7.3088e-5 −437
5 7.3089e-5 −434
6 7.3089e-5 −434
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field u, and modified boundary conditions into natural
boundary conditions. Their approach can invert the parameters
as a whole, but may remove some details and smooth the
profile curves including the derivatives of density and elastic
Lamé parameters. Our approach also focuses on whole
characteristics, and can neglect some details of the derivatives,
for instance, some small jumps in the density profile. On the
other hand, some fine details may affect linear momentum
approach. Rogister & Rochester (2004) used Clairaut coordi-
nates, and had the similar advantage that the ODEs governing
free oscillations of a rotating hydrostatic Earth model contained
no derivatives of material properties.

The second reason could be that we do not adopt the ESD
proposed by Smith (1974) and used in the second approach
mentioned in Section 1. The ESD transforms a first-order
approximated ellipsoid into a sphere. For a point P(rp, θ0, f0) in
an equipotential ellipsoidal surface, the corresponding point in
ESD is r(r0, θ0, f0), which satisfies

 ( ) ( ) ( )r r r P
2

3
cos . 73p 0 0 2 q= -

This is actually a coordinate transformation; thus coordinates
change and so do vectors, tensors and metrics. Moreover, the
governing equations should also change, and the original
governing equations do not usually hold true in the new
coordinates. Generally speaking, the governing equations in an
original coordinates should be rewritten in Hamilton form H(p,
q), where p and q are generalized momentums and coordinates
respectively. In the new coordinates, the new Hamilton form is
K(P, Q), where P and Q are generalized momentums and
coordinates respectively. It is not strict to solve H(p, q) with P,
Q, and a rigorous way is to use K(P, Q).

In conclusion, we use the spectral element method (also
called as the stratified Galerkin method) for integration of the
dynamic equations of the realistic Earth model, and use the Tau
method to combine the (asymmetric) boundary conditions, and
our resulted FCN period converges very well and its 434 Sd
result is very close to the observed value. It may suggest that
the Earth’s state may be closer to one of hydrostatic
equilibrium than previously envisioned. We anticipate that
these works will inspire more researches in this area.
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