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Abstract

Observing and timing a group of millisecond pulsars with high rotational stability enables the direct detection of
gravitational waves (GWs). The GW signals can be identified from the spatial correlations encoded in the times-of-
arrival of widely spaced pulsar-pairs. The Chinese Pulsar Timing Array (CPTA) is a collaboration aiming at the
direct GW detection with observations carried out using Chinese radio telescopes. This short article serves as a
“table of contents” for a forthcoming series of papers related to the CPTA Data Release 1 (CPTA DR1) which uses
observations from the Five-hundred-meter Aperture Spherical radio Telescope. Here, after summarizing the time
span and accuracy of CPTA DR1, we report the key results of our statistical inference finding a correlated signal
with amplitude = - -

+Alog 14.4c 2.8
1.0 for spectral index in the range of α ä [− 1.8, 1.5] assuming a GW

background (GWB) induced quadrupolar correlation. The search for the Hellings–Downs (HD) correlation curve is
also presented, where some evidence for the HD correlation has been found that a 4.6σ statistical significance is
achieved using the discrete frequency method around the frequency of 14 nHz. We expect that the future
International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the nHz
GWB, which could verify the current results.

Key words: (stars:) pulsars: general – gravitational waves – methods: statistical – methods: observational

1. Introduction

A Pulsar Timing Array (PTA; Foster & Backer 1990) is an
array of pulsars, which are regularly observed. The times-of-
arrival (TOAs) are measured for pulses that we see beams of
electromagnetic waves emitted by the pulsars sweeping over
the Earth. As the directions of the radiation beam and the pulsar
rotational axis do not coincide, we observe this radiation as
regular pulses synchronized to the pulsar rotation (Gold 1969).
By extracting correlated signatures in pulsar TOAs, it is
possible to detect GWs (Hellings & Downs 1983; Jenet et al.
2005), measure masses (Champion et al. 2010; Caballero et al.
2018) and orbital elements of solar system planets (Guo et al.

2019), and study the stability of international (Hobbs et al.
2012, 2020) and local (Li et al. 2020) atomic time standards.
At present, the PTA experiment is the only known effective

method to detect gravitational waves (GWs) in the nanohertz
(nHz) band. It was predicted that the orbiting and merger of
supermassive black hole binaries (SMBHBs) would create a
stochastic nHz GW background (Sesana 2013), while
alternative channels, including cosmic strings (Kibble 1976;
Sanidas et al. 2012) and relic GWs from early universe
processes (Grishchuk 2005; Zhao et al. 2013; Lasky et al.
2016), are also possible. All these sources provide the GWB
targets for PTA experiments. While in addition, PTAs are also
able to detect GWs from single SMBHB systems (e.g.,
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Jenet et al. 2004; Sesana et al. 2009; Lee et al. 2011). At
present, six major regional PTAs exist: Parkes Pulsar Timing
Array (PPTA, Manchester 2008; Manchester et al. 2013;
Goncharov et al. 2022), European Pulsar Timing Array
(EPTA, Kramer & Champion 2013; Chalumeau et al. 2022),
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav, Jenet et al. 2009; Arzoumanian et al.
2020), Indian Pulsar Timing Array (InPTA, Nobleson et al.
2022), South Africa Pulsar Timing Array (SAPTA, Spiewak
et al. 2022), and Chinese Pulsar Timing Array (Lee 2016).
The International Pulsar Timing Array (IPTA, Manchester &
IPTA 2013) is a consortium of the regional PTA consortia
aiming at a better GW sensitivity. Currently, the PPTA,
EPTA, NANOGrav, and InPTA are formal IPTA members,
while SAPTA and CPTA are IPTA observers.

Here, we report the progress of CPTA efforts. The current
status of CPTA observations and data quality are summarized
in Section 2. Our statistical inference for the amplitude and
spectral index of a nHz stochastic GWB are presented in
Section 3. Section 4 includes the search for the GW-induced
quadrupolar correlation (i.e., the HD curve). Discussion and
conclusions are in Section 5.

2. Observations and Data

The CPTA DR1 consists of TOA measurements and pulsar
timing models for 57 MSPs (Xu et al. 2023, in preparation).
The data covers the time span between 2019 April and 2022
September. Observations were conducted using the Five-
hundred-meter Aperture Spherical radio Telescope (FAST;
Jiang et al. 2019), in Guizhou province, China. For most MSPs,
the majority of the observations were taken with a cadence of
approximately two weeks. Pulsars with smaller timing errors,
e.g., PSR J1713+ 0747, were observed more frequently since
2020 February under a CPTA extension proposal. We excluded
data of PSR J1713+ 0747 after MJD = 59 319 in our analysis
because of the abrupt profile change event (Lam 2021; Singha
et al. 2021; Xu et al. 2021; Jennings et al. 2022). The
observations were carried out with the central beam of the 19
beam receiver (Jiang et al. 2020) within the frequency range
from 1.0 to 1.5 GHz.

Search mode data were recorded with a ROACH 2-based
system.15 The data were folded offline in 30 s intervals using
the software package DSPSR (van Straten & Bailes 2011). With
the software package PSRCHIVE (Hotan et al. 2004), the data
were cleaned by removing radio interference, polarization
calibrated (Jiang et al. 2023, in preparation), and integrated
over frequency and time. The final number of frequency
channels was 64 (∼7.8 MHz resolution), except for PSRs
J0218+4232 and J0636+5129, which have many observations,
where the number of frequency channels was 16 in order to

reduce the size of the data set. The final integration time for
integrated pulse profiles was typically 20 minutes, or shorter
than 2.5% of the binary period. Our TOAs were generated by
cross-matching observed pulse profiles with the standard total-
intensity templates. Sub-integrations with low signal-to-noise
ratio (S/N< 8) were removed (less than 5.2% in total). More
details on the data set can be found in Xu et al. (2023, in
preparation).
The pulsar timing models were created using the software

package TEMPO2 (Hobbs et al. 2006). Our noise model for a
single pulsar consists of three components: white, red, and
dispersion measure (DM) noise. The white noise is character-
ized using EFAC, EQUAD, and ECORR parameters. EFAC re-
scales the TOA measurements error to account for inaccuracies
in the process of TOA extraction using the template-matching
method (Taylor 1992), EQUAD adds white noise in quadrature
(van Haasteren et al. 2011), and ECORR (NANOGrav
Collaboration et al. 2015) models the correlated white noise
(phase jitter) among different frequencies in the same epoch
(Wang et al. 2023, in preparation). Both red and DM noises are
modeled as stochastic stationary processes, assuming power-
law spectra, characterized by amplitude and spectral index. Our
inference of pulsar noise model parameters is conducted within
a Bayesian framework. The definitions of model parameters are
well described in the literature (e.g., Lee et al. 2014; Lentati
et al. 2014), of which the conventions are followed in our
analysis. Four independent noise analysis software pipelines
were used, namely, TEMPONEST(Lentati et al. 2014),
ENTERPRISE,16 FORTYTWO(Caballero et al. 2016) and
42++.17 Consistent results were produced by the four pipelines
(Chen et al. 2023, in preparation). We further compared all 16
possible combinations of noise modeling, which use/do not
use EQUAD, ECORR, red noise, and DM noise. To avoid
overfitting, the final best model is picked by comparing the
Bayesian evidence of all 16 models. The data quality of the
CPTA DR1 is summarized in Figure 1. The detailed evaluation
of how the noise modeling affects the GWB inference will be
published by Chen et al. (2023, in preparation).

3. Parameter Inference for the Stochastic GWB

We used the standard frequency-domain Bayesian method
(Lentati et al. 2014; van Haasteren & Vallisneri 2014) to
perform statistical inference for the amplitude and spectral
index of the stochastic GWB. We adopted the following
definitions for the amplitude and spectral index of the GWB.

15 Reconfigurable Open Architecture Computing Hardware: http://casper.
berkeley.edu/wiki/ROACH2

16 https://github.com/nanograv/enterprise
17 The 42++ is a PTA data analysis software package developed with the
programming language C++ dedicated to the CPTA DR1 analysis. The
software is available at https://psr.pku.edu.cn/index.php/publications/
gravitational-wave-data-analysis-code/.
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The characteristic strain, A( f ), of GWB is
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where Ac is the characteristic amplitude at the frequency of
yr−1, α is the spectral index for characteristic amplitude. For a
stochastic GWB induced by the GW-driven merger of SMBHB
population, α=− 2/3 is expected when the number of GW
sources in the frequency band is sufficiently larger than unity
(Phinney 2001). The corresponding single-sided spectral
density, S( f ), for the GW-induced pulsar timing residuals,
i.e., differences between observed TOAs and the model
predictions, is (Jenet et al. 2005)
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With above definitions, the root-mean-square deviation (rms) σ
of the GW-induced pulsar timing residuals is found by
applying the Wiener-Khinchin theorem, as

( ) ( )òs = S f df , 3
f

f

low

high

where flow and fhigh are the low and high boundaries defining
the frequency band of the GW signal.

We have used the parallel tempering Markov chain Monte
Carlo (first applied in the PTA community by Ellis 2013) to
perform the posterior sampling, where ten temperatures in a
geometric series are used to speed up the initial burning runs and
help to find the global maximum of the likelihood function (see
the arguments of Neal 1996 and Vousden et al. 2016). The priors
of the GWB parameters are uniform [ ]Î - -Alog 18, 13c and
αä [− 1.8, 1.5]. The prior range of α is determined by the
requirement that the rms of the stochastic power-law noise does
not diverge after fitting the pulsar period and period derivative
(Lee et al. 2012); the lower boundary of −1.8 is set slightly
higher than the theoretical requirement, i.e., α> -2.0, to avoid
numerical singularities.
Our posterior distribution for the GWB parameters after

marginalizing the pulsar timing and noise model is shown in
Figure 2, where we marginalized both pulsar timing parameters
and noise parameters. Note that we have marginalized over all
possible noise parameters without fixing any of them, i.e., our
free parameters included white noise parameters, i.e., EFAC,
EQUAD, and ECORR, as well as the red and DM noise
amplitudes and spectral indices. Using the maximum likelihood
estimator for the stochastic GWB amplitude, we recover

= - -
+Alog 14.4c 2.8

1.0 (for 95% confidence level), while,
because of the limited data span of only about 3 yr, the
spectral index α is not well constrained given our prior range of

Figure 1. Summary of the CPTA DR1 data quality. From top to bottom, the panels show data span, number of epochs, weighted root-mean-square (rms) of frequency
integrated residuals, and reduced χ2 of timing residual, respectively.
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−1.8–1.5. Even so, the distribution of α indicates that the
signal is stronger at lower frequencies. If we fix the spectral
index to be α=− 2/3 as predicted by the model of GW-driven
merger of SMBHBs, the GWB amplitude is =Alog c

- -
+14.7 1.9

0.9 (for 95% confidence level) and the posterior is
shown in Figure 3.

4. Searching for the Hellings–Downs Curve

PTAs search for the HD correlation signature (Hellings &
Downs 1983) to verify that the correlations in pulsar timing
residuals are quadrupolar and induced by an isotropic
stochastic GWB. We have searched for the HD correlation in
the CPTA DR1. As explained in the previous section, the
spectral index of the signal was not well constrained, because
of the limited data span. Therefore, instead of searching for the
spatial correlation in the framework of power-law spectral
models, we performed a more robust search for the spatial

Figure 2. The parameter inference for the stochastic GWB using CPTA DR1. Upper-left: histogram for the posterior distribution of spectral index α. Upper-right: 2D
distribution for the spectral index α and GW characteristic amplitude Ac. Bottom-right: histogram for the distribution of GW characteristic amplitude.

Figure 3. The histogram for the posterior distribution for the GWB amplitude
after fixing the spectral index at α = -2/3.
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correlation at discrete frequencies, such that (1) the results do
not depend on the priors of how the correlation function is
parameterized and (2) the results do not depend on the spectral
shape information. We searched mainly at f1.5= 14.0 nHz,
which corresponds to 1.5/T with T = 3.40 yr being the total
time span of the CPTA DR1. The reasons for choosing such a
frequency are explained in Appendix B. To check the
consistency of results, we also searched at the other two
frequencies, i.e., f1 = 9.34 and f2 = 18.7 nHz, respectively.
These frequencies correspond to 1/T and 2/T.

A two-step method was used to measure the pulsar-pair
correlation coefficients for each discrete frequency. We
simultaneously fitted all pulsar timing residuals with the
individual pulsar timing models and a common sinusoidal
waveform at a given frequency f. After marginalizing the pulsar
timing models, the phases of sinusoidal waveforms for each
pulsar and the common amplitude were measured using the
maximum likelihood estimator as

∣ ∣

( )

ò ò 
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ò

l
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-r r
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C d
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where ¢ri is

( ) ( )l p f¢ = - - -r r D tA fsin 2 . 5i i i T i i,

Here, the subscript i denotes the index of pulsar. Vector ri and
matrix Di are the timing residual and timing model design
matrix for the ith pulsar, respectively. λT,i are pulsar timing and
noise parameters, e.g., pulsar period, period derivative, white,
red and DM noise. C is the pulsar noise covariance matrix. fi is
the phase of the correlated signal for the ith pulsar. A is the
amplitude of the correlated signal in timing residual, e.g., a
GWB-induced signal. Here, amplitude A is proportional to the
rms defined in Equation (3) over a narrow frequency band
around frequency f. However, due to the irregular sampling of
pulsar timing data, there is no close formula to express A in
terms of spectral density S( f ). One can show that this approach
is equivalent to the frequency-domain modeling of power-law
processes (van Haasteren & Vallisneri 2014) with one
frequency element. The pairwise correlation coefficient
between the ith and the jth pulsars is ( )f f= -c cosij i j .

The statistical significance for the HD correlation against
constant correlation is evaluated using the frequentist method
described by Jenet et al. (2005), as

( ) ( )( )
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with the average operator over pulsar pairs defined as
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1
, where N is the number of pulsars, ∑i<j

sums over all independent pulsar pairs, and Hij (for i≠ j) is the
HD function of pulsar pairs that
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where θij is the angular distance between the ith and the jth
pulsars. The exact expression for the null-hypothesis distribu-
tion of  is rather lengthy (Kenney & Keeping 1939). For our
case, where the number of pulsars is significantly larger than
unity, a much simpler asymptotic Gaussian form is available as
explained by Jenet et al. (2005), i.e., the probability density
distribution function of  with no correlation is

( ) ( )
p

= -f
1

2
exp

2
. 8

2



⎜ ⎟
⎛
⎝

⎞
⎠

It should be noted that this method is immune to the
contamination of common uncorrelated signals (Lentati et al.
2015; Arzoumanian et al. 2020; Chen et al. 2021; Goncharov
et al. 2021; Antoniadis et al. 2022), because it evaluates the
statistical significance only using the cross correlation.
Furthermore, the monopolar correlation induced by clock
errors is also automatically removed, because the average value
of the correlation coefficients is subtracted in Equation (6).
Another interesting property of the above statistic is that the
error in cij is regularized such that −1� cij� 1. On the one
hand, this makes the  not the optimal statistic to search for the
HD curve. On the other hand, the error of cij becomes weakly
dependent on the pulsar intrinsic noise, and  is less affected
by the systematics of a few pulsars with dominant precision.
We demonstrate the application of this method with two
simulated data sets, where one contains the GWB signal
injection (positive control group) and the other does not
(negative control group). The simulated data sets are the
“clones” of the CPTA DR1 that they have the same frequency
resolution and sampling epochs as the CPTA DR1.
The measured pair-wise correlation coefficients of CPTA

DR1 are shown in Figure 4, where the results of the negative
and positive control groups using simulated datesets are also
shown. For the simulated data set without the GWB injection
(i.e., the negative control), we detect no significant spatial
correlations as shown in the top panels of Figure 4.
We can detect the HD correlation in the positive control with

the injected GW signal as shown in the middle panels of
Figure 4. In the data set, the characteristic amplitude and
spectral index of GWB are Ac= 10−14 and α=− 2/3,
respectively. The statistical significance ( = 8.5 ) peaks at
f= 1.5/T, whereas it is low at f1 and f2 ( = 2.7 and = 4.4 ,
respectively). Such behavior agrees with the theoretical
expectation, as explained in Appendix B, that (1) the statistic
significance of f= 1/T is lower than that at f= 1.5/T, because
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fitting of the pulsar timing model affects the low-frequency
components of the signal; and (2) the statistic significance at
f= 2/T is lower than that at f= 1.5/T, because the power-law
spectral signal is weaker at higher frequency.

The statistical significance of the HD correlation of CPTA
DR1 shows similar features to those of the positive control
group. For CPTA DR1, as shown in the bottom panels of
Figure 4, = 4.6 peaks at 1.5/T, which corresponds to a

Figure 4. The measured correlation coefficients (y-axis) as a function of the pulsar-pair separation angle (x-axis). Red dots denote the measured correlation coefficients
between all pulsar-pairs without the auto-correlation. The blue curves with error bars represent the binned average red dots, which only serve to aid the visual
inspection. The error bars are the standard error of binned average value estimated using the binned red dots. The solid red curves depict the theoretical HD curve. The
top row three panels show simulations without the GWB signal injection, where the data was simulated to match exactly the times and frequencies of the real CPTA
DR1. Each panel from left to right corresponds to f = 1/T, 1.5/T, and 2/T, respectively.
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P-value of PV= 4× 10−6. As we saw in the positive control
group, = 2.4 and 2.3 are lower at f= 1/T and 2/T,
respectively. By comparing the positive control group results
and the CPTA DR1 results, we can further confirm that the
GWB amplitude should be lower than 10−14. We also
performed the phase shift and sky position scrambling
experiments, which are described in Appendix C.

The signal components of the three frequencies 1/T, 1.5/T,
and 2/T are not independent of one another, because the
sampling of the data is irregular. It is thus invalid to directly
add (in the sense of the square-root sum of squares) the
statistical significance at the three frequencies to compute the
frequency-integrated statistical significance, even though the
frequency-integrated statistical significance is always higher or
equal to the statistical significance measured at a single discrete
frequency. In the case where noise modeling is not accurate
enough, the frequency-integrated statistical significance could
be lower than the single frequency value because of statistical
fluctuations or wrong weights at some frequencies. This could
happen if longer data is used and the signal spectrum over a
wide frequency range can not be well described by a single
power law.

For the CPTA DR1, we can not discriminate between dipole
(cosine function) and HD correlation with only cross-correla-
tion coefficients, although it seems to be lack of physical
mechanism to produce the dipole correlation at the frequency
we are currently sensitive to. For dipole correlation, we get
= 4.1 at f= 1.5/T, which is only slightly lower than that of

HD correlation. If we use the Bayes factor as the statistic (see
the method described in Arzoumanian et al. 2020), HD
correlation is preferred with a “strong evidence” that the Bayes
factor ∣ = 66HD dipole . We should point out that one of the
major differences between the Bayesian method and the above
frequentist method is that the Bayesian method includes the
autocorrelation terms in comparing the two models, while the
above method does not. Furthermore, Bayes factor

∣ = 66HD dipole here is not the perfect touchstone to exclude
the dipole correlation interpretation, as demonstrated by
numerical simulations of Zic et al. (2022) and the toy model in
Appendix A. One needs to be cautious about the application
and interpretation of the Bayes factors for the current problem
of measuring or detecting the statistical variance of stochastic
signals with spatial correlations.

5. Discussion and Conclusion

In this paper, we show that the inferred GWB characteristic
amplitude is = - -

+Alog 14.4c 2.8
1.0 for a spectral index in the

range α ä [− 1.8, 1.5], and = - -
+Alog 14.7c 1.9

0.9 if fixing
α=− 2/3. The measured GWB amplitude agrees with
theoretical expectation (Sesana 2013; McWilliams et al.
2014). However, because of the short span of the CPTA
DR1, we cannot yet differentiate between different models of

SMBHB formation and evolution. Our GWB amplitude seems
to be compatible with that of the common red signal of other
PTAs (Arzoumanian et al. 2020; Chen et al. 2021; Goncharov
et al. 2021; Antoniadis et al. 2022), although the median of
posterior distribution seems to be 0.4–0.5 dex higher. It is
possible that a single power law with α=− 2/3 is insufficient
to extend the previous results to the high frequency band that
CPTA is currently sensitive to, i.e., the spectrum of the GWB
signal is not fully power-law in shape and may have a spectral
“bump” in the CPTA frequency band (�10−8 Hz). The
statistical significance of the HD correlation over a constant-
value correlation in CPTA DR1 is 4.6σ around 14 nHz, i.e., a
P-value of 4× 10−6. Our correlation-curve analysis is
compatible with the GWB amplitude inference, where the
comparison between the statistical significance of simulations
and CPTA DR1 suggests that the amplitude of GWB quadruple
signal A< 10−14. More details, including comparisons between
different data reduction pipelines and a cross-check of the
current measurements, will be published in a following paper
(Xu et al. 2023, in preparation).
For the spatial correlation inference, we measured the pulsar

pairwise correlation at single frequencies, which removes the
power-law presumption for the GWB spectral shape. Addi-
tionally, this method is not affected by common uncorrelated
noise or clock error, as it uses only the cross correlations and
subtracts their average value. However, this method limits our
statistical significance, because only the correlation at a single
frequency was extracted. The total statistical significance will
be higher than the single frequency values. However, to
combine the measurements at multiple frequencies to deliver
the frequency-integrated spatial correlation, we would need
accurate information on the GWB spectral shape and pulsar
noise properties. In the future, we expect that data with a longer
span will enable us to go lower in frequency and therefore
measure the spectral index with better accuracy.
The current method cannot rule out a dipole origin for the

correlation, since both dipole and HD correlations produce
similar values of  . If we use Bayesian method to compare the
models of dipole and HD correlation, the Bayes factor (with the
caveats discussed in Appendix A) prefers the HD correlation
that the Bayes factor of HD correlation over dipole correlation
is ∣ = 66HD dipole .
The current CPTA DR1 statistical significance is still below

the IPTA “detection” bar of = 5 . Independent results of other
regional PTAs may soon help to confirm the current findings.
On a longer timescale, we look forward to officially joining the
IPTA. By combining IPTA and CPTA data, we expect a further
increase in GWB detection sensitivity. The CPTA DR2,
scheduled for 2026, is also expected to deliver better accuracy
in GWB parameter inference. We are clearly in the era of
opening the nHz GW observation window.
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Appendix A
Is the Bayes Factor Invalid?—Analytic Study of a Toy

Model

Here we provide a toy model to illustrate the problems of
applying the Bayes factor in the context of common signals.
Our toy model contains N pulsars. The timing residuals of all
pulsars are just pure white noise. There is neither spatially
correlated nor common uncorrelated signal components. The
null and positive hypotheses are

( )A1

H
H

: pulsar timing residuals are described by intrinsic noise only;
: intrinsic noise and a common uncorrelated component are needed.

0

1

⎧
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We further simplify the toy model by setting the average value
of timing residual to be 0. For H0, the parameters of the noise
model contain the standard deviation of the timing residual,
which is denoted as σi for the ith pulsar. The likelihood of H0 is
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The expected value of Bayes evidence (BE) with logarithmic
prior (the most common choice in PTA problems) is
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For H1, an extra amplitude parameter (A) is required to model
the amplitude of the common uncorrelated signal, so that the
likelihood function is
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Clearly, the expectation of Bayes evidence of H1, i.e.

( )

( )
ò ò s s s s sá ñ = ¼ L ¼ ¼d d dABE , log log ,

A5

N N1 1 1 2 1

will not converge on the boundary of ∂|σi= 0, as the amplitude
A modifies the behavior of the exponential function when
σi→ 0 and the singularity rises because of the logarithmic
prior. In other words, the Bayes factor BE1/BE0 can be
arbitrarily large no matter what the data is, if one varies the
prior range in the current toy model. This is true even the prior
range is kept to be the same for both H0 and H1! It is not hard to
see that the similar argument is also applicable to the case of
comparing two spatially correlated signals, where one will be
evaluating the Bayes factor between two singular distributions.
Numerical simulations have shown similar features, we refer
interested readers to the work of Zic et al. (2022).
Furthermore, although one can regularize the prior singular-

ity by using finite priors, the Bayes factor then becomes prior
dependent. Other singular behaviors will rise, when the spatial
correlations and spectral properties of signals are considered.
All those effects indicate that we should be cautious about
applying and interpreting the Bayes factors in the PTA GWB
searching problems. To fully utilize the power of Bayes factors,
we need (1) the probability distribution function of Bayes
factors under the null hypothesis, which requires that the
sample space is measurable such that probability distribution
function can be well defined, and (2) the computational method
to calculate the null-hypothesis distribution of Bayes factors
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that converges to the full-sample-space expectation at the large
N limit.

Appendix B.
Systematic Error of Correlation Coefficients Due to
the Fitting of Pulsar Period and Period Derivative

For two cosine functions with the same frequency, i.e.,
( )p f= +f A ftcos 21 1 1 and ( )p f= +f A ftcos 22 2 2 , the corre-

lation coefficient is ( )f f= -c cos 1 2 . Here one can regard the
two cosine functions as the single-frequency components of
GW-induced signals for two different pulsars. In the pulsar
timing procedure, one fits for the pulsar period and period
derivative. Thus, the best-fitted quadratic is subtracted by-
default from the timing residuals. Such a fitting modifies the
correlation coefficient between the two cosine functions and
leads to a systematic error.

After subtracting the best-fitted quadratic, the two functions are
( )p f a a a¢ = + - - -f A ft t tcos 21 1 1 0 1 2

2 and ¢ =f A cos2 2

( )p f b b b+ - - -ft t t2 2 0 1 2
2, where the coefficients of the

quadratic, i.e., α0..2 and β0..2, are found by minimizing the χ2, i.e.
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To evaluate the effects of the above quadratic fitting on the
correlation coefficient c, we define the rms level of systematic
error over all possible correlations as

The systematic error as a function of the frequency f is shown
in Figure B1. As expected, it shows that the correlation
coefficients of lower frequency components ( f� 1/T) are
mostly affected. In the paper, we choose f= 1.5/T, such that
the systematic error of the correlation coefficient is less than
10%. For future data sets, the frequency can be chosen with a
higher value to further reduce the systematic error, as the data
sensitivity improves.

Appendix C
Phase Shift and Sky-position Scramble Experiments

As is common in PTA data analysis at the time this paper is
written, we perform the experiments with the phase shift and
the sky-position scramble, which were first introduced by
Taylor et al. (2017). The recipes for the two experiments are as
follows: (i) For the phase shift experiment, one introduces
random phase either to the data or Fourier design matrix, which
eliminates the phase coherence between pulsars. With each
phase shift, the desired statistics in a given GW detection
pipeline are computed and collected. The distribution of the
collected values of the statistics is then used to form an

approximation to the null-hypothesis statistical distribution
function to evaluate the false alarm probability. (ii) The sky-
position scramble is similar, where one replaces the phase
shifting with the scrambled pulsar position, i.e., assigns
random positions to the pulsars. The method aims at shuffling
the pulsar position to remove the spatial correlation, where
one randomly re-assigns all pulsars with new pulsar positions
over the entire sky and ensures that the “matching” (see
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Figure B1. The systematic error of correlation coefficients cij due to the
quadratic fitting. Here, x-axis is the frequency in the unit of 1/T, and y-axis is
the systematic error of correlation coefficients defined in Equation (B3). The
vertical dashed line indicates f = 1.5/T.
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definition in Taylor et al. 2017) is below a prescribed
threshold (M) between the scrambled spatial correlation
functions. Note, it is required that the matching between any
two full skies of the position-scrambles is also below the
threshold.

For our statistics  defined in Equation (6), the results of
phase shifting and sky position scrambling experiments are
shown in Figure C1. One can see that the phase shifting
reproduced the expected null hypothesis distribution. This is
not surprising. For our statistics, as  does not depend on the
amplitude of the correlated signal, the distribution of 
becomes the null-hypothesis distribution after the correlation
between any pulsar pair is destroyed by the random phase
shifts. One can get different conclusions, if an alternative

statistics involving the amplitude parameter is used, e.g.,
optimal statistics, likelihood ratio tests, and Bayes factors.
For sky-position scrambling, the distribution of  is similar

to the null-hypothesis distribution for  2 . However the
position scrambling distribution has a significant tail toward
higher value of  , and sky scrambling overestimates the p-
value. The reason is that the sky scrambling produces a
different sample space comparing to the case of Equation (8).
The sample space produced by the sky scrambling still contains
a shuffled version of the prescribed spatial correlation in the
data set (the by-default choice is a shuffled HD correlation),
while Equation (8) assumes that the sample space contains the
data set with no spatial correlation. We can demonstrate such a
sample-space problem by computing the distribution of 

Figure C1. Phase shifting and sky position scramble experiments. Upper row: The probability density function (upper left) and the survivor function (upper right) of
 , respectively, after introducing random phase shifts. The blue curves are measured by evaluating  with each realization of phase shift. The red dashed curve are the
Gaussian distribution (Equation (8)). The vertical blue line indicates = 4.6 . Lower row: The probability density function (lower left) and the survivor function
(lower right) of  , respectively, after the sky position scrambling. The red, green, blue, and black curves are for matching thresholds of M = 0.1, 0.3, 0.5, and 1,
respectively. Because of the matching-threshold’s limitation in the number of possible realizations, we create 3000 realizations for M = 0.1, 0.3, and 0.5, and 100,000
realizations for M = 1. The differences between those curves are dominated by the statistical fluctuation, and there is no significant difference with choosing different
values of matching threshold. However, the distribution of  with sky scrambling differs significantly from the Gaussian distribution (the red dashed curve) when
 2 , as seen clearly in the survivor functions (right panel).
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while imposing another shuffled spatial correlation, which,
according to the same argument by Taylor et al. (2017), still
forms an uncorrelated distribution. For a sky scramble of an
inverted HD correlation, the results can be found in Figure C2.
One can see that the sky scrambling now underestimates the p-
value. Clearly, all correlations do not die in the sky scrambling
procedure.

In addition to the sample space issue, we note that the sky
position scrambling operation has two more practical problems
and should not be used to evaluate the p-value for our case of
= 4.6 . The first issue is that as the original method Taylor

et al. (2017) requires that all realizations are below a certain
matching threshold, it is computationally expensive to generate
a large number (e.g., ∼104) of samples; if one further requires

the noise-weighted threshold (as in general not all pulsars
contribute equally due to the differences in their noise
properties), the number of independent samples can be further
limited (Di Marco et al. 2023). The second issue is that the
distribution of  suffers from fluctuation of individual
realizations. We would need thousands of samples to evaluate
the statistical threshold for  3 . As an example, in
Figure C3, we show the survivor function of S from 1000
tries each with 1000 realizations. One can see that the p-value
fluctuates from 2× 10−3 to 2× 10−2 at = 2.5 . Each
realization in general over estimate the p-value compared to
Equation (8), although a few realizations underestimate the p-
value. More than one order of magnitude fluctuation in p-value
is noted, for  2.5 . The fluctuation can be even larger, once

Figure C2. Sky position scramble experiments imposing shuffled anti-HD correlation. For simplicity, we only show the survivor function of  here. The red and black
solid curves are measured by evaluating  with each realization of phase shift with M = 0.1 and 1, respectively. The red dashed curve is for the Gaussian distribution
Equation (8).

Figure C3. 1000 × 1000 sky position scramble experiment imposing shuffled HD correlation. Left: The survivor function of  . Each of the green curves is a single
trial with 1000 realizations with M = 0.1. The red dashed curve is for the Gaussian distribution Equation (8). The blue vertical line indicates the = 2.5 , while the
two black horizontal dashed lines indicate the maximal and minimal p-value at = 2.5 found from the green curves, which are 2 × 10−2 and 2 × 10−3, respectively.
Right: The scale of p-value fluctuation as a function of  , computed from the green curves ensembles shown in the left panel. Here, we use the ratio between the
maximal and minimal p-value to indicate the fluctuation scale. For  2.5 (blue vertical line), the fluctuation is larger than a factor of 10. In this way, a single trial
with 1000 realizations is insufficient to accurately determine the p-value for  2.5 . Significantly more realizations are thus required.
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we allow for a more general form of imposed spatial correlation
as explained in the previous paragraph.

One may attempt to remedy the fluctuation by combining the
phase shifting and sky position scrambling to produce a larger
data set. This will not work in our case, as phase shifting and
sky-position scrambling cover different sample spaces. The
final p-value calculation depends on the details of how the two
methods are combined, which is not meaningful in the
statistical modeling.

Due to the results of above experiments and reasons
explained, we do not use phase shift or sky-position scrambling
to evaluate the p-value of  in the current paper.
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